1
|
Wawrzyniak O, Wawrzyniak D, Smuszkiewicz M, Głodowicz P, Gotz-Więckowska A, Rolle K. Exploring microRNA signatures in pediatric non-infectious uveitis: meta-analysis and molecular profiling of patient samples. J Appl Genet 2024:10.1007/s13353-024-00922-8. [PMID: 39695050 DOI: 10.1007/s13353-024-00922-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 12/20/2024]
Abstract
To find a distinct non-coding RNA characteristic for idiopathic uveitis in the pediatric population. To explore the autoimmune-related miRNA expression profile in pediatric patients with idiopathic uveitis (IU) and juvenile idiopathic arthritis-associated uveitis (JIA-AU) and find a common molecular background for idiopathic uveitis and other autoimmune diseases. The expression levels of miRNAs were analyzed by quantitative real-time PCR using serum samples from patients with idiopathic uveitis (n = 8), juvenile idiopathic arthritis-associated uveitis (n = 7), and healthy controls. We selected the most promising miRNAs from the original research papers: miR-16-5p, miR-26a-5p, miR-145-5p, and miR-451a as markers for juvenile idiopathic arthritis; miR-23a-3p, miR-29a-3p, miR-140-5p, miR-193a-5p, and miR-491-5p for uveitis in the adult population; and miR-125a-5p, miR-146a-5p, miR-155-5p, miR-223-5p, and miR-223-3p characteristic for both diseases and confirm their expression changes in serum from children with idiopathic uveitis. We comprehensively reviewed the literature enrolling the papers that met the inclusion criteria (miRNA and non-infectious uveitis/juvenile idiopathic arthritis) and performed target prediction analysis of appoint miRNAs. It additionally confirmed that altered miRNAs target the immunologically involved genes. Immunological-involved miRNAs such as miR-146a-5p and miR-155-5p show diverse expression levels in different patients as they interact with multiple targets. miR-204-5p is downregulated in both patient groups compared to healthy controls. miR-204-5p and miR-155-5p are candidates for molecular markers of autoimmune uveitis. We did not identify the miRNAs specific only to idiopathic uveitis, but for the first time in the pediatric population, we confirmed that this disease entity shares a molecular basis with other autoimmune diseases. Further studies are required to elucidate the molecular interactions among miRNAs, cytokines, and transcription factors within the intricate immune response, particularly in the eye.
Collapse
Affiliation(s)
- Olga Wawrzyniak
- Department of Ophthalmology, Poznan University of Medical Sciences, Augustyna Szamarzewskiego 84, 61-848, Poznan, Poland
| | - Dariusz Wawrzyniak
- Department of Molecular Neurooncology, Institute of Bioorganic Chemistry Polish Academy of Sciences, Zygmunta Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Michał Smuszkiewicz
- Department of Molecular Neurooncology, Institute of Bioorganic Chemistry Polish Academy of Sciences, Zygmunta Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Paweł Głodowicz
- Department of Molecular Neurooncology, Institute of Bioorganic Chemistry Polish Academy of Sciences, Zygmunta Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Anna Gotz-Więckowska
- Department of Ophthalmology, Poznan University of Medical Sciences, Augustyna Szamarzewskiego 84, 61-848, Poznan, Poland.
| | - Katarzyna Rolle
- Department of Molecular Neurooncology, Institute of Bioorganic Chemistry Polish Academy of Sciences, Zygmunta Noskowskiego 12/14, 61-704, Poznan, Poland.
| |
Collapse
|
2
|
Yu X, Duan R, Jiang L, Wang T, Li Z, Zhang B, Su W, Lin Y. Interleukin-6 in non-infectious uveitis: Biology, experimentalevidence and treatment strategies. Biochem Pharmacol 2024; 230:116605. [PMID: 39491564 DOI: 10.1016/j.bcp.2024.116605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/10/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Uveitis is the leading cause of visual impairment worldwide. Interleukin-6 (IL-6), which is upregulated in response to inflammation, is one of the most important inflammatory cytokines associated with uveitis. Two major IL-6 receptors (IL-6R) mediate the pro-inflammatory and anti-inflammatory biological effects of IL-6. This review summarized multiple perspectives on the mechanism of IL-6-mediated uveitis, based on experimental evidence from clinical and animal models. It includes discussions on the roles of the downstream IL-6 signaling pathway, immunocytes, and the blood-retinal barrier. Therapeutic strategies aimed at blocking the action of IL-6 have progressed in clinical practice. However, due to the adverse events associated with existing biologics including infections, drugs that selectively inhibit intraocular IL-6 still require further development. The novel concept of converting the pro-inflammatory effects of IL-6 into protective effects also requires further research. In addition, the relationship between the trans-presentation of IL-6R and T-helper17 cells in uveitis remains unexplored. This review aims to consolidate our current understanding of the biology, signaling pathways, experimental models, and immune pathogenesis related to IL-6 and uveitis. We also discuss clinical strategies focused on blocking IL-6 as a treatment for uveitis. Targeting IL-6 provides unlimited potential for improving the diagnosis, treatment, and prognosis of uveitis.
Collapse
Affiliation(s)
- Xiaoyang Yu
- Guangzhou University of Chinese Medicine, Guangzhou 510060, China
| | - Runping Duan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Loujing Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Tianfu Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Zhaohuai Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Bowen Zhang
- Sun Yat-sen University Zhongshan School of Medicine, Guangzhou 510060, China
| | - Wenru Su
- Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200000, China.
| | - Ying Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| |
Collapse
|
3
|
Sharon Y, Ben-David G, Nisgav Y, Amarilyo G, Shapira G, Israel-Elgali I, Pillar S, Pillar N, Shomron N, Kramer M. MicroRNAs as Biomarkers for Uveitis in Juvenile Idiopathic Arthritis. Ocul Immunol Inflamm 2024:1-7. [PMID: 39561030 DOI: 10.1080/09273948.2024.2428417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/22/2024] [Accepted: 11/05/2024] [Indexed: 11/21/2024]
Abstract
PURPOSE Uveitis associated with juvenile idiopathic arthritis (JIA-U) is a clinically silent vision-impairing disease. Early detection and aggressive treatment are crucial for optimal visual outcome. Alterations in levels of microRNAs (miRNAs) are characteristic of autoimmune diseases. The present clinical study sought to explore the expression of miRNAs in JIA-U and their potential role as a predictive biomarker. METHODS MiRNA expression profiling was performed on peripheral blood mononuclear cells derived from pediatric patients with JIA, JIA-U, or other types of uveitis using the high-throughput small-RNA sequencing (on Next Generation Sequencing (NGS)). Patient- and disease-related data were retrieved from the medical files. Main outcome measure was the differential expression of miRNAs among the groups. RESULTS The cohort included 35 patients; 20 children with JIA-U (8 with active disease), 10 with JIA without ocular involvement, and 5 with other types of uveitis (4 with active disease). Mean age was 8.6 years; 83% were female. Nineteen patients (54%) received immunomodulatory treatment. The expression of miR-4485-3p was significantly increased in patients with JIA-U compared to patients with JIA alone (p < 0.05), with no difference between patients with active or inactive uveitis. The expression in patients with uveitis of other etiologies was similar to the expression in JIA-U patients. CONCLUSIONS This study demonstrates a differential expression profile of a specific miRNA in JIA patients with and without uveitis. If verified in larger studies, the findings may assist to identify JIA patients at risk to develop uveitis and to improve early detection of disease activity.
Collapse
Affiliation(s)
- Yael Sharon
- Department of Ophthalmology, Rabin Medical Center, Beilinson Hospital, Petach Tikva, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Gil Ben-David
- Department of Ophthalmology, Rabin Medical Center, Beilinson Hospital, Petach Tikva, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yael Nisgav
- Department of Ophthalmology, Rabin Medical Center, Beilinson Hospital, Petach Tikva, Israel
- Laboratory of Eye Research, Felsenstein Medical Research Center, Petach Tikva, Israel
| | - Gil Amarilyo
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Department of Pediatric Rheumatology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Guy Shapira
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ifat Israel-Elgali
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shani Pillar
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Nir Pillar
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Noam Shomron
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Michal Kramer
- Department of Ophthalmology, Rabin Medical Center, Beilinson Hospital, Petach Tikva, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
4
|
Sood S, Tiwari A, Sangwan J, Vohra M, Sinha NR, Tripathi R, Sangwan VS, Mohan RR. Role of epigenetics in corneal health and disease. Prog Retin Eye Res 2024; 104:101318. [PMID: 39547455 DOI: 10.1016/j.preteyeres.2024.101318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/17/2024]
Abstract
Epigenetics plays a vital role in corneal health and diseases. Epigenetic changes regulate the expression of genes by altering the accessibility of chromatin via histone modifications, DNA methylation and miRNAs without altering DNA sequence. Ocular trauma and infections are common causes of corneal damage, vision impairment, and mono/bilateral blindness worldwide. Mounting literature shows that epigenetic modifications can modulate corneal clarity, function, and pathogenesis including inflammation, wound healing, fibrosis, and neovascularization. Additionally, epigenetic modifications can be targeted to reverse corneal pathologies and develop interventional therapies. However, current understanding on how epigenetic modifications lead to corneal abnormalities and diseases is limited. This review provides in-depth knowledge and mechanistic understanding of epigenetics alterations in corneal pathogenesis, and information on potential epigenetic targets for treatment of corneal diseases.
Collapse
Affiliation(s)
- Swati Sood
- Departments of Veterinary Medicine & Surgery, College of Veterinary Medicine University of Missouri, Columbia, MO, USA
| | - Anil Tiwari
- Departments of Veterinary Medicine & Surgery, College of Veterinary Medicine University of Missouri, Columbia, MO, USA; Eicher-Shroff Centre for Stem Cells Research (ESC-SCR), Dr. Shroff Charity Eye Hospital, Delhi, India
| | - Jyoti Sangwan
- Eicher-Shroff Centre for Stem Cells Research (ESC-SCR), Dr. Shroff Charity Eye Hospital, Delhi, India
| | - Mehak Vohra
- Eicher-Shroff Centre for Stem Cells Research (ESC-SCR), Dr. Shroff Charity Eye Hospital, Delhi, India
| | - Nishant R Sinha
- Departments of Veterinary Medicine & Surgery, College of Veterinary Medicine University of Missouri, Columbia, MO, USA; Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA; Department of Ophthalmology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Ratnakar Tripathi
- Departments of Veterinary Medicine & Surgery, College of Veterinary Medicine University of Missouri, Columbia, MO, USA; Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA
| | - Virender S Sangwan
- Eicher-Shroff Centre for Stem Cells Research (ESC-SCR), Dr. Shroff Charity Eye Hospital, Delhi, India
| | - Rajiv R Mohan
- Departments of Veterinary Medicine & Surgery, College of Veterinary Medicine University of Missouri, Columbia, MO, USA; Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA; Department of Ophthalmology, School of Medicine, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
5
|
Qu R, Peng Y, Zhou M, Xu S, Yin X, Qiu Y, Liu B, Gao Y, Bi H, Guo D. MiR-223-3p attenuates M1 macrophage polarization via suppressing the Notch signaling pathway and NLRP3-mediated pyroptosis in experimental autoimmune uveitis. Eur J Pharmacol 2023; 960:176139. [PMID: 38059448 DOI: 10.1016/j.ejphar.2023.176139] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 12/08/2023]
Abstract
Autoimmune uveitis is an intraocular inflammatory disease with a high blindness rate in developed countries such as the United States. It is pressing to comprehend the pathogenesis of autoimmune uveitis and develop novel schemes for its treatment. In the present research, we demonstrated that the Notch signaling pathway was activated, and the level of miR-223-3p was significantly reduced in rats with experimental autoimmune uveitis (EAU) compared with the level of normal rats. To investigate the relationship between miR-223-3p and Notch signaling, EAU rats received miR-223-3p-carrying lentivirus, miR-223-3p vector-carrying lentivirus (miR-223-3p-N), and γ-secretase inhibitor (DAPT), respectively. The results of Q-PCR, immunological experiments, and flow cytometry analysis all support the hypothesis that both miR-223-3p and DAPT, a Notch signaling pathway inhibitor, had similar inhibitory effects on the EAU pathological process. That is to say, they could both inhibit the activation of the Notch signaling pathway via modulating recombination signal binding protein-Jκ (RBPJ) to restore the polarization imbalance of M/M2 macrophages in EAU rats. In addition, miR-223-3p could also inhibit NLRP3 inflammasome activation and inflammasome-induced pyroptosis in ocular tissues. Taken together, our findings indicate that miR-223-3p serves as an important regulator in M1 macrophage polarization and pyroptosis, thereby alleviating the inflammatory response in uveitis.
Collapse
Affiliation(s)
- Ruyi Qu
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Yuan Peng
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Mengxian Zhou
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Shuqin Xu
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Xuewei Yin
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Yan Qiu
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Bin Liu
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Yan'e Gao
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Hongsheng Bi
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Dadong Guo
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, 250002, China.
| |
Collapse
|
6
|
Peng Y, Zhou M, Yang H, Qu R, Qiu Y, Hao J, Bi H, Guo D. Regulatory Mechanism of M1/M2 Macrophage Polarization in the Development of Autoimmune Diseases. Mediators Inflamm 2023; 2023:8821610. [PMID: 37332618 PMCID: PMC10270764 DOI: 10.1155/2023/8821610] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/21/2023] [Accepted: 05/23/2023] [Indexed: 06/20/2023] Open
Abstract
Macrophages are innate immune cells in the organism and can be found in almost tissues and organs. They are highly plastic and heterogeneous cells and can participate in the immune response, thereby playing a crucial role in maintaining the immune homeostasis of the body. It is well known that undifferentiated macrophages can polarize into classically activated macrophages (M1 macrophages) and alternatively activated macrophages (M2 macrophages) under different microenvironmental conditions. The directions of macrophage polarization can be regulated by a series of factors, including interferon, lipopolysaccharide, interleukin, and noncoding RNAs. To elucidate the role of macrophages in various autoimmune diseases, we searched the literature on macrophages with the PubMed database. Search terms are as follows: macrophages, polarization, signaling pathways, noncoding RNA, inflammation, autoimmune diseases, systemic lupus erythematosus, rheumatoid arthritis, lupus nephritis, Sjogren's syndrome, Guillain-Barré syndrome, and multiple sclerosis. In the present study, we summarize the role of macrophage polarization in common autoimmune diseases. In addition, we also summarize the features and recent advances with a particular focus on the immunotherapeutic potential of macrophage polarization in autoimmune diseases and the potentially effective therapeutic targets.
Collapse
Affiliation(s)
- Yuan Peng
- Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - Mengxian Zhou
- Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - Hong Yang
- Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao 266033, China
| | - Ruyi Qu
- Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - Yan Qiu
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - Jiawen Hao
- Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - Hongsheng Bi
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases; Shandong Academy of Eye Disease Prevention and Therapy, Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - Dadong Guo
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases; Shandong Academy of Eye Disease Prevention and Therapy, Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| |
Collapse
|
7
|
Liu X, Zhang Y, Zhang Z, An Z, Zhang X, Vakharia VN, Lin L. Isolation, identification and the pathogenicity characterization of a Santee-Cooper ranavirus and its activation on immune responses in juvenile largemouth bass (Micropterus salmoides). FISH & SHELLFISH IMMUNOLOGY 2023; 135:108641. [PMID: 36858328 DOI: 10.1016/j.fsi.2023.108641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
The largemouth bass virus (LMBV) isolate of Santee-Cooper ranavirus showed evidence of widespread infection in adult fish, but disease presentation caused by different viral strains exhibited considerable difference. In this study, a highly pathogenic LMBV-like resembling Santee-Cooper ranavirus was isolated and identified from juvenile largemouth bass. The pathogenicity and dynamic distribution of LMBV-like strain, histopathological analysis and host immune response of juvenile largemouth bass infected with LMBV-like were investigated. The results show that LMBV-like was highly pathogenic to juvenile fish, and the infected fish showed typical signs of acute haemorrhages and visceral enlargement. LMBV-like positive cells were found in the liver, spleen, kidney, gills, and intestinal tissue, and the virus content in spleen was the highest. Histopathological analysis showed different pathological changes in major tissues of diseased fish, mostly manifested as infiltration of inflammatory cell and histiocyte necrosis. In addition, humoral immune factors such as superoxide dismutase (SOD), catalase (CAT) and acid phosphatase (ACP) were used as serum indicators to evaluate the immune response of juvenile fish after infection. Quantitative real-time PCR (qRT-PCR) was used to evaluate the expression patterns of immune-related genes (CD40, IFN-γ, IgM, IL-1β, IL-8, IL-12a, Mxd3, TGF-β, and TNFα) in liver, spleen, and head kidney tissues. The results showed that immunological activity of the juvenile largemouth bass was significantly enhanced by LMBV-like infection. This research comprehensively systematically revealed the pathogenic characteristics of LMBV-like separated from juvenile largemouth bass and properties of the host's immune response caused by the virus infection, which providing a basis for further exploring the interaction between the virus and the host, and prevention and treatment of disease caused by Santee-Cooper ranavirus.
Collapse
Affiliation(s)
- Xiaodan Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| | - Yanbing Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Zheling Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Zhenhua An
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xiaojun Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Vikram N Vakharia
- Institute of Marine and Environmental Technology, University of Maryland Baltimore Country, Baltimore, MD, 21202, USA
| | - Li Lin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China.
| |
Collapse
|
8
|
Wang Z, Dai R, Ahmed SA. MicroRNA-183/96/182 cluster in immunity and autoimmunity. Front Immunol 2023; 14:1134634. [PMID: 36891312 PMCID: PMC9986322 DOI: 10.3389/fimmu.2023.1134634] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/09/2023] [Indexed: 02/22/2023] Open
Abstract
MicroRNAs (miRNAs) are crucial post-transcriptional regulators of gene expression in ubiquitous biological processes, including immune-related pathways. This review focuses on the miR-183/96/182 cluster (miR-183C), which contains three miRNAs, miR-183, -96, and -182, having almost identical seed sequences with minor differences. The similarity among seed sequences allows these three miRNAs to act cooperatively. In addition, their minor differences permit them to target distinct genes and regulate unique pathways. The expression of miR-183C was initially identified in sensory organs. Subsequently, abnormal expression of miR-183C miRNAs in various cancers and autoimmune diseases has been reported, implying their potential role in human diseases. The regulatory effects of miR-183C miRNAs on the differentiation and function of both innate and adaptive immune cells have now been documented. In this review, we have discussed the complex role of miR-183C in the immune cells in both normal and autoimmune backgrounds. We highlighted the dysregulation of miR-183C miRNAs in several autoimmune diseases, including systemic lupus erythematosus (SLE), multiple sclerosis (MS), and ocular autoimmune disorders, and discussed the potential for utilizing miR-183C as biomarkers and therapeutic targets of specific autoimmune diseases.
Collapse
Affiliation(s)
- Zhuang Wang
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine (VMCVM), Virginia Tech, Blacksburg, VA, United States
| | - Rujuan Dai
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine (VMCVM), Virginia Tech, Blacksburg, VA, United States
| | - Sattar Ansar Ahmed
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine (VMCVM), Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
9
|
Tang F, Zhou Z, Huang K, Deng W, Lin J, Chen R, Li M, Xu F. MicroRNAs in the regulation of Th17/Treg homeostasis and their potential role in uveitis. Front Genet 2022; 13:848985. [PMID: 36186459 PMCID: PMC9515448 DOI: 10.3389/fgene.2022.848985] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 08/24/2022] [Indexed: 11/25/2022] Open
Abstract
Th17 and regulatory T cells (Tregs) play crucial roles in the pathogenesis of autoimmune diseases. Th17/Treg homeostasis is critically involved in maintaining the immune balance. Disturbed Th17/Treg homeostasis contributes to the progression of autoimmune diseases. MicroRNAs (miRNAs) have emerged as a new vital factor in the regulation of disturbed Th17/Treg homeostasis. To better understand the epigenetic mechanisms of miRNAs in regulating Treg/Th17 homeostasis, we included and evaluated 97 articles about autoimmune diseases and found that miRNAs were involved in the regulation of Treg/Th17 homeostasis from several aspects positively or negatively, including Treg differentiation and development, Treg induction, Treg stability, Th17 differentiation, and Treg function. Uveitis is one of the ocular autoimmune diseases, which is also characterized with Th17/Treg imbalance. However, our understanding of the miRNAs in the pathogenesis of uveitis is elusive and not well-studied. In this review, we further summarized miRNAs found to be involved in autoimmune uveitis and their potential role in the regulation of Th17/Treg homeostasis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Min Li
- *Correspondence: Fan Xu, ; Min Li,
| | - Fan Xu
- *Correspondence: Fan Xu, ; Min Li,
| |
Collapse
|
10
|
Th2 IL-4/IL-13 dual blockade with Dupilumab is linked to some Emergent Th17 type Diseases including seronegative arthritis, enthesitis/enthesopathy, but not humoral autoimmune diseases. J Invest Dermatol 2022; 142:2660-2667. [PMID: 35395222 DOI: 10.1016/j.jid.2022.03.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/02/2022] [Accepted: 03/18/2022] [Indexed: 01/17/2023]
Abstract
Dupilumab, an IL-4/IL-13 receptor blocker, has been linked to emergent seronegative inflammatory arthritis and psoriasis that form part of the spondyloarthropathy (SpA) spectrum. We systematically investigated patterns of immune disorders including predominantly Th17- (SpA pattern), Th2-mediated disorders and humoral autoimmune pattern diseases, using VigiBase, the World Health Organization's (WHO) global pharmacovigilance of adverse drug reactions (ADRs). Several bioinformatics databases and repositories were mined to couple Dupilumab-related immune-pharmacovigilance with molecular cascades relevant to reported findings. 37,848 Dupilumab ADR cases were reported, with skin, eye, musculoskeletal systems most affected. Seronegative arthritis (OR 9.61) psoriasis (OR 1.48), enthesitis/enthesopathy (OR 12.65), and iridocyclitis (OR 3.77) were highly associated. However, Ankylosing Spondylitis and IBD were not conclusively associated. Overall, classic polygenic humorally-mediated autoimmune diseases such as RA and SLE were not associated with Dupilumab use. Pathway analysis identified several biological pathways potentially involved in Dupilumab-associated ADRs, including the fibroblast growth factor receptor (FGFR; in particular, FGFR2) pathway. miRNAs analysis revealed the potential involvement of hsa-miR-21-5p and hsa-miR-335-5p. In conclusion, IL-4/IL-13 blockers are not unexpectedly protective against humoral autoimmune diseases but dynamically skew immune responses towards some IL-23/IL-17 cytokine pathway-related diseases. A robust signal potentially towards degenerative related pathology in the eye and vasculature due to loss of IL-4/IL-13 tissue reparative homeostatic mechanisms emerged.
Collapse
|
11
|
Zou Y, Li JJ, Xue W, Kong X, Duan H, Li Y, Wei L. Epigenetic Modifications and Therapy in Uveitis. Front Cell Dev Biol 2021; 9:758240. [PMID: 34869347 PMCID: PMC8636745 DOI: 10.3389/fcell.2021.758240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022] Open
Abstract
Uveitis is a sight-threatening intraocular inflammation, and the exact pathogenesis of uveitis is not yet clear. Recent studies, including multiple genome-wide association studies (GWASs), have identified genetic variations associated with the onset and progression of different types of uveitis, such as Vogt–Koyanagi–Harada (VKH) disease and Behcet’s disease (BD). However, epigenetic regulation has been shown to play key roles in the immunoregulation of uveitis, and epigenetic therapies are promising treatments for intraocular inflammation. In this review, we summarize recent advances in identifying epigenetic programs that cooperate with the physiology of intraocular immune responses and the pathology of intraocular inflammation. These attempts to understand the epigenetic mechanisms of uveitis may provide hope for the future development of epigenetic therapies for these devastating intraocular inflammatory conditions.
Collapse
Affiliation(s)
- Yanli Zou
- Department of Ophthalmology, Affiliated Foshan Hospital, Southern Medical University, Foshan, China.,State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, China
| | - Jing Jing Li
- State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, China
| | - Wei Xue
- State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, China
| | - Xiangbin Kong
- Department of Ophthalmology, Affiliated Foshan Hospital, Southern Medical University, Foshan, China
| | - Hucheng Duan
- Department of Ophthalmology, Affiliated Foshan Hospital, Southern Medical University, Foshan, China
| | - Yiqun Li
- Department of Orthopaedics, Affiliated Foshan Hospital, Southern Medical University, Foshan, China
| | - Lai Wei
- State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
12
|
Sun J, Liu R, He X, Bian J, Zhao W, Shi W, Ruan Q. MicroRNA-21 Regulates Diametrically Opposed Biological Functions of Regulatory T Cells. Front Immunol 2021; 12:766757. [PMID: 34858422 PMCID: PMC8632542 DOI: 10.3389/fimmu.2021.766757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
Regulatory T cells (Tregs) are considered important for controlling the onset and development of autoimmune disease. Although studies have shown that miR-21 is expressed at higher levels in Treg cells, it remains largely elusive whether miR-21 regulates the immune-suppressive function of Tregs. In the current study, we generated mice lacking miR-21 specifically in their Tregs and investigated the role of miR-21 in regulating Treg function both in vitro and in vivo. Our study revealed that Tregs lacking miR-21 exhibit normal phenotype and unaltered function in suppressing T cell proliferation and dendritic cell activation in vitro. However, compared with miR-21-sufficient Tregs, they produce significant more IL-17 and IL-10 when under pathogenic Th17-priming condition. Adenoviral delivery of miR-21 into Treg cells is able to reduce the expression of both IL-17 and IL-10. Mechanistic study revealed that miR-21 down-regulates IL-10 expression through direct targeting of IL-10, and suppresses reprogramming of Tregs into IL-17-secreting cells through down-regulating Stat3 activity. However, we detected no significant or marginal difference in the development of various autoimmune diseases between wild type mice and mice with Treg-specific deletion of miR-21. In conclusion, our study demonstrated that miR-21 in Tregs regulates diametrically opposed biological Treg functions and is largely dispensable for the development of autoimmune disease.
Collapse
Affiliation(s)
- Jijun Sun
- Eye Hospital of Shandong First Medical University, Jinan, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Institute of Ophthalmology, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Ruiling Liu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Institute of Ophthalmology, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Xiaozhen He
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Institute of Ophthalmology, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Jiang Bian
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Wenbo Zhao
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Institute of Ophthalmology, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Weiyun Shi
- Eye Hospital of Shandong First Medical University, Jinan, China
| | - Qingguo Ruan
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Institute of Ophthalmology, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| |
Collapse
|
13
|
Li M, Gao X, Liu K, Bao N, Jiang Z. MiR-379-5p aggravates experimental autoimmune uveitis in mice via the regulation of SEMA3A. Autoimmunity 2021; 54:275-283. [PMID: 34060391 DOI: 10.1080/08916934.2021.1931841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Uveitis is a disease resulting in the inflammation of uveal tracts, but the factors resulting in uveitis is still obscure. Previous studies have shown that miR-379-5p was involved in the pathogenesis of several diseases, however, the role and regulatory mechanism of miR-379-5p in uveitis were unclear. In our study, we established experimental autoimmune uveitis (EAU) mouse models to explore the role of miR-379-5p in uveitis. RT-qPCR identified that miR-379-5p level was increased in serum of EAU mice. In mechanism, SEMA3A 3'UTR was proven to be directly targeted by miR-379-5p and SEMA3A expression was negatively regulated by miR-379-5p in CD4+ T cells. Moreover, ELISA analysis revealed that knockdown of miR-379-5p suppressed the production of inflammation cytokines including IL-17, TNF-α and IL-β in vitro. These results were reversed by SEMA3A overexpression. In addition, the reduction of Th17 cells under miR-379-5p inhibitor was neutralised by SEMA3A knockdown in vitro. Furthermore, we demonstrated that knockdown of miR-379-5p significantly reversed the increased clinical scores and inflammatory response resulting from EAU treatment and this effect was further countervailed by SEMA3A silencing. Our study suggested that miR-379-5p aggravated uveitis in EAU mice via the regulation of SEMA3A, which may provide a novel insight for uveitis treatment.
Collapse
Affiliation(s)
- Mohan Li
- Department of Ophthalmology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Xiang Gao
- Department of Ophthalmology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Kou Liu
- Department of Ophthalmology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Ning Bao
- Department of Ophthalmology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Zhengxuan Jiang
- Department of Ophthalmology, The Second Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
14
|
Jiang R, Gao H, Cong F, Zhang W, Song T, Yu Z. Circ_DHRS3 positively regulates GREM1 expression by competitively targeting miR-183-5p to modulate IL-1β-administered chondrocyte proliferation, apoptosis and ECM degradation. Int Immunopharmacol 2020; 91:107293. [PMID: 33360372 DOI: 10.1016/j.intimp.2020.107293] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Osteoarthritis (OA) is a chronic inflammatory disease caused by degenerative changes of articular cartilage, involving in the expression changes of special circular RNAs (circRNAs). This study aimed to explore the role of circ_DHRS3 in OA cell models and provide a potential mechanism. METHODS OA cell models were constructed using human chondrocytes with Interleukin-1 beta (IL-1β) treatment. The expression of circ_DHRS3, microRNA (miR)-183-5p and Gremlin 1 (GREM1) mRNA was detected using real-time quantitative polymerase chain reaction (RT-qPCR). Cell proliferation was identified using 3-[4, 5-dimethylthiazol-2-yl]-2, 5 diphenyl tetrazolium bromide (MTT) assay. Cell apoptosis was investigated using flow cytometry assay. The protein levels of proliferation- and apoptosis-related proteins were quantified by western blot. The levels of extracellular matrix (ECM)-associated proteins were quantified by western blot to assess ECM degradation. The relationship between miR-183-5p and circ_DHRS3 or GREM1 was predicted and then verified by dual-luciferase reporter assay. RESULTS Circ_DHRS3 expression was elevated in OA cartilage tissues and IL-1β-treated chondrocytes. Circ_DHRS3 was resistant to RNase R and Actinomycin D. Circ_DHRS3 knockdown promoted chondrocyte proliferation inhibited by IL-1β, and alleviated IL-1β-induced apoptosis and ECM degradation, which were reversed by the inhibition of miR-183-5p, a target of circ_DHRS3. MiR-183-5p restoration also enhanced IL-1β-blocked cell proliferation, and relieved IL-1β-induced cell apoptosis and ECM degradation, while GREM1 (a target of miR-183-5p) overexpression abolished the effects of miR-183-5p restoration. Moreover, circ_DHRS3 regulated GREM1 expression by targeting miR-183-5p. CONCLUSION Circ_DHRS3 mediated IL-1β-administered chondrocyte proliferation, apoptosis and ECM degradation by positively regulating GREM1 expression via competitively targeting miR-183-5p.
Collapse
Affiliation(s)
- Renqi Jiang
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
| | - Huili Gao
- Daming-Gong Community Health Service Center, Weiyang District, Xi'an 710054, Shaanxi, China
| | - Fei Cong
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
| | - Wentao Zhang
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
| | - Tao Song
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
| | - Zirui Yu
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China.
| |
Collapse
|
15
|
Wei Y, Li N, Zhao L, Yang C, Ma B, Li X, Wei R, Nian H. MicroRNAs and Autoimmune-Mediated Eye Diseases. Front Cell Dev Biol 2020; 8:818. [PMID: 32974350 PMCID: PMC7468483 DOI: 10.3389/fcell.2020.00818] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are evolutionarily conserved short non-coding RNAs that act at post-transcriptional regulation of gene expression by destroying target messenger RNA or inhibiting its translation. Recently, miRNAs have been identified as important regulators in autoimmunity. Aberrant expression and function of miRNAs can lead to dysfunction of immune system and mediate autoimmune disorders. Here, we summarize the roles of miRNAs that have been implicated in three representative ocular autoimmune disorders, including autoimmune uveitis, Grave's ophthalmopathy, and Sjögren's syndrome dry eye, and discuss the potential of miRNAs as biomarkers and therapeutic targets for the diagnosis and treatment of these diseases.
Collapse
Affiliation(s)
- Yankai Wei
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Na Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Lu Zhao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Chao Yang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Binyun Ma
- Department of Medicine/Hematology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Ruihua Wei
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Hong Nian
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| |
Collapse
|
16
|
Muhammad F, Trivett A, Wang D, Lee DJ. Tissue-specific production of MicroRNA-155 inhibits melanocortin 5 receptor-dependent suppressor macrophages to promote experimental autoimmune uveitis. Eur J Immunol 2019; 49:2074-2082. [PMID: 31177529 DOI: 10.1002/eji.201848073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/16/2019] [Accepted: 06/03/2019] [Indexed: 12/16/2022]
Abstract
Tissue-specific immune regulation is an important component of the immune response relevant to many areas of immunology. The focus of this study is on tissue-specific mechanisms that contribute to autoimmune uveitis. Precise gene regulation is necessary for the proper expression of an inflammatory or regulatory response. This precision gene regulation can be accomplished by microRNA at the level of the mRNA transcript. miR-155, in particular, has a complicated role in the immune response with positive and negative inflammatory effects. In this work, we identify a decrease in miR-155 in suppressor macrophages and further examine how tissue-specific production of miR-155 impacts experimental autoimmune uveitis. Importantly, we show that eliminating miR-155 expression by the target tissue before initiation reduces disease severity, but elimination of miR-155 after the onset of inflammation does not alter the course of disease. Additionally, expression of miR-155 by the target tissue before initiation is necessary for the induction of regulatory immunity that protects from further autoimmune disease, but not after the onset of inflammation. In summary, we find a MC5r-dependent decrease in miR-155 in postexperimental autoimmune uveitis APC, miR-155 production by the target tissue is necessary for the initiation of autoimmune uveitis, and may have a role in establishing protective regulatory immunity.
Collapse
Affiliation(s)
- Fauziyya Muhammad
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Anna Trivett
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick National Laboratory for Cancer Research (FNLCR), Frederick, MD
| | - Dawei Wang
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Darren J Lee
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK.,Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
17
|
Activation of the Notch signaling pathway disturbs the CD4 +/CD8 +, Th17/Treg balance in rats with experimental autoimmune uveitis. Inflamm Res 2019; 68:761-774. [PMID: 31209505 DOI: 10.1007/s00011-019-01260-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE AND DESIGN The present study aimed to investigate the relationship between the disturbed balance of CD4+/CD8+, Th17/Treg and the activation of the Notch signaling pathway in experimental autoimmune uveitis (EAU). METHODS An EAU rat model was induced in Lewis rats, and pathology analysis was performed by hematoxylin and eosin (H&E) staining. CD4+, CD8+, Th17, and Treg levels in spleen, lymph nodes and eye tissues were determined by flow cytometry. Meanwhile, the expression of Notch1, DLL4, IL-10, and IL-17 was determined by quantitative polymerase chain reaction (Q-PCR) and enzyme-linked immunosorbent assay (ELISA). In addition, the inhibitory effect of N-(N-(3,5-difluorophenacetyl-L-alanyl))-S-phenylglycine t-butyl ester (DAPT) on Th17 differentiation by Notch signaling in vitro was further investigated using T lymphocytes from EAU rats on day 12 post-immunization by flow cytometry. RESULTS The pathological results showed that inflammatory cell infiltration occurred in ocular tissues in EAU rats. The CD4+/CD8+ and Th17/Treg ratios in EAU rats were apparently higher than those in normal control individuals. Q-PCR and ELISA analyses indicated the expression of Notch1, DLL4, IL-10, and IL-17 in EAU rats gradually increased on day 6 after immunization, peaked on day 12, and then gradually decreased. The dynamic trends in Notch1 and DLL4 expression in EAU rats were identical to those of CD4+/CD8+ and Th17/Treg levels. DAPT can significantly inhibit the activation of Notch signaling, decrease Th17 cell differentiation, and attenuate the level of the Th17 cell lineage, contributing to the balance of the Th17/Treg ratio. CONCLUSION The activation of the Notch signaling pathway can regulate Th17 and Treg cell differentiation, disrupt the CD4+/CD8+ and Th17/Treg balance, and aggravate the severity of EAU; inactivation of the Notch signaling pathway contributes to the CD4+/CD8+ and Th17/Treg balance in EAU rats. Our findings highlighted that the dynamic change in the CD4+/CD8+ and Th17/Treg ratio was consistent with the expression trend of Notch signaling in EAU rats, suggesting that Notch signaling may be a potentially important therapeutic target in clinical practice.
Collapse
|
18
|
Assessment of miR-182, miR-183, miR-184, and miR-221 Expressions in Primary Pterygium and Comparison With the Normal Conjunctiva. Eye Contact Lens 2019; 45:208-211. [PMID: 30688676 DOI: 10.1097/icl.0000000000000573] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVES The aim of this study was to investigate the expression levels of miR-126-3p, miR-182-5p, miR-183-5p, miR-184, miR-221-3p, and miR-205-5p in primary pterygium tissue and compare these levels with those in healthy conjunctiva tissue. METHODS Twenty-four patients who were diagnosed with grade 3 primary pterygium and scheduled for surgery between January 2014 and January 2016 and had no systemic disease or other ocular pathology were included in the study. The control group comprised nasal interpalpebral conjunctival tissue specimens from 24 age- and sex-matched patients with no history of systemic disease or ocular pathology other than cataract. Expression levels of miR-126-3p, miR-182-5p, miR-183-5p, miR-184, miR-221-3p, and miR-205-5p were determined and compared between the pterygium and conjunctiva specimens. RESULTS Expression levels of miR-182-5p, miR-183-5p, and miR-184 were significantly higher in pterygium tissue compared with normal conjunctival specimens (P<0.0001, P=0.01, and P=0.01, respectively), whereas expression of miR-221-3p was significantly lower (P=0.02). Expression levels of miR-126-3p and miR-205-5p did not differ significantly between the 2 groups (P>0.05). CONCLUSIONS Expression levels of miR-182-5p, miR-183-5p, and miR-184 are increased, whereas expression of miR-221-3p is decreased in primary pterygium tissue, and these miRNAs may play a role in the pathogenesis of pterygium.
Collapse
|
19
|
Alami-Milani M, Zakeri-Milani P, Valizadeh H, Sattari S, Salatin S, Jelvehgari M. Evaluation of anti-inflammatory impact of dexamethasone-loaded PCL-PEG-PCL micelles on endotoxin-induced uveitis in rabbits. Pharm Dev Technol 2019; 24:680-688. [DOI: 10.1080/10837450.2019.1578370] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Mitra Alami-Milani
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Zakeri-Milani
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Valizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahram Sattari
- Nikookari Ophthalmology Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Salatin
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mitra Jelvehgari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
20
|
The role of miR-183 cluster in immunity. Cancer Lett 2018; 443:108-114. [PMID: 30529154 DOI: 10.1016/j.canlet.2018.11.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 10/25/2018] [Accepted: 11/21/2018] [Indexed: 12/22/2022]
Abstract
MicroRNAs (miRNAs) are essential factors of an extensively conserved post-transcriptional process to regulate gene expression. MiRNAs play a pivotal role in immunity, including controlling the differentiation of various immune cells as well as their immunological functions. The miR-183 cluster, which is comprised of miR-183, -96 and -182, is a miRNA family with sequence homology. These miRNAs are usually transcribed together as a polycistronic miRNA cluster during development and are required for maturation of sensory organs. In comparison to defined sensory-specific role of these miRNAs in normal development, they are frequently over-expressed in several non-sensory diseases, including autoimmune diseases and cancers. Because individual miRNAs of miR-183 cluster have both common and unique targets within functionally interrelated pathways, they can show cooperative or opposing effects on biological processes, implying the complexity of this miR cluster-mediated gene regulation. Therefore, a better understanding of the molecular regulation of miR-183 cluster expression and its downstream networks is important for the therapeutic applications. In this review, we will discuss the characteristics of miR-183 cluster and a wide variety of evidence on its function in immune system. Newer knowledge summarized here will help readers understand the versatile role of miR-183 cluster in this field.
Collapse
|
21
|
MicroRNA-146a Alleviates Experimental Autoimmune Anterior Uveitis in the Eyes of Lewis Rats. Mediators Inflamm 2017; 2017:9601349. [PMID: 29434444 PMCID: PMC5757132 DOI: 10.1155/2017/9601349] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/12/2017] [Indexed: 01/10/2023] Open
Abstract
Purpose This study aimed to determine the effect and roles of microRNA (miRNA, miR) treatment in experimental autoimmune anterior uveitis (EAAU). Materials and Methods Uveitis was induced in Lewis rats by simultaneous injections of bovine melanin-associated antigen into the hind footpad and the intraperitoneal cavity. The animals were injected intravitreally with low-dose (0.5 μg) or high-dose (1.5 μg) miR-146a. The clinical scores, leukocyte count in the aqueous humor, and histology were assessed. Cytokine changes were evaluated by relative mRNA expression and enzyme-linked immunosorbent assay (ELISA). The expression of nuclear factor kappa B (NF-κB) was assessed by immunofluorescence and Western blotting. Evaluation of the DNA-binding activity of NF-κB was performed by electrophoretic mobility shift assay (EMSA). Results Treatment with miR-146a significantly attenuated clinical scores and leukocyte infiltration in a dose-dependent manner, a result that was compatible with histological findings. Following miR-146a injections, downregulation of interleukin- (IL-) 1β, IL-6, and IL-12 and interferon- (IFN-) γ and upregulation of IL-10 and IL-17 were noted. The decreased NF-κB expression on immunofluorescence and Western blotting and reduced DNA-binding activity on EMSA were demonstrated following miR-146a treatment. Conclusions miR-146a effectively reduced intraocular inflammation in EAAU through the inhibition of NF-κB. miR-146a might be a new treatment choice for uveitis.
Collapse
|