1
|
Daniele A, Lucas SJE, Rendeiro C. Detrimental effects of physical inactivity on peripheral and brain vasculature in humans: Insights into mechanisms, long-term health consequences and protective strategies. Front Physiol 2022; 13:998380. [PMID: 36237532 PMCID: PMC9553009 DOI: 10.3389/fphys.2022.998380] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
The growing prevalence of physical inactivity in the population highlights the urgent need for a more comprehensive understanding of how sedentary behaviour affects health, the mechanisms involved and what strategies are effective in counteracting its negative effects. Physical inactivity is an independent risk factor for different pathologies including atherosclerosis, hypertension and cardiovascular disease. It is known to progressively lead to reduced life expectancy and quality of life, and it is the fourth leading risk factor for mortality worldwide. Recent evidence indicates that uninterrupted prolonged sitting and short-term inactivity periods impair endothelial function (measured by flow-mediated dilation) and induce arterial structural alterations, predominantly in the lower body vasculature. Similar effects may occur in the cerebral vasculature, with recent evidence showing impairments in cerebral blood flow following prolonged sitting. The precise molecular and physiological mechanisms underlying inactivity-induced vascular dysfunction in humans are yet to be fully established, although evidence to date indicates that it may involve modulation of shear stress, inflammatory and vascular biomarkers. Despite the steady increase in sedentarism in our societies, only a few intervention strategies have been investigated for their efficacy in counteracting the associated vascular impairments. The current review provides a comprehensive overview of the evidence linking acute and short-term physical inactivity to detrimental effects on peripheral, central and cerebral vascular health in humans. We further examine the underlying molecular and physiological mechanisms and attempt to link these to long-term consequences for cardiovascular health. Finally, we summarize and discuss the efficacy of lifestyle interventions in offsetting the negative consequences of physical inactivity.
Collapse
Affiliation(s)
- Alessio Daniele
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Samuel J. E. Lucas
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| | - Catarina Rendeiro
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
- *Correspondence: Catarina Rendeiro,
| |
Collapse
|
2
|
Vallée A. Association between serum uric acid and arterial stiffness in a large-aged 40-70 years old population. J Clin Hypertens (Greenwich) 2022; 24:885-897. [PMID: 35748644 PMCID: PMC9278596 DOI: 10.1111/jch.14527] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 12/24/2022]
Abstract
Arterial stiffness (AS), measured by arterial stiffness index (ASI), is a determinant in cardiovascular (CV) diseases. A high serum uric acid (SUA) level is a known risk factor for CV disease. The authors investigated the relationship between SUA and ASI in the middle-age UK Biobank population study. AS was defined as ASI > 10 m/s. A cross-sectional study was conducted from 126 663 participants. Participants were divided into four quartiles according to SUA levels and sex. Sex multivariate analyses were performed with adjustment for confounding factors. The average ASI for overall participants was 9.3 m/s (SD: 2.9); 9.9 m/s (SD: 2.8) for men and 8.7 m/s (SD: 2.9) for women (P < .001). Men presented higher SUA rate (351.3 mmol/L (SD:67.9)) than women (270.7 mmol/L (SD:64.4)), P < .001. In men multivariate analysis, SUA remained a determinant of AS, with an increase in the strength of the association between the quartiles, Q4 versus Q1, OR = 1.10 [1.05-1.16], P < .001, Q3 versus Q1, OR = 1.09 [1.04-1.14], P < .001 but not between Q2 and Q1 (P = .136). In women, SUA remained significant for AS, with an increase in the strength of the association between the quartiles, Q4 versus Q1, OR = 1.22 [1.15-1.30], P < .001, Q3 versus Q1, OR = 1.13 [1.07-1.19], P < .001 and no difference between Q2 and Q1 (P = .101). When applying continuous SUA values in the multivariate analysis, SUA remained significant (P < .001), with a Youden index value for men = 338.3 mmol/L and for women = 267.3 mmol/L. High SUA levels were associated with AS, suggesting that SUA could be used as a predictor of atherosclerosis.
Collapse
Affiliation(s)
- Alexandre Vallée
- Department of Epidemiology-Data-Biostatistics, Delegation of Clinical Research and Innovation (DRCI), Foch hospital, Suresnes, France
| |
Collapse
|
3
|
Endothelin and the Cardiovascular System: The Long Journey and Where We Are Going. BIOLOGY 2022; 11:biology11050759. [PMID: 35625487 PMCID: PMC9138590 DOI: 10.3390/biology11050759] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 12/12/2022]
Abstract
Simple Summary In this review, we describe the basic functions of endothelin and related molecules, including their receptors and enzymes. Furthermore, we discuss the important role of endothelin in several cardiovascular diseases, the relevant clinical evidence for targeting the endothelin pathway, and the scope of endothelin-targeting treatments in the future. We highlight the present uses of endothelin receptor antagonists and the advancements in the development of future treatment options, thereby providing an overview of endothelin research over the years and its future scope. Abstract Endothelin was first discovered more than 30 years ago as a potent vasoconstrictor. In subsequent years, three isoforms, two canonical receptors, and two converting enzymes were identified, and their basic functions were elucidated by numerous preclinical and clinical studies. Over the years, the endothelin system has been found to be critical in the pathogenesis of several cardiovascular diseases, including hypertension, pulmonary arterial hypertension, heart failure, and coronary artery disease. In this review, we summarize the current knowledge on endothelin and its role in cardiovascular diseases. Furthermore, we discuss how endothelin-targeting therapies, such as endothelin receptor antagonists, have been employed to treat cardiovascular diseases with varying degrees of success. Lastly, we provide a glimpse of what could be in store for endothelin-targeting treatment options for cardiovascular diseases in the future.
Collapse
|
4
|
Akins JD, Richey RE, Campbell JC, Martin ZT, Olvera G, Brothers RM. Contributions of endothelin-1 and l-arginine to blunted cutaneous microvascular function in young, black women. Am J Physiol Heart Circ Physiol 2022; 322:H260-H268. [PMID: 34919455 PMCID: PMC8759956 DOI: 10.1152/ajpheart.00457.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Non-Hispanic black (BL) individuals have the greatest prevalence of cardiovascular disease (CVD), relative to other racial/ethnic groups (e.g., non-Hispanic white population; WH), which may be secondary to blunted vascular function. Although women typically present with reduced CVD relative to men of the same racial/ethnic group, the prevalence is similar between BL women and men though the mechanisms differ. This study hypothesized that reduced microvascular function in young, BL women is associated with endothelin-1 (ET-1) overactivity or insufficient l-arginine bioavailability. Nine BL and nine WH women participated (age: 20 ± 2 vs. 22 ± 2 yr). Cutaneous microvascular function was assessed during 39°C local heating, whereas lactated Ringer's (control), BQ-123 (ET-1 receptor type A antagonist), BQ-788 (ET-1 receptor type B antagonist), or l-arginine were infused via intradermal microdialysis to modify cutaneous vascular conductance (CVC). Subsequent infusion of Nω-nitro-l-arginine methyl ester allowed for quantification of the nitric oxide (NO) contribution to vasodilation, whereas combined sodium nitroprusside and 43°C heating allowed for normalization to maximal CVC (%CVCmax). BL women had blunted %CVCmax and NO contribution to dilation during the 39°C plateau (P < 0.027 for both). BQ-123 improved this response through augmented NO-mediated dilation (P < 0.048 for both). BQ-788 and l-arginine did not alter the CVC responses (P > 0.835 for both) or the NO contribution (P > 0.371 for both). Cutaneous microvascular function is reduced in BL women, and ET-1 receptor type A may contribute to this reduced function. Further research is needed to better characterize these mechanisms in young, BL women.NEW & NOTEWORTHY Cardiovascular disease remains a burden in the United States non-Hispanic black (BL) population, although its manifestation through blunted vasodilation in this population is different between men and women. Accordingly, this study determined that reduced microvascular function in young, BL women may be partially controlled by endothelin-1 (ET-1) type A receptors, although neither type B receptors nor insufficient l-arginine bioavailability seems to contribute to this response. Accordingly, further research is needed to better characterize these ET-1 related mechanisms and illuminate other pathways that may contribute to this disparate vascular function in young, BL women.
Collapse
Affiliation(s)
- John D. Akins
- 1Department of Kinesiology, The University of Texas at Arlington, Arlington, Texas
| | - Rauchelle E. Richey
- 1Department of Kinesiology, The University of Texas at Arlington, Arlington, Texas,2Department of Integrative Physiology, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas
| | - Jeremiah C. Campbell
- 1Department of Kinesiology, The University of Texas at Arlington, Arlington, Texas
| | - Zachary T. Martin
- 1Department of Kinesiology, The University of Texas at Arlington, Arlington, Texas
| | - Guillermo Olvera
- 1Department of Kinesiology, The University of Texas at Arlington, Arlington, Texas,3Institute for Exercise and Environmental Medicine, Dallas, Texas
| | - R. Matthew Brothers
- 1Department of Kinesiology, The University of Texas at Arlington, Arlington, Texas
| |
Collapse
|
5
|
Brothers RM, Stephens BY, Akins JD, Fadel PJ. Influence of sex on heightened vasoconstrictor mechanisms in the non-Hispanic black population. FASEB J 2020; 34:14073-14082. [PMID: 32949436 DOI: 10.1096/fj.202001405r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/20/2020] [Accepted: 08/27/2020] [Indexed: 11/11/2022]
Abstract
Cardiovascular disease (CVD) affects individuals of all races and ethnicities; however, its prevalence is highest in non-Hispanic black individuals (BL) relative to other populations. While previous research has provided valuable insight into elevated CVD risk in the BL population, this work has been almost exclusively conducted in men. This is alarming given that BL women suffer from CVD at an equivalent rate to BL men and each has a greater prevalence when compared to all other ethnicities, regardless of sex. The importance of investigating sex differences in mechanisms of cardiovascular function is highlighted by the National Institute of Health requiring sex to be considered as a biological variable in research studies to better our "understanding of key sex influences on health processes and outcomes." The mechanism(s) responsible for the elevated CVD risk in BL women remains unclear and is likely multifactorial. Limited studies in BL women suggest that, while impaired vasodilator capacity is involved, heightened vasoconstrictor tone and/or responsiveness may also contribute. Within this mini-review, we will discuss potential mechanisms of elevated rates of hypertension and other CVDs in BL individuals with a particular focus on young, otherwise healthy, college-aged women. To stimulate academic thought and future research, we will also discuss potential mechanisms for impaired vascular function in BL women, as well as possible divergent mechanisms between BL men and women based on either preliminary data or plausible speculation extending from findings in the existing literature. Last, we will conclude with potential future research directions aimed at better understanding the elevated risk for hypertension and CVD in BL women.
Collapse
Affiliation(s)
| | | | - John D Akins
- Department of Kinesiology, University of Texas, Arlington, TX, USA
| | - Paul J Fadel
- Department of Kinesiology, University of Texas, Arlington, TX, USA
| |
Collapse
|
6
|
Albu A, Para I, Porojan M. Uric Acid and Arterial Stiffness. Ther Clin Risk Manag 2020; 16:39-54. [PMID: 32095074 PMCID: PMC6995306 DOI: 10.2147/tcrm.s232033] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 12/01/2019] [Indexed: 12/21/2022] Open
Abstract
Hyperuricemia is usually associated with hypertension, diabetes mellitus, metabolic syndrome and chronic kidney disease. Accumulating data from epidemiological studies indicate an association of increased uric acid (UA) with cardiovascular diseases. Possible pathogenic mechanisms include enhancement of oxidative stress and systemic inflammation caused by hyperuricemia. Arterial stiffness may be one of the possible pathways between hyperuricemia and cardiovascular disease, but a clear relationship between increased UA and vascular alterations has not been confirmed. The review summarizes the epidemiological studies investigating the relationship between UA and arterial stiffness and highlights the results of interventional studies evaluating arterial stiffness parameters in patients treated with UA-lowering drugs.
Collapse
Affiliation(s)
| | - Ioana Para
- 4th Department of Internal Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | | |
Collapse
|
7
|
Zhou BY, Gao XY, Zhao X, Qing P, Zhu CG, Wu NQ, Guo YL, Gao Y, Liu G, Dong Q, Li JJ. Predictive value of big endothelin-1 on outcomes in patients with myocardial infarction younger than 35 years old. Per Med 2018; 15:25-33. [PMID: 29714117 DOI: 10.2217/pme-2017-0044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
AIM The predictive value of big endothelin-1 (ET-1) for cardiovascular outcomes in myocardial infarction (MI) patients younger than 35 years old has not been characterized. METHODS A total of 565 consecutive MI patients younger than 35 years old were studied and followed up for 37.78 ± 24.9 months. RESULTS Multivariable Cox regression analysis showed that big ET-1 was positively correlated with major adverse cardiovascular events [MACEs] (odds ratio: 3; 95% CI: 1.92-4.68; p < 0.001). The area under receiver operating characteristics curve showing the predictive value of big ET-1 on MACEs was 0.67. CONCLUSION The study first demonstrated that big ET-1 was an independent predictor for MACEs in MI patients younger than 35 years old.
Collapse
Affiliation(s)
- Bing-Yang Zhou
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing 100037, China
| | - Xiong-Yi Gao
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing 100037, China.,Division of Chest Pain Center, Guangdong Provincial Hospital of Chinese Medicine & The 2nd Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xi Zhao
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing 100037, China
| | - Ping Qing
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing 100037, China
| | - Cheng-Gang Zhu
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing 100037, China
| | - Na-Qiong Wu
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing 100037, China
| | - Yuan-Lin Guo
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing 100037, China
| | - Ying Gao
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing 100037, China
| | - Geng Liu
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing 100037, China
| | - Qian Dong
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing 100037, China
| | - Jian-Jun Li
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing 100037, China
| |
Collapse
|
8
|
Zhou BY, Guo YL, Wu NQ, Zhu CG, Gao Y, Qing P, Li XL, Wang Y, Dong Q, Liu G, Xu RX, Cui CJ, Sun J, Li JJ. Plasma big endothelin-1 levels at admission and future cardiovascular outcomes: A cohort study in patients with stable coronary artery disease. Int J Cardiol 2016; 230:76-79. [PMID: 28038820 DOI: 10.1016/j.ijcard.2016.12.082] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 11/15/2016] [Accepted: 12/16/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND Big endothelin-1 (ET-1) has been proposed as a novel prognostic indicator of acute coronary syndrome, while its predicting role of cardiovascular outcomes in patients with stable coronary artery disease (CAD) is unclear. METHODS AND RESULTS A total of 3154 consecutive patients with stable CAD were enrolled and followed up for 24months. The outcomes included all-cause death, non-fatal myocardial infarction, stroke and unplanned revascularization (percutaneous coronary intervention and coronary artery bypass grafting). Baseline big ET-1 was measured using sandwich enzyme immunoassay method. Cox proportional hazard regression analysis and Kaplan-Meier analysis were used to evaluate the prognostic value of big ET-1 on cardiovascular outcomes. One hundred and eighty-nine (5.99%) events occurred during follow-up. Patients were divided into two groups: events group (n=189) and non-events group (n=2965). The results indicated that the events group had higher levels of big ET-1 compared to non-events group. Multivariable Cox proportional hazard regression analysis showed that big ET-1 was positively and statistically correlated with clinical outcomes (Hazard Ratio: 1.656, 95% confidence interval: 1.099-2.496, p=0.016). Additionally, the Kaplan-Meier analysis revealed that patients with higher big ET-1 presented lower event-free survival (p=0.016). CONCLUSIONS The present study firstly suggests that big ET-1 is an independent risk marker of cardiovascular outcomes in patients with stable CAD. And more studies are needed to confirm our findings.
Collapse
Affiliation(s)
- Bing-Yang Zhou
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No 167 Bei Li Shi Road, Xi Cheng District, Beijing 100037, China
| | - Yuan-Lin Guo
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No 167 Bei Li Shi Road, Xi Cheng District, Beijing 100037, China
| | - Na-Qiong Wu
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No 167 Bei Li Shi Road, Xi Cheng District, Beijing 100037, China
| | - Cheng-Gang Zhu
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No 167 Bei Li Shi Road, Xi Cheng District, Beijing 100037, China
| | - Ying Gao
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No 167 Bei Li Shi Road, Xi Cheng District, Beijing 100037, China
| | - Ping Qing
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No 167 Bei Li Shi Road, Xi Cheng District, Beijing 100037, China
| | - Xiao-Lin Li
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No 167 Bei Li Shi Road, Xi Cheng District, Beijing 100037, China
| | - Yao Wang
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No 167 Bei Li Shi Road, Xi Cheng District, Beijing 100037, China
| | - Qian Dong
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No 167 Bei Li Shi Road, Xi Cheng District, Beijing 100037, China
| | - Geng Liu
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No 167 Bei Li Shi Road, Xi Cheng District, Beijing 100037, China
| | - Rui Xia Xu
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No 167 Bei Li Shi Road, Xi Cheng District, Beijing 100037, China
| | - Chuan-Jue Cui
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No 167 Bei Li Shi Road, Xi Cheng District, Beijing 100037, China
| | - Jing Sun
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No 167 Bei Li Shi Road, Xi Cheng District, Beijing 100037, China
| | - Jian-Jun Li
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No 167 Bei Li Shi Road, Xi Cheng District, Beijing 100037, China.
| |
Collapse
|
9
|
The association of endothelin-1 with markers of oxidative stress in a biethnic South African cohort: the SABPA study. Hypertens Res 2016; 40:189-195. [DOI: 10.1038/hr.2016.128] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/11/2016] [Accepted: 08/22/2016] [Indexed: 02/07/2023]
|