1
|
Ameen F. Improving Tannery Wastewater Treatments Using an Additional Microbial Treatment with a Bacterial-Fungal Consortium. BIOLOGY 2023; 12:1507. [PMID: 38132333 PMCID: PMC10741134 DOI: 10.3390/biology12121507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
Environmental pollutants such as toxic heavy metals and oxygen-demanding solids are generated by leather manufacturing. In most tanneries, wastewaters are treated with physico-chemical methods but overly high levels of pollutants remain in surface waters. The efficiency of tanning wastewater treatment with conventional techniques was evaluated in four tanneries in Saudi Arabia. It was observed that the wastewaters contained high amounts of pollutants, needing further treatment. We isolated microorganisms from the wastewaters and carried out experiments to treat the effluents with different bacteria, fungi, and their consortia. We hypothesized that a consortium of microorganisms is more efficient than the single microorganisms in the consortium. The efficiency of five single bacterial and five fungal species from different genera was tested. In a consortium experiment, the efficiency of nine bacterial-fungal consortia was studied. The bacterium Corynebacterium glutamicum and the fungus Acremonium sp. were the most efficient in the single-microbe treatment. In the consortium treatment, the consortium of these two was the most efficient at treating the effluent. The factory wastewater treatment reduced total dissolved solids (TDS) from 1885 mg/L to 880 mg/L. C. glutamicum treatment reduced TDS to 150 mg/L and Acremonium sp. to 140 mg/L. The consortium of these two reduced TDS further to 80 mg/L. Moreover, the factory treatment reduced BOD from 943 mg/L to 440 mg/L, C. glutamicum to 75 mg/L, and Acremonium sp. 70 mg/L. The consortium reduced BOD further to 20 mg/L. The total heavy-metal concentration (Cd, Cr, Cu, Mn, and Pb) was reduced by the factory treatment from 43 μg/L to 26 μg/L and by the consortium to 0.2 μg/L. The collagen concentration that was studied using hydroxyproline assay decreased from 120 mg/L to 39 mg/L. It was shown that the consortium of the bacterium C. glutamicum and the fungus Acremonium sp. was more efficient in reducing the pollutants than the single species. The consortium reduced almost all parameters to below the environmental regulation limit for wastewater discharge to the environment in Saudi Arabia. The consortium should be studied further as an additional treatment to the existing conventional tannery wastewater treatments.
Collapse
Affiliation(s)
- Fuad Ameen
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
2
|
Nigam M, Mishra P, Kumar P, Rajoriya S, Pathak P, Singh SR, Kumar S, Singh L. Comprehensive technological assessment for different treatment methods of leather tannery wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:124686-124703. [PMID: 35680745 DOI: 10.1007/s11356-022-21259-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/30/2022] [Indexed: 05/16/2023]
Abstract
The leather-making process necessitates large amounts of water and consequently generates tons of liquid waste as leather tannery wastewater (TWW) is disposed of directly in the open environment. Open disposal of untreated TWW into the natural environment causes an accumulation of various polluting compounds, including heavy metals, dyes, suspended solids inorganic matter, biocides, oils, tannins, and other toxic chemicals. It thus poses potential hazards to the environment and human health. This study primarily focuses on providing in-depth insight into the characteristics, treatment strategies, and regulatory frameworks for managing TWW in leather processing industries. Different technologies of conventional physico-chemical (equalization, coagulation, and adsorption), advanced approaches (Fenton oxidation, ozonation, cavitation), thermo-catalytic and biological treatments available to treat TWW, and their integrative approaches were also highlighted. This review also sheds light on the most frequently applied technologies to reduce contaminant load from TWW though there are several limitations associated with it such as being ineffective for large quantities of TWW, waste generation during treatment, and high operational and maintenance (O&M) costs. It is concluded that the sustainable alternatives applied in the current TWW technologies can minimize O&M costs and recirculate the treated water in the environment. The exhaustive observations and recommendations presented in this article are helpful in the industry to manage TWW and recirculate the water in a sustainable manner.
Collapse
Affiliation(s)
- Mohit Nigam
- Chemical Engineering Department, Raja Balwant Singh Engineering Technical Campus, Agra, 283105, India
| | - Puranjan Mishra
- Institute of Bioresource and Agriculture, Hong Kong Baptist University, Kowloon Tong, Hong Kong.
| | - Pradeep Kumar
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | | | - Pankaj Pathak
- Department of Environmental Science, SRM University-AP, Amaravati, Andhra Pradesh, 522502, India
| | - Shraddha Rani Singh
- Chemical Engineering Department, Raja Balwant Singh Engineering Technical Campus, Agra, 283105, India
| | - Smita Kumar
- Department of Environmental Sciences, J.C. Bose University of Science & Technology, YMCA, Sector-6, Mathura Road, Faridabad, Haryana, 121006, India
| | - Lakhveer Singh
- Department of Chemistry, Sardar Patel University, Mandi, Himachal Pradesh, 175001, India
- Department of Civil Engineering, Centre for Research & Development, Chandigarh University, Mohali, Punjab, 140413, India
| |
Collapse
|
3
|
Romeiro Dos Santos I, Machado da Silva IN, Camilo-Cotrim CF, Madureira de Almeida L, Luiz Borges L, Cardoso Bailão EFL. Spring water quality monitoring using multiple bioindicators from multiple collection sites. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:707-719. [PMID: 37598363 DOI: 10.1080/15287394.2023.2246507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
The aim of this study was to examine the water quality of the Extrema River spring in a Brazilian Cerrado area. Three collection sites (P1 - P3) were sampled in the dry and rainy seasons, which are close to industries from different sectors. In the physicochemical analysis, a decrease in dissolved oxygen levels (<5 mg/L) and pH (< 6) at P3 was detected. An increase in heterotrophic bacteria count was recorded at all sites (> 500 colonies/ml). In ecotoxicological analyses, P2 and P3 exhibited toxicity using Vibrio fischeri (> 20%). In evaluating toxicity, the reduction in seed germination was significant utilizing Lactuca sativa at all locations and with Allium cepa only at P2; rootlet length was decreased at P3 on L. sativa and at all sites with A. cepa. In contrast, loss of membrane integrity and mitochondrial function of meristems was adversely affected at all locations using both L. sativa and A. cepa assays. Principal components analysis (PCA) approach indicated that seasonality apparently did not markedly interfere with the obtained data, but it is important to include more collection locations to be evaluated with multiple bioindicators in the spring region. Our data indicate the urgent need for more rigorous programs to monitor the discharge of effluents into water springs.
Collapse
Affiliation(s)
- Igor Romeiro Dos Santos
- Laboratório de Biotecnologia, Câmpus Central, Universidade Estadual de Goiás, Anápolis, Goiás, Brazil
| | | | | | | | - Leonardo Luiz Borges
- Laboratório de Biotecnologia, Câmpus Central, Universidade Estadual de Goiás, Anápolis, Goiás, Brazil
- Escola de Ciências Médicas e da Vida, Pontíficia Universidade Católica de Goiás, Goiânia, Goiás, Brazil
| | | |
Collapse
|
4
|
Fernandez M, Callegari EA, Paez MD, González PS, Agostini E. Functional response of Acinetobacter guillouiae SFC 500-1A to tannery wastewater as revealed by a complementary proteomic approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118333. [PMID: 37320920 DOI: 10.1016/j.jenvman.2023.118333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 04/22/2023] [Accepted: 06/04/2023] [Indexed: 06/17/2023]
Abstract
Acinetobacter guillouiae SFC 500-1 A is a promising candidate for the bioremediation of tannery wastewater. In this study, we applied shotgun proteomic technology in conjunction with a gel-based assay (Gel-LC) to explore the strain's intracellular protein profile when grown in tannery wastewater as opposed to normal culture conditions. A total of 1775 proteins were identified, 52 of which were unique to the tannery wastewater treatment. Many of them were connected to the degradation of aromatic compounds and siderophore biosynthesis. On the other hand, 1598 proteins overlapped both conditions but were differentially expressed in each. Those that were upregulated in wastewater (109) were involved in the processes mentioned above, as well as in oxidative stress mitigation and intracellular redox state regulation. Particularly interesting were the downregulated proteins under the same treatment (318), which were diverse but mainly linked to the regulation of basic cellular functions (replication, transcription, translation, cell cycle, and wall biogenesis); metabolism (amino acids, lipids, sulphate, energetic processes); and other more complex responses (cell motility, exopolysaccharide production, biofilm formation, and quorum sensing). The findings suggest that SFC 500-1 A engages in survival and stress management strategies to cope with the toxic effects of tannery wastewater, and that such strategies may be mostly oriented at keeping metabolic processes to a minimum. Altogether, the results might be useful in the near future to improve the strain's effectiveness if it will be applied for bioremediation.
Collapse
Affiliation(s)
- Marilina Fernandez
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto (UNRC), 5800, Río Cuarto, Córdoba, Argentina; Instituto de Biotecnología Ambiental y Salud (INBIAS-CONICET), Río Cuarto, Córdoba, Argentina.
| | - Eduardo A Callegari
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD, USA.
| | - María D Paez
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD, USA.
| | - Paola S González
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto (UNRC), 5800, Río Cuarto, Córdoba, Argentina; Instituto de Biotecnología Ambiental y Salud (INBIAS-CONICET), Río Cuarto, Córdoba, Argentina.
| | - Elizabeth Agostini
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto (UNRC), 5800, Río Cuarto, Córdoba, Argentina; Instituto de Biotecnología Ambiental y Salud (INBIAS-CONICET), Río Cuarto, Córdoba, Argentina.
| |
Collapse
|
5
|
Saravanakumar K, De Silva S, Santosh SS, Sathiyaseelan A, Ganeshalingam A, Jamla M, Sankaranarayanan A, Veeraraghavan VP, MubarakAli D, Lee J, Thiripuranathar G, Wang MH. Impact of industrial effluents on the environment and human health and their remediation using MOFs-based hybrid membrane filtration techniques. CHEMOSPHERE 2022; 307:135593. [PMID: 35809745 DOI: 10.1016/j.chemosphere.2022.135593] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/26/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
The hazardous risk posed by industrial effluent discharge into the ecosystem has raised a plethora of environmental issues, public health, and safety concerns. The effluents from industries such as tanning, leather, petrochemicals, pharmaceuticals, and textiles are create significant stress on the aquatic ecosystem, which induces significant toxicity, involved in endocrine disruptions, and inhibits reproductive functions. Therefore, this review presented an overall abridgment of the effects of these effluents and their ability to synergize with modern pollutants such as pharmaceuticals, cosmetic chemicals, nanoparticles, and heavy metals. We further emphasize the metal organic framework (MOF) based membrane filtration approach for remediation of industrial effluents in comparison to the traditional remediation process. The MOF based-hybrid membrane filters provide higher reusability, better adsorption, and superior removal rates through the implication of nanotechnology, while the traditional remediation process offers poorer filtration rates and stability.
Collapse
Affiliation(s)
- Kandasamy Saravanakumar
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 200-701, Republic of Korea.
| | - Shanali De Silva
- College of Chemical Sciences, Institute of Chemistry Ceylon, Welikada, Rajagiriya, 10107, Sri Lanka.
| | | | - Anbazhagan Sathiyaseelan
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 200-701, Republic of Korea.
| | - Archchana Ganeshalingam
- College of Chemical Sciences, Institute of Chemistry Ceylon, Welikada, Rajagiriya, 10107, Sri Lanka.
| | - Monica Jamla
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Pune, India.
| | - Alwarappan Sankaranarayanan
- Department of Life Sciences, Sri Sathya Sai University for Human Excellence, Navanihal, Kalaburagi District, Karnataka, 585 313, India.
| | - Vishnu Priya Veeraraghavan
- Centre Of Molecular Medicine and Diagnostics ( COMManD), Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India.
| | - Davoodbasha MubarakAli
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, Tamil Nadu, 600048, India.
| | - Jooeun Lee
- Kangwon Center for Systems Imaging, Chuncheon, 24341, Republic of Korea.
| | - Gobika Thiripuranathar
- College of Chemical Sciences, Institute of Chemistry Ceylon, Welikada, Rajagiriya, 10107, Sri Lanka.
| | - Myeong-Hyeon Wang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 200-701, Republic of Korea.
| |
Collapse
|
6
|
Mahalakshmi R, Pugazhendhi A, Brindhadevi K, Ramesh N. Analysis of Alkylphenol ethoxylates (APEOs) from tannery sediments using LC–MS and their environmental risks. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.06.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
Tamil Selvan S, Velramar B, Ramamurthy D, Balasundaram S, Sivamani K. Pilot scale wastewater treatment, CO 2 sequestration and lipid production using microalga, Neochloris aquatica RDS02. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 22:1462-1479. [PMID: 32615792 DOI: 10.1080/15226514.2020.1782828] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In present investigation carried out large-scale treatment of tannery effluent by the cultivation of microalgae, Neochloris aquatica RDS02. The tannery effluent treatment revealed that significant reduction heavy metals were chromium-3.59, lead-2.85, nickel-1.9, cadmium-10.68, zinc-4.49, copper-0.95 and cobalt-1.86 mg/L on 15th day of treatment using N. aquatica RDS02. The microalgal biosorption capacity q max rate was Cr-88.66, Pb-75.87, Ni-87.61, Cd-60.44, Co-52.86, Zn-84.90 and Cu-54.39, and isotherm model emphasized that the higher R 2 value 0.99 by Langmuir and Freundlich kinetics model. The microalga utilized highest CO2 (90%) analyzed by CO2 biofixation and utilization kinetics, biomass (3.9 mg/mL), lipid (210 mg mL-1), carbohydrate (102.75 mg mL-1), biodiesel (4.9 mL g-1) and bioethanol (4.1 mL g-1). The microalgal-lipid content was analyzed through Nile red staining. Gas chromatography mass spectrometric (GCMS) analysis confirmed that the presence of a biodiesel and major fatty acid methyl ester (FAME) profiling viz., tridecanoic acid methyl ester, pentadecanoic acid methyl ester, octadecanoic acid methyl ester, myristic acid methyl ester, palmitic acid methyl ester and oleic acid methyl ester. Fourier transform infrared (FTIR) analysis confirmed that the presence of a functional groups viz., phenols, alcohols, alkynes, carboxylic acids, ketones, carbonyl and ester groups. The bioethanol production was confirmed by high-performance liquid chromatography (HPLC) analyze.
Collapse
Affiliation(s)
- Silambarasan Tamil Selvan
- School of Allied Health Sciences, Aarupadi Veedu Medical College and Hospital Campus, Vinayaka Mission's Research Foundation (Deemed to be University), Puducherry, India
- Department of Microbiology, School of Biosciences, Periyar University, Salem, India
| | | | | | - Sendilkumar Balasundaram
- School of Allied Health Sciences, Aarupadi Veedu Medical College and Hospital Campus, Vinayaka Mission's Research Foundation (Deemed to be University), Puducherry, India
- School of Allied Health Sciences, VIMS Hospital Campus, Vinayaka Mission's Research Foundation (Deemed to be University), Salem, India
| | - Kanimozhi Sivamani
- School of Allied Health Sciences, Aarupadi Veedu Medical College and Hospital Campus, Vinayaka Mission's Research Foundation (Deemed to be University), Puducherry, India
| |
Collapse
|
8
|
de Alkimin GD, Paisio C, Agostini E, Nunes B. Phytoremediation processes of domestic and textile effluents: evaluation of the efficacy and toxicological effects in Lemna minor and Daphnia magna. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:4423-4441. [PMID: 31832946 DOI: 10.1007/s11356-019-07098-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
Phytoremediation has been proposed as a potential biotechnological strategy to remediate effluents before their release into the environment. The use of common aquatic plant species, such as macrophytes (e.g., Lemna spp.) as a cleanup solution has been proposed decades ago. However, the effectiveness of such processes must be assessed by analyzing the toxicity of resulting effluents, for the monitoring of wastewater quality. To attain this purpose, this work intended to quantify the efficacy of a Lemna-based wastewater phytoremediation process, by analyzing toxicological effects of domestic and textile effluents. The toxic effects were measured in Lemna minor (same organisms used in the phytoremediation process, by quantifying toxicological endpoints such as root length, pigment content, and catalase activity) and by quantifying individual parameters of Daphnia magna (immobilization, reproduction, and behavior analysis). Phytoremediation process resulted in a decrease of chemical oxygen demand in both effluents and in an increase in root length of exposed plants. Moreover, textile effluent decreased pigments content and increased catalase activity, while domestic effluent increased the anthocyanin content of exposed plants. D. magna acute tests allowed calculating a EC50 and Toxic Units interval of 53.82-66.89%/1.85-1.49, respectively, to raw textile effluent; however, it was not possible to calculate these parameters for raw and treated domestic effluent (RDE and TDE). Therefore, in general, the acute toxicity of effluent toward D. magna was null for RDE, and mild for the treated textile effluent (TTE), probably due to the effect of phytoremediation. Exposure to textile effluents (raw and treated) increased the total number of neonates of D. magna and, in general, both textile effluents decreased D. magna distance swim. Moreover, although both effluents were capable of causing morphological and physiological/biochemical alterations in L. minor plants, organisms of this species were able to survive in the presence of both effluents and to remediate them.
Collapse
Affiliation(s)
- Gilberto Dias de Alkimin
- Departamento de Biologia, Campus de Santiago, Universidade de Aveiro, 3810-193, Aveiro, Portugal
- Centro de Estudos do Ambiente e do Mar (CESAM), Campus de Santiago, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Cintia Paisio
- Department of Molecular Biology, FCEFQyN, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, X5804BYA, Río Cuarto, Córdoba, Argentina
| | - Elizabeth Agostini
- Department of Molecular Biology, FCEFQyN, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, X5804BYA, Río Cuarto, Córdoba, Argentina
| | - Bruno Nunes
- Departamento de Biologia, Campus de Santiago, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
- Centro de Estudos do Ambiente e do Mar (CESAM), Campus de Santiago, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
9
|
Montalvão MF, Sampaio LLG, Gomes HHF, Malafaia G. An insight into the cytotoxicity, genotoxicity, and mutagenicity of smoked cigarette butt leachate by using Allium cepa as test system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:2013-2021. [PMID: 30460649 DOI: 10.1007/s11356-018-3731-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 11/09/2018] [Indexed: 05/05/2023]
Abstract
Smoked cigarette butt (SCB) discharged in the environment became an issue of unknown consequences for plants. Thus, we aim at assessing the impact of water containing SBC leachate on the meristem cells of Allium cepa roots. We defined the following experimental groups: negative control (water), positive control (cyclophosphamide); water with SCB leachate at environmental concentration (1.9 μg/L of nicotine) (EC1× group) and water with SCB leachate concentration 1000 times higher than EC1 (EC1000× group). Mitotic index, total number of abnormal cells, index of abnormal cells per mitotic/phase, relative growth index, and inhibition index were calculated after 48 exposure hours. Root meristems were used to prepare slides in order to investigate chromosomal and nuclear abnormalities. According to our data, plants exposed to SCB leachate presented low relative growth index, high inhibition index, large number of abnormal cells, and high abnormality frequency at metaphase/anaphase. The exposed A. cepa recorded a wide variety of abnormalities such as diagonal metaphase/anaphase, metaphase/anaphase presenting chromosome fragments, binucleated cells, displaced nucleus, chromosome bridges, micronuclei, necrotic cells, stick metaphase, chromosome adherence, notched nucleus, among other cell disturbances. The chemicals in the SBC leachate had aneugenic and clastogenic effect on the genetic material of the tested plants, either when they acted individually, synergistically, or additively. Thus, our study is a pioneer in reporting that the mere disposal of cigarette butts in the environment can have cytotoxic, genotoxic, and mutagenic effects on plants.
Collapse
Affiliation(s)
- Mateus Flores Montalvão
- Post-graduation Program in Cerrado Natural Resource Conservation - Biological Research Laboratory, Goiano Federal Institution, Urutaí Campus, Urutaí, GO, Brazil
- Laboratório de Pesquisas Biológicas, Instituto Federal Goiano, Campus Urutaí, Rodovia Geraldo Silva Nascimento, 2,5 km, Zona Rural, Urutaí, GO, Brazil
| | - Lorrana Lucas Gomes Sampaio
- Laboratório de Pesquisas Biológicas, Instituto Federal Goiano, Campus Urutaí, Rodovia Geraldo Silva Nascimento, 2,5 km, Zona Rural, Urutaí, GO, Brazil
| | - Huan Henrique Ferreira Gomes
- Post-graduation Program in Cerrado Natural Resource Conservation - Biological Research Laboratory, Goiano Federal Institution, Urutaí Campus, Urutaí, GO, Brazil
| | - Guilherme Malafaia
- Post-graduation Program in Cerrado Natural Resource Conservation - Biological Research Laboratory, Goiano Federal Institution, Urutaí Campus, Urutaí, GO, Brazil.
- Laboratório de Pesquisas Biológicas, Instituto Federal Goiano, Campus Urutaí, Rodovia Geraldo Silva Nascimento, 2,5 km, Zona Rural, Urutaí, GO, Brazil.
- Post-graduation Program in Chemistry, Federal University of Goiás, Samambaia Campus, Goiânia, GO, Brazil.
| |
Collapse
|
10
|
Rabelo LM, Guimarães ATB, de Souza JM, da Silva WAM, de Oliveira Mendes B, de Oliveira Ferreira R, de Lima Rodrigues AS, Malafaia G. Histological liver chances in Swiss mice caused by tannery effluent. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:1943-1949. [PMID: 29103125 DOI: 10.1007/s11356-017-0647-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 10/31/2017] [Indexed: 06/07/2023]
Abstract
Although tannery effluents are known for being highly toxic to organisms, reports about the effects of the intake of these xenobiotics on experimental mammal models are recent. Studies about the damages the chronic intake of these effluents can cause in the liver of outbred mice remain an unexplored field. Thus, the aim of the present study is to assess (histological) the hepatic condition of Swiss mice (outbred strain) chronically exposed to the intake of different raw tannery effluent concentrations diluted in water for 150 days. Accordingly, the mice (males and females) were divided in the following groups: control group-animals treated with drinking water, only; and groups 5 and 10%-treated with raw tannery effluent diluted in water. After exposure, the animals were subjected to euthanasia for liver fragment sample collection and histological analysis, respectively. Moderate hydropic degeneration was observed in the centrilobular regions of the liver of mice exposed to 5 and 10% tannery effluent, as well as greater amounts of hepatocytes presenting karyomegaly and necrotic hepatocytes, and a smaller amount of Kuffer cells in the liver of mice exposed to the xenobiotic. Finally, animals exposed to 10% tannery effluent showed mild hyperplasia of the bile ducts in the portal areas and fibroblast proliferation around the bile ducts, thus suggesting a fibrous process. Except for the frequency of hepatocytes presenting karyomegaly (lower in females), the herein observed hepatic changes were similar in male and female Swiss mice. Accordingly, the present data support the hypothesis that the chronic intake of tannery effluent by outbred mice (Swiss) causes damages in the liver, a fact that broadens the knowledge about the toxic potential of this pollutant, which goes beyond that of C57Bl/6J male mice (inbred strain).
Collapse
Affiliation(s)
- Letícia Martins Rabelo
- Laboratório de Pesquisas Biológicas, Instituto Federal Goiano-Campus Urutaí, Urutaí, GO, Brazil
| | - Abraão Tiago Batista Guimarães
- Programa de Pós-Graduação em Conservação de Recursos Naturais do Cerrado, Instituto Federal Goiano-Campus Urutaí, Rodovia Geraldo Silva Nascimento, 2,5 km, Zona Rural, Urutaí, GO, CEP: 75790-000, Brazil
| | - Joyce Moreira de Souza
- Programa de Pós-Graduação em Conservação de Recursos Naturais do Cerrado, Instituto Federal Goiano-Campus Urutaí, Rodovia Geraldo Silva Nascimento, 2,5 km, Zona Rural, Urutaí, GO, CEP: 75790-000, Brazil
| | - Wellington Alves Mizael da Silva
- Programa de Pós-Graduação em Conservação de Recursos Naturais do Cerrado, Instituto Federal Goiano-Campus Urutaí, Rodovia Geraldo Silva Nascimento, 2,5 km, Zona Rural, Urutaí, GO, CEP: 75790-000, Brazil
| | | | | | - Aline Sueli de Lima Rodrigues
- Programa de Pós-Graduação em Conservação de Recursos Naturais do Cerrado, Instituto Federal Goiano-Campus Urutaí, Rodovia Geraldo Silva Nascimento, 2,5 km, Zona Rural, Urutaí, GO, CEP: 75790-000, Brazil
| | - Guilherme Malafaia
- Programa de Pós-Graduação em Conservação de Recursos Naturais do Cerrado, Instituto Federal Goiano-Campus Urutaí, Rodovia Geraldo Silva Nascimento, 2,5 km, Zona Rural, Urutaí, GO, CEP: 75790-000, Brazil.
- Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Goiás-Campus Samambaia, Goiânia, GO, Brazil.
| |
Collapse
|