1
|
Coptisine, a protoberberine alkaloid, relaxes mouse airway smooth muscle via blockade of VDLCCs and NSCCs. Biosci Rep 2021; 40:222118. [PMID: 32095824 PMCID: PMC7042126 DOI: 10.1042/bsr20190534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 02/06/2020] [Accepted: 02/12/2020] [Indexed: 12/02/2022] Open
Abstract
Background/Aims: Recently, effective and purified ingredients of traditional Chinese medicine (TCM) were extracted to play crucial roles in the treatment of pulmonary diseases. Our previous research focused on TCM drug screening aimed at abnormal airway muscle contraction during respiratory diseases. Coptisine, an effective ingredient extracted from bitter herbs has shown a series of antioxidant, antibacterial, cardioprotective and neuroprotective pharmacological properties. In the current study, we questioned whether coptisine could also participate in asthma treatment through relaxing abnormal contracted mouse airway smooth muscle (ASM). The present study aimed to characterize the relaxant effects of coptisine on mouse ASM and uncover the underlying molecular mechanisms. Methods: To investigate the role of coptisine on pre-contracted mouse ASM, a series of biological techniques, including force measurement and patch-clamp experiments were employed. Results: Coptisine was found to inhibit high K+ or acetylcholine chloride (ACh)-induced pre-contracted mouse tracheal rings in a dose-dependent manner. Further research demonstrated that the coptisine-induced mouse ASM relaxation was mediated by alteration of calcium mobilization via voltage-dependent L-type Ca2+ channels (VDLCCs) and non-selective cation channels (NSCCs). Conclusion: Our data showed that mouse ASM could be relaxed by coptisine via altering the intracellular Ca2+ concentration through blocking VDLCCs and NSCCs, which suggested that this pharmacological active constituent might be classified as a potential new drug for the treatment of abnormal airway muscle contraction.
Collapse
|
2
|
Chen S, Li X, Wu J, Li J, Xiao M, Yang Y, Liu Z, Cheng Y. Plumula Nelumbinis: A review of traditional uses, phytochemistry, pharmacology, pharmacokinetics and safety. JOURNAL OF ETHNOPHARMACOLOGY 2021; 266:113429. [PMID: 33011369 DOI: 10.1016/j.jep.2020.113429] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/06/2020] [Accepted: 09/26/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Plumula Nelumbinis, the green embryo of the mature seeds of Nelumbo nucifera Gaertn, has a medical history of over 400 years. It is widely used for clearing the heart and heat, calming the mind, and promoting astringent essence and hemostasis in traditional Chinese medicine. Moreover, it usually dual use as food and medicine. This review aimed to evaluate the therapeutic potential of Plumula Nelumbinis by summarizing its botany, traditional uses, phytochemistry, pharmacology, pharmacokinetics and safety. METHODS This review summarized published studies on Plumula Nelumbinis in the Chinese Pharmacopoeia and literature databases including PubMed, Web of Science, Baidu Scholar, Wiley and China Knowledge Resource Integrated Database (CNKI), and limits the different research articles in botany, traditional uses, phytochemistry, pharmacology, pharmacokinetics and safety about Plumula Nelumbinis. RESULTS Plumula Nelumbinis is used to treat hypertension, arrhythmia, severe aplastic anemia, insomnia, encephalopathy and gynecological disease in traditional Chinese medicine and clinical studies. More than 130 chemicals have been isolated and identified from Plumula Nelumbinis, including alkaloids, flavonoids, polysaccharides and volatile oil. In addition, pharmacological effects, such as protective effects against cardiovascular diseases, neurological diseases, lung and kidney injury, anti-inflammatory and anticancer activities, were also evaluated by in vitro and in vivo studies. Moreover, the potential signaling pathways regulated by Plumula Nelumbinis in cardiovascular and neurological diseases and perspectives on Plumula Nelumbinis research were discussed. CONCLUSION Plumula Nelumbinis, a commonly used Chinese medicine, has a variety of traditional and modern therapeutic uses. Some traditional uses, especially the treatment of cardiovascular and neurological diseases, have been verified by pharmacological investigation. However, the pharmacological molecular mechanisms, pharmacokinetics and toxicology of Plumula Nelumbinis are still incomplete. In the future, a series of systematic studies on active compounds identification, pharmacological mechanism clarification, quality and safety evaluation are necessary.
Collapse
Affiliation(s)
- Sixuan Chen
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Xuping Li
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Junxuan Wu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Jingyan Li
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Mingzhu Xiao
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Ying Yang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Zhongqiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Yuanyuan Cheng
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|
3
|
Yan K, Wang X, Wang Z, Wang Y, Luan Z, Gao X, Wang R. The risk of higenamine adverse analytical findings following oral administration of
plumula nelumbinis
capsules. Drug Test Anal 2019; 11:1731-1736. [DOI: 10.1002/dta.2701] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 02/02/2023]
Affiliation(s)
- Kuan Yan
- National Anti Doping LaboratoryChina Anti Doping Agency China
| | - Xinzhai Wang
- National Anti Doping LaboratoryChina Anti Doping Agency China
| | - Zhanliang Wang
- National Anti Doping LaboratoryChina Anti Doping Agency China
| | - Yunfei Wang
- National Anti Doping LaboratoryChina Anti Doping Agency China
| | - Zhaoqian Luan
- National Anti Doping LaboratoryChina Anti Doping Agency China
| | - Xi Gao
- Beijing Sport University China
| | | |
Collapse
|
4
|
Liu M, Jiang Y, Liu R, Liu M, Yi L, Liao N, Liu S. Structural features guided “fishing” strategy to identification of flavonoids from lotus plumule in a self-built data “pool” by ultra-high performance liquid chromatography coupled with hybrid quadrupole-orbitrap high resolution mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1124:122-134. [DOI: 10.1016/j.jchromb.2019.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/31/2019] [Accepted: 06/02/2019] [Indexed: 12/21/2022]
|
5
|
Paracetamol inhibits Ca 2+ permeant ion channels and Ca 2+ sensitization resulting in relaxation of precontracted airway smooth muscle. J Pharmacol Sci 2019; 142:60-68. [PMID: 31843508 DOI: 10.1016/j.jphs.2019.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/27/2019] [Accepted: 07/17/2019] [Indexed: 12/24/2022] Open
Abstract
The purpose of this study was to screen a bronchodilator from old drugs and elucidate the underlying mechanism. Paracetamol (acetaminophen) is a widely used analgesic and antipyretic drug. It has been reported that it inhibits the generation of prostaglandin and histamine, which play roles in asthma. These findings led us to explore whether paracetamol could be a potential bronchodilator. Paracetamol inhibited high K+- and acetylcholine (ACH)-induced precontraction of mouse tracheal and bronchial smooth muscles. Moreover, the ACH-induced contraction was partially inhibited by nifedipine (selective blocker of LVDCCs), YM-58483 (selective inhibitor of store-operated Ca2+ entry (SOCE), canonical transient receptor potential 3 (TRPC3) and TRPC5 channels) and Y-27632 (selective blocker of ROCK, a linker of the Ca2+ sensitization pathway). In single airway smooth muscle cells, paracetamol blocked the currents sensitive to nifedipine and YM-58483, and inhibited intracellular Ca2+ increases. In addition, paracetamol inhibited ACH-induced phosphorylation of myosin phosphatase target subunit 1 (MYPT1, another linker of the Ca2+ sensitization pathway). Finally, in vivo paracetamol inhibited ACH-induced increases of mouse respirator system resistance. Collectively, we conclude that paracetamol inhibits ASM contraction through blocking LVDCCs, SOCE and/or TRPC3 and/or TRPC5 channels, and Ca2+ sensitization. These results suggest that paracetamol might be a new bronchodilator.
Collapse
|
6
|
Wang Q, Yu MF, Zhang WJ, Liu BB, Zhao QY, Luo X, Xu H, She YS, Zang DA, Qiu JY, Shen J, Peng YB, Zhao P, Xue L, Chen W, Ma LQ, Nie X, Shen C, Chen S, Chen S, Liu Q, Dai J, Qin G, Zheng YM, Wang YX, ZhuGe R, Chen J, Liu QH. Azithromycin inhibits muscarinic 2 receptor-activated and voltage-activated Ca 2+ permeant ion channels and Ca 2+ sensitization, relaxing airway smooth muscle contraction. Clin Exp Pharmacol Physiol 2019; 46:329-336. [PMID: 30609110 DOI: 10.1111/1440-1681.13062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 12/06/2018] [Accepted: 12/27/2018] [Indexed: 12/20/2022]
Abstract
Azithromycin (AZM) has been used for the treatment of asthma and chronic obstructive pulmonary disease (COPD); however, the effects and underlying mechanisms of AZM remain largely unknown. The effects of AZM on airway smooth muscles (ASMs) and the underlying mechanisms were studied using isometric muscle force measurements, the examination of lung slices, imaging, and patch-clamp techniques. AZM completely inhibited acetylcholine (ACH)-induced precontraction of ASMs in animals (mice, guinea pigs, and rabbits) and humans. Two other macrolide antibiotics, roxithromycin and Klaricid, displayed a decreased inhibitory activity, and the aminoglycoside antibiotics penicillin and streptomycin did not have an inhibitory effect. Precontractions were partially inhibited by nifedipine (selective inhibitor of L-type voltage-dependent Ca2+ channels (LVDCCs)), Pyr3 (selective inhibitor of TRPC3 and/or STIM/Orai channels, which are nonselective cation channels (NSCCs)), and Y-27632 (selective inhibitor of Rho-associated kinase (ROCK)). Moreover, LVDCC- and NSCC-mediated currents were inhibited by AZM, and the latter were suppressed by the muscarinic (M) 2 receptor inhibitor methoctramine. AZM inhibited LVDCC Ca2+ permeant ion channels, M2 receptors, and TRPC3 and/or STIM/Orai, which decreased cytosolic Ca2+ concentrations and led to muscle relaxation. This relaxation was also enhanced by the inhibition of Ca2+ sensitization. Therefore, AZM has potential as a novel and potent bronchodilator. The findings of this study improve the understanding of the effects of AZM on asthma and COPD.
Collapse
Affiliation(s)
- Qian Wang
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Meng-Fei Yu
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Wen-Jing Zhang
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Bei-Bei Liu
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Qing-Yang Zhao
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Xi Luo
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Hao Xu
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Yu-Shan She
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Dun-An Zang
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Jun-Ying Qiu
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Jinhua Shen
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Yong-Bo Peng
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Ping Zhao
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Lu Xue
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Weiwei Chen
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Li-Qun Ma
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Xiaowei Nie
- Jiangsu Key Laboratory of Organ Transplantation, Department of Cardiothoracic Surgery, Lung Transplant Group, Wuxi People's Hospital, Nanjing Medical University, Jiangsu, China
| | - Chenyou Shen
- Jiangsu Key Laboratory of Organ Transplantation, Department of Cardiothoracic Surgery, Lung Transplant Group, Wuxi People's Hospital, Nanjing Medical University, Jiangsu, China
| | - Shu Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shanshan Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Quan Liu
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiapei Dai
- Wuhan Institute for Neuroscience and Engineering, South-Central University for Nationalities, Wuhan, China
| | - Gangjian Qin
- Department of Biomedical Engineering, School of Medicine & School of Engineering, University of Alabama at Birmingham, Birmingham, Alabama
| | - Yun-Min Zheng
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York
| | - Yong-Xiao Wang
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York
| | - Ronghua ZhuGe
- Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Jingyu Chen
- Jiangsu Key Laboratory of Organ Transplantation, Department of Cardiothoracic Surgery, Lung Transplant Group, Wuxi People's Hospital, Nanjing Medical University, Jiangsu, China
| | - Qing-Hua Liu
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
7
|
She YS, Ma LQ, Liu BB, Zhang WJ, Qiu JY, Chen YY, Li MY, Xue L, Luo X, Wang Q, Xu H, Zang DA, Zhao XX, Cao L, Shen J, Peng YB, Zhao P, Yu MF, Chen W, Nie X, Shen C, Chen S, Chen S, Qin G, Dai J, Chen J, Liu QH. Semen cassiae Extract Inhibits Contraction of Airway Smooth Muscle. Front Pharmacol 2018; 9:1389. [PMID: 30564120 PMCID: PMC6288305 DOI: 10.3389/fphar.2018.01389] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 11/12/2018] [Indexed: 12/17/2022] Open
Abstract
β2-adrenoceptor agonists are commonly used as bronchodilators to treat obstructive lung diseases such as asthma and chronic obstructive pulmonary disease (COPD), however, they induce severe side effects. Therefore, developing new bronchodilators is essential. Herbal plants were extracted and the extracts’ effect on airway smooth muscle (ASM) precontraction was assessed. The ethyl alcohol extract of semen cassiae (EESC) was extracted from Semen cassia. The effects of EESC on the ACh- and 80 mM K+-induced sustained precontraction in mouse and human ASM were evaluated. Ca2+ permeant ion channel currents and intracellular Ca2+ concentration were measured. HPLC analysis was employed to determine which compound was responsible for the EESC-induced relaxation. The EESC reversibly inhibited the ACh- and 80 mM K+-induced precontraction. The sustained precontraction depends on Ca2+ influx, and it was mediated by voltage-dependent L-type Ca2+ channels (LVDCCs), store-operated channels (SOCs), TRPC3/STIM/Orai channels. These channels were inhibited by aurantio-obtusin, one component of EESC. When aurantio-obtusin removed, EESC’s action disappeared. In addition, aurantio-obtusin inhibited the precontraction of mouse and human ASM and intracellular Ca2+ increases. These results indicate that Semen cassia-contained aurantio-obtusin inhibits sustained precontraction of ASM via inhibiting Ca2+-permeant ion channels, thereby, which could be used to develop new bronchodilators.
Collapse
Affiliation(s)
- Yu-Shan She
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Li-Qun Ma
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Bei-Bei Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Wen-Jing Zhang
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Jun-Ying Qiu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Yuan-Yuan Chen
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Meng-Yue Li
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Lu Xue
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Xi Luo
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Qian Wang
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Hao Xu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Dun-An Zang
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Xiao-Xue Zhao
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Lei Cao
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Jinhua Shen
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Yong-Bo Peng
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Ping Zhao
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Meng-Fei Yu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Weiwei Chen
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Xiaowei Nie
- Lung Transplant Group, Jiangsu Key Laboratory of Organ Transplantation, Department of Cardiothoracic Surgery, Wuxi People's Hospital, Nanjing Medical University, Jiangsu, China
| | - Chenyou Shen
- Lung Transplant Group, Jiangsu Key Laboratory of Organ Transplantation, Department of Cardiothoracic Surgery, Wuxi People's Hospital, Nanjing Medical University, Jiangsu, China
| | - Shu Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shanshan Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gangjian Qin
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jiapei Dai
- Wuhan Institute for Neuroscience and Engineering, South-Central University for Nationalities, Wuhan, China
| | - Jingyu Chen
- Lung Transplant Group, Jiangsu Key Laboratory of Organ Transplantation, Department of Cardiothoracic Surgery, Wuxi People's Hospital, Nanjing Medical University, Jiangsu, China
| | - Qing-Hua Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
8
|
Luo X, Xue L, Xu H, Zhao QY, Wang Q, She YS, Zang DA, Shen J, Peng YB, Zhao P, Yu MF, Chen W, Ma LQ, Chen S, Chen S, Fu X, Hu S, Nie X, Shen C, Zou C, Qin G, Dai J, Ji G, Su Y, Hu S, Chen J, Liu QH. Polygonum aviculare L. extract and quercetin attenuate contraction in airway smooth muscle. Sci Rep 2018; 8:3114. [PMID: 29449621 PMCID: PMC5814568 DOI: 10.1038/s41598-018-20409-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 11/22/2017] [Indexed: 01/09/2023] Open
Abstract
Because of the serious side effects of the currently used bronchodilators, new compounds with similar functions must be developed. We screened several herbs and found that Polygonum aviculare L. contains ingredients that inhibit the precontraction of mouse and human airway smooth muscle (ASM). High K+-induced precontraction in ASM was completely inhibited by nifedipine, a selective blocker of L-type voltage-dependent Ca2+ channels (LVDCCs). However, nifedipine only partially reduced the precontraction induced by acetylcholine chloride (ACH). Additionally, the ACH-induced precontraction was partly reduced by pyrazole-3 (Pyr3), a selective blocker of TRPC3 and stromal interaction molecule (STIM)/Orai channels. These channel-mediated currents were inhibited by the compounds present in P. aviculare extracts, suggesting that this inhibition was mediated by LVDCCs, TRPC3 and/or STIM/Orai channels. Moreover, these channel-mediated currents were inhibited by quercetin, which is present in P. aviculare extracts. Furthermore, quercetin inhibited ACH-induced precontraction in ASM. Overall, our data indicate that the ethyl acetate fraction of P. aviculare and quercetin can inhibit Ca2+-permeant LVDCCs, TRPC3 and STIM/Orai channels, which inhibits the precontraction of ASM. These findings suggest that P. aviculare could be used to develop new bronchodilators to treat obstructive lung diseases such as asthma and chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Xi Luo
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Lu Xue
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Hao Xu
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Qing-Yang Zhao
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Qian Wang
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Yu-Shan She
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Dun-An Zang
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Jinhua Shen
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Yong-Bo Peng
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Ping Zhao
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Meng-Fei Yu
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Weiwei Chen
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Li-Qun Ma
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Shu Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430032, Hubei, China
| | - Shanshan Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430032, Hubei, China
| | - Xiangning Fu
- Department of Thoracic, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430032, Hubei, China
| | - Sheng Hu
- Department of Medical Oncology, Hubei Cancer Hospital, Wuhan, 430079, Hubei, China
| | - Xiaowei Nie
- Jiangsu Key Laboratory of Organ Transplantation, Department of Cardiothoracic Surgery, Lung Transplant Group, Wuxi People's Hospital, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Chenyou Shen
- Jiangsu Key Laboratory of Organ Transplantation, Department of Cardiothoracic Surgery, Lung Transplant Group, Wuxi People's Hospital, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Chunbin Zou
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine., Pittsburgh, PA, 15213, USA
| | - Gangjian Qin
- Department of Biomedical Engineering, School of Medicine & School of Engineering, University of Alabama Birmingham, Birmingham, AL, 35294, USA
| | - Jiapei Dai
- Wuhan Institute for Neuroscience and Engineering, South-Central University for Nationalities, Wuhan, 430074, China
| | - Guangju Ji
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yunchao Su
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Shen Hu
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, 90095, USA
| | - Jingyu Chen
- Jiangsu Key Laboratory of Organ Transplantation, Department of Cardiothoracic Surgery, Lung Transplant Group, Wuxi People's Hospital, Nanjing Medical University, Wuxi, Jiangsu, China.
| | - Qing-Hua Liu
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, China.
| |
Collapse
|
9
|
Yang X, Xue L, Zhao Q, Cai C, Liu QH, Shen J. Nelumbo nucifera leaves extracts inhibit mouse airway smooth muscle contraction. Altern Ther Health Med 2017; 17:159. [PMID: 28320373 PMCID: PMC5359798 DOI: 10.1186/s12906-017-1674-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 03/10/2017] [Indexed: 01/06/2023]
Abstract
Background Alkaloids extracted from lotus leaves (AELL) can relax vascular smooth muscle. However, whether AELL has a similar relaxant role on airway smooth muscle (ASM) remains unknown. This study aimed to explore the relaxant property of AELL on ASM and the underlying mechanism. Methods Alkaloids were extracted from dried lotus leaves using the high temperature rotary evaporation extraction method. The effects of AELL on mouse ASM tension were studied using force measuring and patch-clamp techniques. Results It was found that AELL inhibited the high K+ or acetylcholine chloride (ACh)-induced precontraction of mouse tracheal rings by 64.8 ± 2.9%, or 48.8 ± 4.7%, respectively. The inhibition was statistically significant and performed in a dose-dependent manner. Furthermore, AELL-induced smooth muscle relaxation was partially mediated by blocking voltage-dependent Ca2+ channels (VDCC) and non-selective cation channels (NSCC). Conclusion AELL, which plays a relaxant role in ASM, might be a new complementary treatment to treat abnormal contractions of the trachea and asthma. Electronic supplementary material The online version of this article (doi:10.1186/s12906-017-1674-7) contains supplementary material, which is available to authorized users.
Collapse
|
10
|
Cortex phellodendri Extract Relaxes Airway Smooth Muscle. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:8703239. [PMID: 27239213 PMCID: PMC4863113 DOI: 10.1155/2016/8703239] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 04/11/2016] [Indexed: 12/15/2022]
Abstract
Cortex phellodendri is used to reduce fever and remove dampness and toxin. Berberine is an active ingredient of C. phellodendri. Berberine from Argemone ochroleuca can relax airway smooth muscle (ASM); however, whether the nonberberine component of C. phellodendri has similar relaxant action was unclear. An n-butyl alcohol extract of C. phellodendri (NBAECP, nonberberine component) was prepared, which completely inhibits high K+- and acetylcholine- (ACH-) induced precontraction of airway smooth muscle in tracheal rings and lung slices from control and asthmatic mice, respectively. The contraction induced by high K+ was also blocked by nifedipine, a selective blocker of L-type Ca2+ channels. The ACH-induced contraction was partially inhibited by nifedipine and pyrazole 3, an inhibitor of TRPC3 and STIM/Orai channels. Taken together, our data demonstrate that NBAECP can relax ASM by inhibiting L-type Ca2+ channels and TRPC3 and/or STIM/Orai channels, suggesting that NBAECP could be developed to a new drug for relieving bronchospasm.
Collapse
|