1
|
Liu R, Zhao B, Zhao J, Zhang M. Ethanol causes non-communicable disease through activation of NLRP3 inflammasome: a review on mechanism of action and potential interventions. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2024; 50:139-149. [PMID: 38237017 DOI: 10.1080/00952990.2023.2297349] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/16/2023] [Indexed: 04/28/2024]
Abstract
Background: Ethanol exposure has been suggested to be implicated in the initiation and progression of several non-communicable diseases (NCD), including neurological disorders, diabetes mellitus, alcoholic liver disease, gastric injury, pancreatitis, and atherosclerosis. Recent findings show that the NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome is involved in the progression of ethanol-induced NCDs.Objective: The aim of this review was to summarize the research progress on NCDs associated with the action of the NLRP3 inflammasome by ethanol and potential interventions, with a specific focus on preclinical literature.Methods: A literature search was conducted on PubMed using the keywords "[ethanol] and [NLRP3]" up until January 2023. Articles describing cases of NCDs caused by ethanol and associated with the NLRP3 inflammasome were included.Results: After removing duplicates, 35 articles were included in this review. These studies, mostly conducted in animals or in vitro, provide evidence that ethanol can contribute to the development of NCDs, such as neurological disorders, alcoholic liver disease, gastric injury, pancreatitis, and atherosclerosis, by activating the NLRP3 inflammasome. Ethanol exposure primarily triggers NLRP3 inflammasome activation by influencing the TRL/NF-κB, ROS-TXNIP-NLRP3 and P2X7 receptor (P2X7R) signaling pathways. Several natural extracts and compounds have been found to alleviate NCDs caused by ethanol consumption by inhibiting the activation of the NLRP3 inflammasome.Conclusion: Preclinical research supports a role for ethanol-induced NLRP3 inflammasome in the development of NCDs. However, the clinical relevance remains uncertain in the relative absence of clinical studies.
Collapse
Affiliation(s)
- Ruizi Liu
- School of Clinical Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Bin Zhao
- Hospital of Shandong First Medical University, Jinan, Shandong Province, China
| | - Jie Zhao
- Hospital of Shandong First Medical University, Jinan, Shandong Province, China
| | - Meng Zhang
- School of Clinical Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| |
Collapse
|
2
|
Li D, Ding L, Yan Y, Xing Y, Xu J, Qin L. Lactoferrin Alleviates Ethanol-Induced Injury via Promoting Nrf2 Nuclear Translocation in BRL-3A Rat Liver Cells. Int J Mol Sci 2023; 24:16848. [PMID: 38069169 PMCID: PMC10706351 DOI: 10.3390/ijms242316848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/15/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Our previous animal studies found that the preventive effects of lactoferrin (Lf) on alcoholic liver injury (ALI) are associated with nuclear factor E2-related factor 2 (Nrf2). To further explore the causality, experiments were performed using rat normal liver BRL-3A cells. Lf treatment reduced ethanol-induced death and apoptosis; meanwhile, Lf treatment alleviated excessive LDH release. These findings confirmed the protection of Lf against ethanol-induced injury in BRL-3A cells. Mechanistically, Lf treatment reversed the reduction in nuclear Nrf2 induced by ethanol without affecting the cytoplasmic Nrf2 level, which led to antioxidant enzyme activity restoration. However, the blocking of Nrf2 nuclear translocation by ML385 eliminated the protective effects of Lf. In a conclusion, Lf protects BRL-3A cells from ethanol-induced injury via promoting Nrf2 nuclear translocation.
Collapse
Affiliation(s)
- Deming Li
- School of Public Health, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou 215123, China; (D.L.); (L.D.); (Y.Y.); (Y.X.)
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou 215123, China
| | - Li Ding
- School of Public Health, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou 215123, China; (D.L.); (L.D.); (Y.Y.); (Y.X.)
| | - Yilin Yan
- School of Public Health, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou 215123, China; (D.L.); (L.D.); (Y.Y.); (Y.X.)
| | - Yifei Xing
- School of Public Health, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou 215123, China; (D.L.); (L.D.); (Y.Y.); (Y.X.)
| | - Jiaying Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou 215123, China
| | - Liqiang Qin
- School of Public Health, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou 215123, China; (D.L.); (L.D.); (Y.Y.); (Y.X.)
| |
Collapse
|
3
|
Ali N, Ferrao K, Mehta KJ. Liver Iron Loading in Alcohol-Associated Liver Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1427-1439. [PMID: 36306827 DOI: 10.1016/j.ajpath.2022.08.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/15/2022] [Accepted: 08/31/2022] [Indexed: 02/04/2023]
Abstract
Alcohol-associated liver disease (ALD) is a common chronic liver disease with increasing incidence worldwide. Alcoholic liver steatosis/steatohepatitis can progress to liver fibrosis/cirrhosis, which can cause predisposition to hepatocellular carcinoma. ALD diagnosis and management are confounded by several challenges. Iron loading is a feature of ALD which can exacerbate alcohol-induced liver injury and promote ALD pathologic progression. Knowledge of the mechanisms that mediate liver iron loading can help identify cellular/molecular targets and thereby aid in designing adjunct diagnostic, prognostic, and therapeutic approaches for ALD. Herein, the cellular mechanisms underlying alcohol-induced liver iron loading are reviewed and how excess iron in patients with ALD can promote liver fibrosis and aggravate disease pathology is discussed. Alcohol-induced increase in hepatic transferrin receptor-1 expression and up-regulation of high iron protein in Kupffer cells (proposed) facilitate iron deposition and retention in the liver. Iron is loaded in both parenchymal and nonparenchymal liver cells. Iron-loaded liver can promote ferroptosis and thereby contribute to ALD pathology. Iron and alcohol can independently elevate oxidative stress. Therefore, a combination of excess iron and alcohol amplifies oxidative stress and accelerates liver injury. Excess iron-stimulated hepatocytes directly or indirectly (through Kupffer cell activation) activate the hepatic stellate cells via secretion of proinflammatory and profibrotic factors. Persistently activated hepatic stellate cells promote liver fibrosis, and thereby facilitate ALD progression.
Collapse
Affiliation(s)
- Najma Ali
- GKT School of Medical Education, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Kevin Ferrao
- GKT School of Medical Education, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Kosha J Mehta
- Centre for Education, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom.
| |
Collapse
|
4
|
Heck-Swain KL, Koeppen M. The Intriguing Role of Hypoxia-Inducible Factor in Myocardial Ischemia and Reperfusion: A Comprehensive Review. J Cardiovasc Dev Dis 2023; 10:jcdd10050215. [PMID: 37233182 DOI: 10.3390/jcdd10050215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
Hypoxia-inducible factors (HIFs) play a crucial role in cellular responses to low oxygen levels during myocardial ischemia and reperfusion injury. HIF stabilizers, originally developed for treating renal anemia, may offer cardiac protection in this context. This narrative review examines the molecular mechanisms governing HIF activation and function, as well as the pathways involved in cell protection. Furthermore, we analyze the distinct cellular roles of HIFs in myocardial ischemia and reperfusion. We also explore potential therapies targeting HIFs, emphasizing their possible benefits and limitations. Finally, we discuss the challenges and opportunities in this research area, underscoring the need for continued investigation to fully realize the therapeutic potential of HIF modulation in managing this complex condition.
Collapse
Affiliation(s)
- Ka-Lin Heck-Swain
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Tuebingen, 72076 Tübingen, Germany
| | - Michael Koeppen
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Tuebingen, 72076 Tübingen, Germany
| |
Collapse
|
5
|
Huang W, Zhang Z, Qiu Y, Gao Y, Fan Y, Wang Q, Zhou Q. NLRP3 inflammasome activation in response to metals. Front Immunol 2023; 14:1055788. [PMID: 36845085 PMCID: PMC9950627 DOI: 10.3389/fimmu.2023.1055788] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/16/2023] [Indexed: 02/12/2023] Open
Abstract
Implant surgery is followed by a series of inflammatory reactions that directly affect its postoperative results. The inflammasome plays a vital role in the inflammatory response by inducing pyroptosis and producing interleukin-1β, which plays a critical role in inflammation and tissue damage. Therefore, it is essential to study the activation of the inflammasome in the bone healing process after implant surgery. As metals are the primary implant materials, metal-induced local inflammatory reactions have received significant attention, and there has been more and more research on the activation of the NLRP3 (NOD-like receptor protein-3) inflammasome caused by these metals. In this review, we consolidate the basic knowledge on the NLRP3 inflammasome structures, the present knowledge on the mechanisms of NLRP3 inflammasome activation, and the studies of metal-induced NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Wanyi Huang
- School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, China
| | - Ziqi Zhang
- School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, China
| | - Yueyang Qiu
- School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, China
| | - Yuan Gao
- School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, China
- Department of Orthodontics, Shenyang Stomatological Hospital, Shenyang, China
| | - Yongqiang Fan
- College of Life and Health Sciences, Northeastern University, Shenyang, China
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang, China
| | - Qiang Wang
- School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, China
| | - Qing Zhou
- School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, China
| |
Collapse
|
6
|
Aloliqi AA. Therapeutic Potential of 6-Gingerol in Prevention of Colon Cancer Induced by Azoxymethane through the Modulation of Antioxidant Potential and Inflammation. Curr Issues Mol Biol 2022; 44:6218-6228. [PMID: 36547085 PMCID: PMC9776754 DOI: 10.3390/cimb44120424] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
A polyphenolic component of ginger, 6-gingerol, is widely reported to possess antioxidant, anti-inflammatory and anticancer activities. In the current study, it was aimed to investigate the anticancer effects of 6-gingerol (6-Gin) on azoxymethane (AOM)-induced colon cancer in rats. The results reveal that 6-Gin treatment significantly improves the antioxidant status disturbed by AOM intoxication. The 6-Gin treatment animal group showed enhanced activity of catalase (CAT) (46.6 ± 6.4 vs. 23.3 ± 4.3 U/mg protein), superoxide dismutase (SOD) (81.3 ± 7.6 vs. 60.4 ± 3.5 U/mg protein) and glutathione-S-transferase (GST) (90.3 ± 9.4 vs. 53.8 ± 10 mU/mg protein) (p < 0.05) as compared to the disease control group. Furthermore, the results reveal that AOM significantly enhances the inflammatory response and 6-gingerol potentially attenuates this response, estimated by markers, such as tumor necrosis factor-α (TNF-α) (1346 ± 67 vs. 1023 ± 58 pg/g), C-reactive protein (CRP) (1.12 ± 0.08 vs. 0.92 ± 0.7 ng/mL) and interleukin-6 (IL-6) (945 ± 67 vs. 653 ± 33 pg/g). In addition, the lipid peroxidation estimated in terms of malondialdehyde (MDA) provoked by AOM exposure is significantly reduced by 6-gingerol treatment (167 ± 7.5 vs. 128.3 nmol/g). Furthermore, 6-gingerol significantly maintains the colon tissue architecture disturbed by the AOM treatment. Loss of tumor suppressor protein, phosphatase and tensin homolog (PTEN) expression was noticed in the AOM treated group, whereas in the animals treated with 6-gingerol, the positivity of PTEN expression was high. In conclusion, the current findings advocate the health-promoting effects of 6-gingerol on colon cancer, which might be due to its antioxidant and anti-inflammatory potential.
Collapse
Affiliation(s)
- Abdulaziz A Aloliqi
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
| |
Collapse
|
7
|
Li LX, Guo FF, Liu H, Zeng T. Iron overload in alcoholic liver disease: underlying mechanisms, detrimental effects, and potential therapeutic targets. Cell Mol Life Sci 2022; 79:201. [PMID: 35325321 PMCID: PMC11071846 DOI: 10.1007/s00018-022-04239-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 02/06/2023]
Abstract
Alcoholic liver disease (ALD) is a global public health challenge due to the high incidence and lack of effective therapeutics. Evidence from animal studies and ALD patients has demonstrated that iron overload is a hallmark of ALD. Ethanol exposure can promote iron absorption by downregulating the hepcidin expression, which is probably mediated by inducing oxidative stress and promoting erythropoietin (EPO) production. In addition, ethanol may enhance iron uptake in hepatocytes by upregulating the expression of transferrin receptor (TfR). Iron overload in the liver can aggravate ethanol-elicited liver damage by potentiating oxidative stress via Fenton reaction, promoting activation of Kupffer cells (KCs) and hepatic stellate cells (HSCs), and inducing a recently discovered programmed iron-dependent cell death, ferroptosis. This article reviews the current knowledge of iron metabolism, regulators of iron homeostasis, the mechanism of ethanol-induced iron overload, detrimental effects of iron overload in the liver, and potential therapeutic targets.
Collapse
Affiliation(s)
- Long-Xia Li
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Fang-Fang Guo
- Department of Pharmacy, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Hong Liu
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Tao Zeng
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
8
|
A Comparative Study of the Hepatoprotective Effect of Centella asiatica Extract (CA-HE50) on Lipopolysaccharide/d-galactosamine-Induced Acute Liver Injury in C57BL/6 Mice. Nutrients 2021; 13:nu13114090. [PMID: 34836346 PMCID: PMC8623393 DOI: 10.3390/nu13114090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/07/2021] [Accepted: 11/14/2021] [Indexed: 01/07/2023] Open
Abstract
Acute liver failure (ALF) refers to the sudden loss of liver function and is accompanied by several complications. In a previous study, we revealed the protective effect of Centella asiatica 50% ethanol extract (CA-HE50) on acetaminophen-induced liver injury. In the present study, we investigate the hepatoprotective effect of CA-HE50 in a lipopolysaccharide/galactosamine (LPS-D-Gal)-induced ALF animal model and compare it to existing therapeutic silymarin, Lentinus edodes mycelia (LEM) extracts, ursodeoxycholic acid (UDCA) and dimethyl diphenyl bicarboxylate (DDB). Serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels were decreased in the CA-HE50, silymarin, LEM, UDCA and DDB groups compared to the vehicle control group. In particular, AST and ALT levels of the 200 mg/kg CA-HE50 group were significantly decreased compared to positive control groups. Lactate dehydrogenase (LDH) levels were significantly decreased in the CA-HE50, silymarin, LEM, UDCA and DDB groups compared to the vehicle control group and LDH levels of the 200 mg/kg CA-HE50 group were similar to those of the positive control groups. Superoxide dismutase (SOD) activity was significantly increased in the 100 mg/kg CA-HE50, LEM and UDCA groups compared to the vehicle control group and, in particular, the 100 mg/kg CA-HE50 group increased significantly compared to positive control groups. In addition, the histopathological lesion score was significantly decreased in the CA-HE50 and positive control groups compared with the vehicle control group and the histopathological lesion score of the 200 mg/kg CA-HE50 group was similar to that of the positive control groups. These results show that CA-HE50 has antioxidant and hepatoprotective effects at a level similar to that of silymarin, LEM, UDCA and DDB, which are known to have hepatoprotective effects; further, CA-HE50 has potential as a prophylactic and therapeutic agent in ALF.
Collapse
|
9
|
Morris NL, Harris FL, Brown LAS, Yeligar SM. Alcohol induces mitochondrial derangements in alveolar macrophages by upregulating NADPH oxidase 4. Alcohol 2021; 90:27-38. [PMID: 33278514 DOI: 10.1016/j.alcohol.2020.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/11/2020] [Accepted: 11/25/2020] [Indexed: 12/15/2022]
Abstract
Excessive alcohol users have increased risk of developing respiratory infections in part due to oxidative stress-induced alveolar macrophage (AM) phagocytic dysfunction. Chronic ethanol exposure increases cellular oxidative stress in AMs via upregulation of NADPH oxidase (Nox) 4, and treatment with the peroxisome proliferator-activated receptor gamma (PPARγ) ligand, rosiglitazone, decreases ethanol-induced Nox4. However, the mechanism by which ethanol induces Nox4 expression and the PPARγ ligand reverses this defect has not been elucidated. Since microRNA (miR)-92a has been predicted to target Nox4 for destabilization, we hypothesized that ethanol exposure decreases miR-92a expression and leads to Nox4 upregulation. Previous studies have implicated mitochondrial-derived oxidative stress in AM dysfunction. We further hypothesized that ethanol increases mitochondrial-derived AM oxidative stress and dysfunction via miR-92a, and that treatment with the PPARγ ligand, pioglitazone, could reverse these derangements. To test these hypotheses, a mouse AM cell line, MH-S cells, was exposed to ethanol in vitro, and primary AMs were isolated from a mouse model of chronic ethanol consumption to measure Nox4, mitochondrial target mRNA (qRT-PCR) and protein levels (confocal microscopy), mitochondria-derived reactive oxygen species (confocal immunofluorescence), mitochondrial fission (electron microscopy), and mitochondrial bioenergetics (extracellular flux analyzer). Ethanol exposure increased Nox4, enhanced mitochondria-derived oxidative stress, augmented mitochondrial fission, and impaired mitochondrial bioenergetics. Transfection with a miR-92a mimic in vitro or pioglitazone treatment in vivo diminished Nox4 levels, resulting in improvements in these ethanol-mediated derangements. These findings demonstrate that pioglitazone may provide a novel therapeutic approach to mitigate ethanol-induced AM mitochondrial derangements.
Collapse
|
10
|
Alsahli MA, Almatroodi SA, Almatroudi A, Khan AA, Anwar S, Almutary AG, Alrumaihi F, Rahmani AH. 6-Gingerol, a Major Ingredient of Ginger Attenuates Diethylnitrosamine-Induced Liver Injury in Rats through the Modulation of Oxidative Stress and Anti-Inflammatory Activity. Mediators Inflamm 2021; 2021:6661937. [PMID: 33531877 PMCID: PMC7837795 DOI: 10.1155/2021/6661937] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/19/2020] [Accepted: 01/02/2021] [Indexed: 12/24/2022] Open
Abstract
Diethylnitrosamine (DEN) is a well-known hepatocarcinogen, and its oral administration causes severe liver damage including cancer. DEN induces the pathogenesis of the liver through reactive oxygen species mediated inflammation and modulation of various biological activities. 6-Gingerol, a major component of ginger, is reported to prevent liver diseases by reducing the oxidative stress and proinflammatory mediators. The present study investigated the hepatoprotective effects of 6-gingerol through the measurement of oxidative stress, anti-inflammatory markers, liver function enzyme parameter, and histopathological analysis. The rats were randomly divided into four groups as the control, DEN treated (50 mg/kg b.w.), DEN+6-gingerol (each 50 mg/kg b.w.), and 6-gingerol only. To evaluate the hepatoprotective effects, liver function enzymes (ALT, AST, and ALP), oxidative stress markers (SOD, GSH, GST, and TAC), lipid peroxidation, inflammatory markers (CRP, TNF-α, IL-6, and ICAM1), haematoxylin and eosin staining, Sirius red staining, immunohistochemistry, and electron microscopy were performed. The results showed a significant increase in liver function enzymes, oxidative stress, and inflammatory markers in the DEN-treated group as compared to the control group. Besides this, altered architecture of hepatocytes (infiltration of inflammatory cells, congestion, blood vessel dilation, and edema), abundant collagen fiber and organelle structures like distorted shaped and swollen mitochondria, and broken endoplasmic reticulum were noticed. The administration of 6-gingerol significantly ameliorated the biochemical and histopathological changes. The increased expression of TNF-α protein was noticed in the DEN-treated group whereas the administration of 6-gingerol significantly decreased the expression of this protein. Based on these findings, it can be suggested that 6-gingerol may be an alternative therapy for the prevention and treatment of liver diseases.
Collapse
Affiliation(s)
- Mohammed A. Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Saleh A. Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Shehwaz Anwar
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Abdulmajeed G. Almutary
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
11
|
Tsague MK, Fotio AL, Bomgning CLK, Nguefack-Tsague G, Fopa F, Nguelefack TB. Prevalence of viral and non-viral hepatitis in Menoua Division, West Region, Cameroon: a retrospective hospital-based study. Pan Afr Med J 2019; 32:212. [PMID: 31312324 PMCID: PMC6620071 DOI: 10.11604/pamj.2019.32.212.16495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 04/14/2019] [Indexed: 12/20/2022] Open
Abstract
Introduction The paucity of data on hepatitis' epidemiology in Menoua Division, west region, Cameroon, prompted us to assess the prevalence of viral and non-viral hepatitis in this area. Methods A retrospective exhaustive study based on records of patients from January 2008 to June 2014 was conducted in 9 health centres in Menoua Division. Targeted subjects were patients who did not receive hepatitis vaccines for the past year and have been screened for hepatitis B virus (HBV), hepatitis C virus (HCV) and/or a blood transaminase. Associations between variables were quantified with odd ratios (OR) and 95% confidence interval (CI). Cochran-Armitage test of linear trend was used for testing proportions of ordinal variables. Fisher's exact test was used for testing the association between 2 qualitative variables when expected counts were less than 5. Results The overall prevalence were 9.6% and 6.7% for HBV and HCV respectively. HBV mostly infected people aged 21-30 (12.4%) while the prevalence of HCV increased with age up to 35.4% (p=0.03). A 0.6% co-infection was observed. Thirty percent of positive HBV or HCV had high transaminase while 13% of patients with elevated transaminase showed negative viral serology. Conclusion These results show that hospital-based prevalence of HCV and HBV in Menoua Division is under the Cameroon's national range but point out the fact that non-viral hepatitis might be a serious case of concern in this area. There is therefore, a need to identify the risk-factors of non-viral hepatitis.
Collapse
Affiliation(s)
- Mathias Kenfack Tsague
- Department of Animal Biology, Faculty of Science, University of Dschang, P O Box 67 Dschang, Dschang, Cameroon
| | - Agathe Lambou Fotio
- Department of Zoology and Animal Physiology, Faculty of Science, University of Buea, Cameroon, PO Box 63 Buea, Buea, Cameroon
| | | | - Georges Nguefack-Tsague
- Department of Public Health, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, P O Box 1364 Yaoundé, Yaoundé, Cameroon
| | - Francois Fopa
- Department of Animal Biology, Faculty of Science, University of Dschang, P O Box 67 Dschang, Dschang, Cameroon
| | | |
Collapse
|
12
|
Núñez MT, Hidalgo C. Noxious Iron-Calcium Connections in Neurodegeneration. Front Neurosci 2019; 13:48. [PMID: 30809110 PMCID: PMC6379295 DOI: 10.3389/fnins.2019.00048] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/18/2019] [Indexed: 12/26/2022] Open
Abstract
Iron and calcium share the common feature of being essential for normal neuronal function. Iron is required for mitochondrial function, synaptic plasticity, and the development of cognitive functions whereas cellular calcium signals mediate neurotransmitter exocytosis, axonal growth and synaptic plasticity, and control the expression of genes involved in learning and memory processes. Recent studies have revealed that cellular iron stimulates calcium signaling, leading to downstream activation of kinase cascades engaged in synaptic plasticity. The relationship between calcium and iron is Janus-faced, however. While under physiological conditions iron-mediated reactive oxygen species generation boosts normal calcium-dependent signaling pathways, excessive iron levels promote oxidative stress leading to the upsurge of unrestrained calcium signals that damage mitochondrial function, among other downstream targets. Similarly, increases in mitochondrial calcium to non-physiological levels result in mitochondrial dysfunction and a predicted loss of iron homeostasis. Hence, if uncontrolled, the iron/calcium self-feeding cycle becomes deleterious to neuronal function, leading eventually to neuronal death. Here, we review the multiple cell-damaging responses generated by the unregulated iron/calcium self-feeding cycle, such as excitotoxicity, free radical-mediated lipid peroxidation, and the oxidative modification of crucial components of iron and calcium homeostasis/signaling: the iron transporter DMT1, plasma membrane, and intracellular calcium channels and pumps. We discuss also how iron-induced dysregulation of mitochondrial calcium contributes to the generation of neurodegenerative conditions, including Alzheimer’s disease (AD) and Parkinson’s disease (PD).
Collapse
Affiliation(s)
- Marco Tulio Núñez
- Iron and Neuroregeneration Laboratory, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Cecilia Hidalgo
- Calcium Signaling Laboratory, Biomedical Research Institute, CEMC, Physiology and Biophysics Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
13
|
Role of HIF-1α in Alcohol-Mediated Multiple Organ Dysfunction. Biomolecules 2018; 8:biom8040170. [PMID: 30544759 PMCID: PMC6316086 DOI: 10.3390/biom8040170] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/30/2018] [Accepted: 12/06/2018] [Indexed: 12/12/2022] Open
Abstract
Excess alcohol consumption is a global crisis contributing to over 3 million alcohol-related deaths per year worldwide and economic costs exceeding $200 billion dollars, which include productivity losses, healthcare, and other effects (e.g., property damages). Both clinical and experimental models have shown that excessive alcohol consumption results in multiple organ injury. Although alcohol metabolism occurs primarily in the liver, alcohol exposure can lead to pathophysiological conditions in multiple organs and tissues, including the brain, lungs, adipose, liver, and intestines. Understanding the mechanisms by which alcohol-mediated organ dysfunction occurs could help to identify new therapeutic approaches to mitigate the detrimental effects of alcohol misuse. Hypoxia-inducible factor (HIF)-1 is a transcription factor comprised of HIF-1α and HIF-1β subunits that play a critical role in alcohol-mediated organ dysfunction. This review provides a comprehensive analysis of recent studies examining the relationship between HIF-1α and alcohol consumption as it relates to multiple organ injury and potential therapies to mitigate alcohol’s effects.
Collapse
|
14
|
Anti-inflammatory and hepatoprotective effects of exopolysaccharides isolated from Pleurotus geesteranus on alcohol-induced liver injury. Sci Rep 2018; 8:10493. [PMID: 30002448 PMCID: PMC6043593 DOI: 10.1038/s41598-018-28785-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 06/28/2018] [Indexed: 12/14/2022] Open
Abstract
The present work investigated the hepatoprotective role of exopolysaccharides (EPS) isolated from the mushroom Pleurotus geesteranus with respect to alcohol-induced liver injury in mice. Based on a physico-chemical analysis, the EPS produced by Pleurotus geesteranus was identified as a heteropolysaccharide with α-glycosidic bond. The results revealed that prophylactic application of the EPS reduces detrimental alcoholic effects on the liver. This observation was followed by decreased levels of total cholesterol, triglycerides, CYP2E1 and pro-inflammatory mediators (TNF-α, IL-6, IL-1β, COX-2, NO and iNOS) in the liver homogenates, suggesting that the EPS exhibits anti-inflammatory and hepatoprotective effects. Moreover, the increased activity of hepatic enzymes (superoxide dismutase, glutathione peroxidase and catalase) and reduced lipid peroxidation status indicated that the antioxidative effect of the EPS contributes to alleviation of liver injury. Therefore, this study reports that the EPS produced by Pleurotus geesteranus could be considered a potential natural drug or functional food supplement for the prevention of liver damage.
Collapse
|
15
|
Prasnicka A, Cermanova J, Hroch M, Dolezelova E, Rozkydalova L, Smutny T, Carazo A, Chladek J, Lenicek M, Nachtigal P, Vitek L, Pavek P, Micuda S. Iron depletion induces hepatic secretion of biliary lipids and glutathione in rats. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1469-1480. [PMID: 28888833 DOI: 10.1016/j.bbalip.2017.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/16/2017] [Accepted: 09/05/2017] [Indexed: 12/14/2022]
Abstract
Iron depletion (ID) has been shown to induce the liver expression of Cyp7a1, the rate-limiting enzyme initiating conversion of cholesterol to bile acids (BA), although the effect on bile acids metabolism and bile production is unknown. Therefore, we investigated changes in bile secretion and BA synthesis during diet-induced iron depletion (ID) in rats. ID increased bile flow along with augmented biliary excretion of bile acids, glutathione, cholesterol and phospholipids. Accordingly, we found transcriptional upregulation of the Cyp7a1, Cyp8b1, and Cyp27a1 BA synthetic enzymes, as well as induction of the Abcg5/8 cholesterol transporters in ID rat livers. In contrast, intravenous infusion of 3H-taurocholate failed to elicit any difference in biliary secretion of this compound in the ID rats. This corresponded with unchanged expression of canalicular rate-limiting transporters for BA as well as glutathione. We also observed that ID substantially changed the spectrum of BA in bile and decreased plasma concentrations of BA and cholesterol. Experiments with differentiated human hepatic HepaRG cells confirmed human CYP7A1 orthologue upregulation resulting from reduced iron concentrations. Results employing a luciferase reporter gene assay suggest that the transcriptional activation of the CYP7A1 promoter under ID conditions works independent of farnesoid X (FXR), pregnane X (PXR) and liver X (LXRα) receptors activation. It can be concluded that this study characterizes the molecular mechanisms of modified bile production as well as cholesterol as along with BA homeostasis during ID. We propose complex upregulation of BA synthesis, and biliary cholesterol secretion as the key factors affected by ID.
Collapse
Affiliation(s)
- Alena Prasnicka
- Department of Pharmacology, Charles University, Faculty of Medicine in Hradec Kralove, Czech Republic
| | - Jolana Cermanova
- Department of Pharmacology, Charles University, Faculty of Medicine in Hradec Kralove, Czech Republic
| | - Milos Hroch
- Department of Medical Biochemistry, Charles University, Faculty of Medicine in Hradec Kralove, Czech Republic
| | - Eva Dolezelova
- Department of Biological and Medical Sciences, Charles University, Faculty of Pharmacy in Hradec Kralove, Czech Republic
| | - Lucie Rozkydalova
- Department of Pharmacology, Charles University, Faculty of Medicine in Hradec Kralove, Czech Republic; Department of Pharmacology and Toxicology, Charles University, Faculty of Pharmacy in Hradec Kralove, Czech Republic
| | - Tomas Smutny
- Department of Pharmacology and Toxicology, Charles University, Faculty of Pharmacy in Hradec Kralove, Czech Republic
| | - Alejandro Carazo
- Department of Pharmacology and Toxicology, Charles University, Faculty of Pharmacy in Hradec Kralove, Czech Republic
| | - Jaroslav Chladek
- Department of Pharmacology, Charles University, Faculty of Medicine in Hradec Kralove, Czech Republic
| | - Martin Lenicek
- Department of Medical Biochemistry and Laboratory Diagnostics, Charles University, 1st Faculty of Medicine, Prague, Czech Republic
| | - Petr Nachtigal
- Department of Biological and Medical Sciences, Charles University, Faculty of Pharmacy in Hradec Kralove, Czech Republic
| | - Libor Vitek
- Department of Medical Biochemistry and Laboratory Diagnostics, Charles University, 1st Faculty of Medicine, Prague, Czech Republic; 4th Department of Internal Medicine, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Petr Pavek
- Department of Pharmacology and Toxicology, Charles University, Faculty of Pharmacy in Hradec Kralove, Czech Republic
| | - Stanislav Micuda
- Department of Pharmacology, Charles University, Faculty of Medicine in Hradec Kralove, Czech Republic.
| |
Collapse
|
16
|
Qin J, Mai Y, Li Y, Jiang Z, Gao Y. Effect of mild hypothermia preconditioning against low temperature (4°C) induced rat liver cell injury in vitro. PLoS One 2017; 12:e0176652. [PMID: 28453529 PMCID: PMC5409157 DOI: 10.1371/journal.pone.0176652] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 04/13/2017] [Indexed: 02/07/2023] Open
Abstract
Bioartificial liver holds special position in the field of regenerative medicine, and cold environment at 4℃ is widely used for the short storage of both organ and liver cell for later application. However, the disadvantages of such cold storage could influence cell viability and lead to cell apoptosis in different degrees. In this study, we mainly explore the pre-protective effect of mild hypothermia against low temperature (4℃)-induced rat liver cell injury in vitro. Our results indicated that the precondition with mild hypothermia could increase cell viability, such as cell proliferation, LDH regulation and glycogen synthesis ability of liver cell. The precondition also decreased the ROS production and relieved cell apoptosis in liver cells. Compared with the model group, the mitochondrial membrane potential was restored in the mild hypothermia group, as well as the mitochondrial membrane permeability transition pore opening, indicating that the therapeutic mechanism was related to mitochondrial protection. Further analysis showed that PI3K-Akt-GSK3β signal pathway might be associated with the pre-protective effect of mild hypothermia. Thus, our study suggested that the precondition with mild hypothermia hold the protective effect for liver cell in cold environment, and further developed a novel strategy for the storage of liver seed cells, even bioartificial liver.
Collapse
Affiliation(s)
- Jiasheng Qin
- Second Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
- Institute of Regenerative Medicine, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Yanxing Mai
- Department of Geriatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Yang Li
- Second Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
- Institute of Regenerative Medicine, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Zesheng Jiang
- Second Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
- Institute of Regenerative Medicine, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Yi Gao
- Second Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
- Institute of Regenerative Medicine, Southern Medical University, Guangzhou, Guangdong, P.R. China
- * E-mail:
| |
Collapse
|
17
|
Walter NAR, Denmark DL, Kozell LB, Buck KJ. A Systems Approach Implicates a Brain Mitochondrial Oxidative Homeostasis Co-expression Network in Genetic Vulnerability to Alcohol Withdrawal. Front Genet 2017; 7:218. [PMID: 28096806 PMCID: PMC5206817 DOI: 10.3389/fgene.2016.00218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 12/08/2016] [Indexed: 12/31/2022] Open
Abstract
Genetic factors significantly affect vulnerability to alcohol dependence (alcoholism). We previously identified quantitative trait loci on distal mouse chromosome 1 with large effects on predisposition to alcohol physiological dependence and associated withdrawal following both chronic and acute alcohol exposure in mice (Alcdp1 and Alcw1, respectively). We fine-mapped these loci to a 1.1–1.7 Mb interval syntenic with human 1q23.2-23.3. Alcw1/Alcdp1 interval genes show remarkable genetic variation among mice derived from the C57BL/6J and DBA/2J strains, the two most widely studied genetic animal models for alcohol-related traits. Here, we report the creation of a novel recombinant Alcw1/Alcdp1 congenic model (R2) in which the Alcw1/Alcdp1 interval from a donor C57BL/6J strain is introgressed onto a uniform, inbred DBA/2J genetic background. As expected, R2 mice demonstrate significantly less severe alcohol withdrawal compared to wild-type littermates. Additionally, comparing R2 and background strain animals, as well as reciprocal congenic (R8) and appropriate background strain animals, we assessed Alcw1/Alcdp1 dependent brain gene expression using microarray and quantitative PCR analyses. To our knowledge this includes the first Weighted Gene Co-expression Network Analysis using reciprocal congenic models. Importantly, this allows detection of co-expression patterns limited to one or common to both genetic backgrounds with high or low predisposition to alcohol withdrawal severity. The gene expression patterns (modules) in common contain genes related to oxidative phosphorylation, building upon human and animal model studies that implicate involvement of oxidative phosphorylation in alcohol use disorders (AUDs). Finally, we demonstrate that administration of N-acetylcysteine, an FDA-approved antioxidant, significantly reduces symptoms of alcohol withdrawal (convulsions) in mice, thus validating a phenotypic role for this network. Taken together, these studies support the importance of mitochondrial oxidative homeostasis in alcohol withdrawal and identify this network as a valuable therapeutic target in human AUDs.
Collapse
Affiliation(s)
- Nicole A R Walter
- Research and Development, Portland Veterans Affairs Medical Center, PortlandOR, USA; Department of Behavioral Neuroscience, School of Medicine, Oregon Health and Science University, PortlandOR, USA
| | - DeAunne L Denmark
- Research and Development, Portland Veterans Affairs Medical Center, PortlandOR, USA; Department of Behavioral Neuroscience, School of Medicine, Oregon Health and Science University, PortlandOR, USA
| | - Laura B Kozell
- Research and Development, Portland Veterans Affairs Medical Center, PortlandOR, USA; Department of Behavioral Neuroscience, School of Medicine, Oregon Health and Science University, PortlandOR, USA
| | - Kari J Buck
- Research and Development, Portland Veterans Affairs Medical Center, PortlandOR, USA; Department of Behavioral Neuroscience, School of Medicine, Oregon Health and Science University, PortlandOR, USA
| |
Collapse
|
18
|
M30 Antagonizes Indoleamine 2,3-Dioxygenase Activation and Neurodegeneration Induced by Corticosterone in the Hippocampus. PLoS One 2016; 11:e0166966. [PMID: 27870896 PMCID: PMC5117770 DOI: 10.1371/journal.pone.0166966] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 11/06/2016] [Indexed: 12/27/2022] Open
Abstract
Monoamine oxidases (MAO), downstream targets of glucocorticoid, maintain the turnover and homeostasis of monoamine neurotransmitters; yet, its pathophysiological role in monoamine deficiency, oxidative stress and neuroinflammation remains controversial. Protective effects of M30, a brain selective MAO inhibitor with iron-chelating antioxidant properties, have been shown in models of neurodegenerative diseases. This study aims to examine the neuroprotective mechanism of M30 against depressive-like behavior induced by corticosterone (CORT). Sprague-Dawley rats were given CORT subcutaneous injections with or without concomitant M30 administration for two weeks. CORT-treated rats exhibited depressive-like behavior with significant elevated levels of MAO activities, serotonin turnover, oxidative stress, neuroinflammation and apoptosis in the hippocampus with significant losses of synaptic proteins when compared to the control. The expression and activity of cytokine-responsive indoleamine 2,3-dioxygenase (IDO-1), a catabolic enzyme of serotonin and tryptophan, was significantly increased in the CORT-treated group with lowered levels of serotonin. Besides, CORT markedly reduced dendritic length and spine density. Remarkably, M30 administration neutralized the aberrant changes in the hippocampus and prevented the induction of depressive-like behavior induced by CORT. Our results suggest that M30 is neuroprotective against CORT-induced depression targeting elevated MAO activities that cause oxidative stress and neuroinflammation, resulting in IDO-1 activation, serotonin deficiency and neurodegeneration.
Collapse
|
19
|
Angiogenic and Osteogenic Coupling Effects of Deferoxamine-Loaded Poly(lactide-co-glycolide)-Poly(ethylene glycol)-Poly(lactide-co-glycolide) Nanoparticles. APPLIED SCIENCES-BASEL 2016. [DOI: 10.3390/app6100290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Guo R, Lin B, Pan JF, Liong EC, Xu AM, Youdim M, Fung ML, So KF, Tipoe GL. Inhibition of caspase-9 aggravates acute liver injury through suppression of cytoprotective autophagy. Sci Rep 2016; 6:32447. [PMID: 27580936 PMCID: PMC5007529 DOI: 10.1038/srep32447] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 08/08/2016] [Indexed: 12/13/2022] Open
Abstract
Acute liver disease is characterized by inflammation, oxidative stress and necrosis, which can greatly influence the long term clinical outcome and lead to liver failure or cancer. Here, we initially demonstrated the beneficial role of caspase-9-dependent autophagy in acute liver injury. Treatment with caspase-9 inhibitor z-LEHD-FMK in HepG2 cells, AML12 cells and C57BL/b6N mice exacerbated CCl4-induced acute hepatocellular damage, and also down-regulated autophagy markers expression levels, indicating that caspase-9 inhibition may aggravate acute liver damage by suppressing cytoprotective autophagy. CCl4 was used as an acute liver injury inducer which caused oxidative stress and apoptosis through up-regulation of HIF-1α, as well as triggered hepatic inflammation and necroptosis via TLR4/NF-κB pathway. Caspase-9 Thr125 site was firstly phosphorylated by ERK1/2 which subsequently activated the cytoprotective autophagy process to attenuate acute CCl4 injury. Caspase-9 inhibition further aggravated hepatic necroptosis through NF-κB expression, leading to increased pro-inflammatory mediators levels, suggesting a protective role of caspase-9-dependent autophagy in the inflammatory process as well as its possibility being a new therapeutic target for the treatment of acute liver injury.
Collapse
Affiliation(s)
- Rui Guo
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, SAR, Hong Kong
| | - Bin Lin
- School of Optometry, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, SAR, Hong Kong
| | - Jing Fei Pan
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, SAR, Hong Kong
| | - Emily C Liong
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, SAR, Hong Kong
| | - Ai Min Xu
- Brain Hormone Healthy Aging Centre, LKS Faculty of Medicine, The University of Hong Kong, SAR, Hong Kong.,Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, SAR, Hong Kong
| | - Moussa Youdim
- Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Man Lung Fung
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, SAR, Hong Kong.,Brain Hormone Healthy Aging Centre, LKS Faculty of Medicine, The University of Hong Kong, SAR, Hong Kong
| | - Kwok Fai So
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, SAR, Hong Kong.,Brain Hormone Healthy Aging Centre, LKS Faculty of Medicine, The University of Hong Kong, SAR, Hong Kong
| | - George L Tipoe
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, SAR, Hong Kong.,Brain Hormone Healthy Aging Centre, LKS Faculty of Medicine, The University of Hong Kong, SAR, Hong Kong
| |
Collapse
|