1
|
Patwardhan MV, Mahendran R. The Bladder Tumor Microenvironment Components That Modulate the Tumor and Impact Therapy. Int J Mol Sci 2023; 24:12311. [PMID: 37569686 PMCID: PMC10419109 DOI: 10.3390/ijms241512311] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
The tumor microenvironment (TME) is complex and involves many different cell types that seemingly work together in helping cancer cells evade immune monitoring and survive therapy. The advent of single-cell sequencing has greatly increased our knowledge of the cell types present in the tumor microenvironment and their role in the developing cancer. This, coupled with clinical data showing that cancer development and the response to therapy may be influenced by drugs that indirectly influence the tumor environment, highlights the need to better understand how the cells present in the TME work together. This review looks at the different cell types (cancer cells, cancer stem cells, endothelial cells, pericytes, adipose cells, cancer-associated fibroblasts, and neuronal cells) in the bladder tumor microenvironment. Their impact on immune activation and on shaping the microenvironment are discussed as well as the effects of hypertensive drugs and anesthetics on bladder cancer.
Collapse
Affiliation(s)
| | - Ratha Mahendran
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| |
Collapse
|
2
|
Nguyen LT, Tran NT, Than UTT, Nguyen MQ, Tran AM, Do PTX, Chu TT, Nguyen TD, Bui AV, Ngo TA, Hoang VT, Hoang NTM. Optimization of human umbilical cord blood-derived mesenchymal stem cell isolation and culture methods in serum- and xeno-free conditions. Stem Cell Res Ther 2022; 13:15. [PMID: 35012671 PMCID: PMC8751356 DOI: 10.1186/s13287-021-02694-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/24/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Although umbilical cord blood (UCB) is identified as a source of mesenchymal stem cells (MSCs) with various advantages, the success in cell isolation is volatile. Therefore, it is necessary to optimize methods of cord blood-derived MSC (UCB-MSC) isolation and culture. In this study, we evaluated the efficiency of UCB-MSC isolation and expansion using different commercially available serum- and xeno-free media and investigated the capacity of autologous serum and plasma as a supplement to support cell proliferation. Additionally, we defined the presence of multilineage-differentiating stress-enduring (Muse) cells in the UCB-MSC population. Functions of UCB-MSC in in vitro angiogenesis processes and anti-cancer were also verified. METHODS Mononuclear cells were isolated using density gradient separation and cultured in four commercial media kits, as well as four surface coating solutions. UCB-MSCs were characterized and tested on tube formation assay, and co-cultured with SK-MEL cells in a transwell system. RESULTS The results showed that only StemMACS™ MSC Expansion Media is more appropriate to isolate and culture UCB-MSCs. The cells exhibited a high cell proliferation rate, CFU forming capability, MSC surface marker expression, trilineage differentiate potential, and chromosome stability. In addition, the culture conditions with autologous serum coating and autologous plasma supplement enhanced cell growth and colony forming. This cell population contained Muse cells at rate of 0.3%. Moreover, UCB-MSCs could induce the tube formation of human umbilical vein endothelial cells and inhibit more than 50% of SK-MEL cell growth. CONCLUSIONS UCB-MSCs could be high-yield isolated and expanded under serum- and xeno-free conditions by using the StemMACS™ MSC Expansion Media kit. Autologous serum coating and plasma supplement enhanced cell proliferation. These UCB-MSCs had effected the tube formation process and an anti-cancer impact.
Collapse
Affiliation(s)
- Liem Thanh Nguyen
- Vinmec Research Institute of Stem Cell and Gene Technology, Hanoi, Vietnam.,College of Health Sciences, VinUniversity, Hanoi, Vietnam
| | - Nghia Trung Tran
- Vinmec Research Institute of Stem Cell and Gene Technology, Hanoi, Vietnam.,VNU University of Science, Vietnam National University, Hanoi, Vietnam.,Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon, Korea
| | - Uyen Thi Trang Than
- Center of Applied sciences, Regenerative medicine, and Advance technologies (CARA), Hanoi, Vietnam
| | - Minh Quang Nguyen
- Vinmec Research Institute of Stem Cell and Gene Technology, Hanoi, Vietnam.,VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Anh Minh Tran
- VNU University of Science, Vietnam National University, Hanoi, Vietnam.,Center of Applied sciences, Regenerative medicine, and Advance technologies (CARA), Hanoi, Vietnam
| | - Phuong Thi Xuan Do
- Vinmec Research Institute of Stem Cell and Gene Technology, Hanoi, Vietnam.,VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Thao Thi Chu
- Center of Applied sciences, Regenerative medicine, and Advance technologies (CARA), Hanoi, Vietnam
| | - Tu Dac Nguyen
- Center of Applied sciences, Regenerative medicine, and Advance technologies (CARA), Hanoi, Vietnam
| | - Anh Viet Bui
- Center of Applied sciences, Regenerative medicine, and Advance technologies (CARA), Hanoi, Vietnam
| | - Tien Anh Ngo
- Center of Applied sciences, Regenerative medicine, and Advance technologies (CARA), Hanoi, Vietnam
| | - Van Thanh Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology, Hanoi, Vietnam
| | - Nhung Thi My Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology, Hanoi, Vietnam. .,VNU University of Science, Vietnam National University, Hanoi, Vietnam. .,Center of Applied sciences, Regenerative medicine, and Advance technologies (CARA), Hanoi, Vietnam.
| |
Collapse
|
3
|
Ren J, Kong W, Lu F, Li Y. Adipose-derived stem cells (ADSCs) inhibit the expression of anti-apoptosis proteins through up-regulation of ATF4 on breast cancer cells. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1300. [PMID: 34532437 PMCID: PMC8422111 DOI: 10.21037/atm-21-3746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/06/2021] [Indexed: 12/09/2022]
Abstract
Background While current basic studies indicate adipose-derived stem cells (ADSCs) can promote cell proliferation, clinical trials have shown no significant difference in breast cancer recurrence rates for patients with or without autologous fat grafting (AFG). In this study we attempted to explore the underlying mechanism for these contradictory results. Methods ADSCs and umbilical mesenchymal stem cells (UMSCs) were co-cultured with breast cancer cells (MCF-7 and MDA-MB-231), and the cell viability analyzed by CCK-8 cell proliferation assay, TUNEL assay and immunofluorescence assay. In addition, real-time quantitative polymerase chain reaction (RT-qPCR) experiments and Western blot analysis were used to detect the mRNA and protein expression of activating transcription factor 4 (ATF4) and its downstream gene (MCL1 & BCL2), respectively. Results Co-cultured ADSCs could promote cell proliferation and cell apoptosis, and up-regulate ATF4 expression both in MCF-7 and MDA-MB-231. While co-cultured UMSCs could only promote cell apoptosis in MCF-7. Interestingly, we found that when co-cultured ADSCs, the expression of MCL1 and BCL2 protein was decreased, even if their mRNA expression was up-regulated both in MCF-7 and MDA-MB-231. Conclusions Co-cultured ADSCs can up-regulate ATF4 expression, then interfere with the translation process of MCL1 and BCL2 mRNA and induce cell apoptosis. These data provide insight into the safety characteristics of AFG.
Collapse
Affiliation(s)
- Jing Ren
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | | | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ye Li
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Liu Z, Li S, Ma T, Zeng J, Zhou X, Li H, Tang M, Liu X, Li F, Jiang B, Zhao M, Chen Y. Secreted TRAIL gene-modified adipose-derived stem cells exhibited potent tumor-suppressive effect in hepatocellular carcinoma cells. IMMUNITY INFLAMMATION AND DISEASE 2020; 9:144-156. [PMID: 33156578 PMCID: PMC7860607 DOI: 10.1002/iid3.372] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 10/20/2020] [Indexed: 01/03/2023]
Abstract
Objective Considering the potential of adipose‐derived stem cells (ADSCs) migrating towards cancer cells, this study was performed to explore the function of tumor necrosis factor‐related apoptosis‐inducing ligand (TRAIL) modified ADSCs on the development and progression of hepatocellular carcinoma (HCC). Methods ADSCs were extracted from human adipose tissues and identified through immunofluorescence and flow cytometry. Oil red staining and alizarin red staining were performed to clarify the differentiation potential of ADSCs. AAV‐CMV‐sTRAIL was transfected into ADSCs before Western blot and Transwell measurements. sTRAIL‐ADSCs were cocultured with HCC cells to explore its effect on the proliferation and apoptosis of HCC cells. The possible effect of sTRAIL‐ADSCs or ADSCs on tumor growth and metastasis was determined in vivo using xenograft nude mouse models. Results ADSCs were successfully extracted from adipose tissues, which were confirmed by cell morphology and positive expressions of CD44 and CD105. ADSCs were found with differentiation potential. After transfection, TRAIL was stably expressed in sTRAIL‐ADSCs. Both ADSCs and sTRAIL‐ADSCs can migrate towards HCC cells. In addition, sTRAIL‐ADSCs can promote the cell apoptosis and inhibit cell proliferation in vitro, on parallel it can also suppress epithelial‐mesenchymal transition, tumor growth, and metastasis in vivo. Conclusion TRAIL modified ADSCs can migrate towards HCC cells to inhibit tumor growth and the metastasis of implanted HCC tumors, which hints TRAIL modified ADSCs may be a new therapeutic approach for HCC treatment.
Collapse
Affiliation(s)
- Zhuo Liu
- Depatment of General Surgery (Three), Xiangtan Central Hospital, Xiangtan, Hunan, China
| | - Shaojie Li
- Depatment of General Surgery (Three), Xiangtan Central Hospital, Xiangtan, Hunan, China
| | - Tiexiang Ma
- Depatment of General Surgery (Three), Xiangtan Central Hospital, Xiangtan, Hunan, China
| | - Jian Zeng
- Depatment of General Surgery (Three), Xiangtan Central Hospital, Xiangtan, Hunan, China
| | - Xin Zhou
- Depatment of General Surgery (Three), Xiangtan Central Hospital, Xiangtan, Hunan, China
| | - Huanyu Li
- Depatment of General Surgery (Three), Xiangtan Central Hospital, Xiangtan, Hunan, China
| | - Min Tang
- Department of Oncology (One), Xiangtan Central Hospital, Xiangtan, Hunan, China
| | - Xiang Liu
- Depatment of General Surgery (Three), Xiangtan Central Hospital, Xiangtan, Hunan, China
| | - Feng Li
- Depatment of General Surgery (Three), Xiangtan Central Hospital, Xiangtan, Hunan, China
| | - Bin Jiang
- Depatment of General Surgery (Three), Xiangtan Central Hospital, Xiangtan, Hunan, China
| | - Ming Zhao
- Depatment of General Surgery (Three), Xiangtan Central Hospital, Xiangtan, Hunan, China
| | - Ying Chen
- Depatment of General Surgery (Three), Xiangtan Central Hospital, Xiangtan, Hunan, China
| |
Collapse
|
5
|
Wang T, Yu X, Lin J, Qin C, Bai T, Xu T, Wang L, Liu X, Li S. Adipose-Derived Stem Cells Inhibited the Proliferation of Bladder Tumor Cells by S Phase Arrest and Wnt/β-Catenin Pathway. Cell Reprogram 2020; 21:331-338. [PMID: 31809208 PMCID: PMC6918853 DOI: 10.1089/cell.2019.0047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Adipose-derived stem cells (ADSCs), which are present in most organs and tissues, were evaluated as a novel medium for stem cell therapy. In this study, we investigated the effects and underlying mechanisms of ADSCs in bladder tumor (BT) cells. SV-HUC, T24, and EJ cells were cultured with ADSCs and conditioned medium from ADSCs (ADSC-CM). We observed that in routine culture, ADSCs significantly inhibited the proliferation of T24 and EJ cells in a dose-dependent manner. In addition, ADSC-CM attenuated the viability of T24 and EJ cells in a dose-dependent manner. Cell cycle analysis indicated that ADSC-CM was capable of inducing T24 and EJ cells S phase arrest and downregulating the expression of CDK 1, whereas the expression of cyclin A was increased. ADSC-CM could induce apoptosis in T24 cells. The mechanism of this effect likely involved the caspase3/7 pathway and Wnt/β-catenin pathway. These findings demonstrated that ADSCs could inhibit the proliferation of BT cells via secretory factors.
Collapse
Affiliation(s)
- Tao Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xi Yu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jian Lin
- Department of Urology, Peking University First Hospital, Beijing, China
| | - Cong Qin
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tao Bai
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tao Xu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lei Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiuheng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shenglan Li
- Department of Radiography, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
6
|
Maguire G. The Safe and Efficacious Use of Secretome From Fibroblasts and Adipose-derived (but not Bone Marrow-derived) Mesenchymal Stem Cells for Skin Therapeutics. THE JOURNAL OF CLINICAL AND AESTHETIC DERMATOLOGY 2019; 12:E57-E69. [PMID: 31531174 PMCID: PMC6715117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Stem cell-based products are rapidly emerging in the marketplace as topical skin care and wound care products. Confusion is prevalent among healthcare providers and end-users about these products. Adipose-derived stem cells, fibroblasts, platelets, and bone marrow-derived stem cells are the most common cells used for stem cell therapeutic development, medical procedures, and skin care products. In this review, the significant advantages of adipose-derived stem cells and fibroblasts in terms of safety and efficacy are highlighted and compared to relatively risky platelets and bone marrow stem cells.
Collapse
Affiliation(s)
- Greg Maguire
- Dr. Maguire is with NeoGenesis, Inc. in San Diego, California
| |
Collapse
|
7
|
Wang Q, Zhong Y, Liu W, Wang Z, Gu L, Li X, Zheng J, Du H, Zhong Z, Xie F. Enhanced chemotherapeutic efficacy of the low-dose doxorubicin in breast cancer via nanoparticle delivery system crosslinked hyaluronic acid. Drug Deliv 2019; 26:12-22. [PMID: 30691317 PMCID: PMC6352940 DOI: 10.1080/10717544.2018.1507057] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Despite the development of treatment options in breast cancer, many patients die of recurrence and metastasis. Owing to enhanced permeability and retention in solid tumor tissue, nanoparticle (NP) delivery systems have been emerged as novel strategy in cancer chemotherapy. As extracellular matrix, glycosaminoglycan hyaluronan (HA) could bind its surface receptor adhesion molecule CD44 which is strongly expressed on breast cancer. We have previously reported a doxorubicin (DOX)-loaded HA-Lys-LA X-NPs (X-NP-DOX) NP delivery system for breast cancer treatment. In this study, we further investigated the antitumor effect of X-NP-DOX NP delivery system using low-dose DOX in both in vitro and in vivo systems. We demonstrated that low-dose X-NP-DOX possessed the ability for inhibiting MCF-7 breast cancer cell growth, invasion, and migration, and inducing apoptosis in vitro. In in vivo experiments, injection of low-dose X-NP-DOX into tumor-bearing mouse resulted in significant reduction of tumor size. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling staining further revealed that low-dose X-NP-DOX induced higher percentage of apoptotic cells compared with free DOX or saline. Furthermore, our study demonstrated that low-dose X-NP-DOX inhibited Notch1 and Ras/MAPK pathways, decreased cancer stem cell population, and reduced tumorigenesis compared to free DOX in both in vitro and in vivo settings. Owing to its enhanced efficacy and higher targetability compared to free DOX, low-dose DOX delivered by NP system may be a promising novel strategy for breast cancer treatment.
Collapse
Affiliation(s)
- Qin Wang
- a Department of Pathology, Institutes of Biology and Medical Sciences , Soochow University Medical College, Soochow University , Suzhou P. R. China.,b Department of Immunology, Institutes of Biology and Medical Sciences , Soochow University Medical College, Soochow University , Suzhou , P. R. China
| | - Yinan Zhong
- c Biomedical Polymers Laboratory, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou P. R. China
| | - Wenting Liu
- a Department of Pathology, Institutes of Biology and Medical Sciences , Soochow University Medical College, Soochow University , Suzhou P. R. China.,d Department of Pathology , The Frist Affiliated Hospital of Soochow University , Suzhou , P.R. China
| | - Zemin Wang
- e Investigative Toxicology and Pathology Laboratory, School of Public Health , Indiana University , Bloomington , IN , USA
| | - Liqin Gu
- f Department of Pathology , Taicang Traditional Medicine Hospital of Jiangsu Province , Taicang , P.R. China
| | - Xuejiao Li
- a Department of Pathology, Institutes of Biology and Medical Sciences , Soochow University Medical College, Soochow University , Suzhou P. R. China
| | - Jiqing Zheng
- a Department of Pathology, Institutes of Biology and Medical Sciences , Soochow University Medical College, Soochow University , Suzhou P. R. China
| | - Huan Du
- a Department of Pathology, Institutes of Biology and Medical Sciences , Soochow University Medical College, Soochow University , Suzhou P. R. China
| | - Zhiyuan Zhong
- c Biomedical Polymers Laboratory, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou P. R. China
| | - Fang Xie
- a Department of Pathology, Institutes of Biology and Medical Sciences , Soochow University Medical College, Soochow University , Suzhou P. R. China
| |
Collapse
|
8
|
Wu YC, Wang WT, Huang LJ, Cheng RY, Kuo YR, Hou MF, Lai CS, Yu J. Differential Response of Non-cancerous and Malignant Breast Cancer Cells to Conditioned Medium of Adipose tissue-derived Stromal Cells (ASCs). Int J Med Sci 2019; 16:893-901. [PMID: 31337963 PMCID: PMC6643111 DOI: 10.7150/ijms.27125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 04/03/2019] [Indexed: 01/22/2023] Open
Abstract
Background: The application of adipose tissue-derived stromal cells (ASCs) in regenerative medicine has become a growing trend due to its abundance and differentiation potentials. However, several breast cancer studies indicated that ASCs promote tumor progression, therefore, the use of ASCs for reconstruction after oncological surgery poses potential risks. In this study, we aimed to examine whether cancerous or non-cancerous breast cells will exhibit different responses to ASC-derived CM. Methods: ASCs were isolated from residuals of subcutaneous adipose tissue obtained from patients undergoing surgery. Cancerous MCF-7, MDA-MB231, and MDA-MB468 cell lines and one non-cancerous M10/H184B5F5 cell line were cultured with variant concentrations of ASC-derived conditioned medium (CM) for analysis. Results: ASC-derived CM significantly reduced cell viability by triggering apoptosis in MCF-7, MDA-MB231, and MDA-MB468 cell lines. ATM-Chk2-dependent DNA damage response was activated early in cancer cells when exposed to ASC-derived CM. By contrast, prompted cell proliferation instead of cell death was detected in M10/H184B5F5 cells under the treatment of lower CM concentration. Even when exposed to the highest concentration of CM, only cell cycle arrest accompanied by a weak DNA damage response were detected in M10/H184B5F5 cells, no cell deaths were observed. Conclusions: Overall, this study demonstrated that cancerous and non-cancerous breast cells respond differently to ASC-derived CM. ASC-derived CM triggered significant cell death in breast cancer cell lines, however non-cancerous breast cells exhibited dissimilar response to ASC-derived CM.
Collapse
Affiliation(s)
- Yi-Chia Wu
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Plastic Surgery, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan.,Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,PhD. Programme in Translational Medicine, Kaohsiung Medical University, Kaohsiung, and Academia Sinica, Taipei, Taiwan
| | - Wei-Ting Wang
- Center of Teaching and Research, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Li-Ju Huang
- Center of Teaching and Research, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Ruo-You Cheng
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yur-Ren Kuo
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Feng Hou
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chung-Sheng Lai
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - John Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linko, Taoyuan, Taiwan.,Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
9
|
Maj M, Kokocha A, Bajek A, Drewa T. The interplay between adipose-derived stem cells and bladder cancer cells. Sci Rep 2018; 8:15118. [PMID: 30310111 PMCID: PMC6181926 DOI: 10.1038/s41598-018-33397-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/26/2018] [Indexed: 12/13/2022] Open
Abstract
Tissue engineering approaches offer alternative strategies for urinary diversion after radical cystectomy. Possible triggering of cancer recurrence remains, however, a significant concern in the application of stem-cell based therapies for oncological patients. Soluble mediators secreted by stem cells induce tissue remodelling effects, but may also promote cancer cells growth and metastasis. We observed a substantial increase in the concentration of IL-6 and IL-8 in the secretome of adipose-derived stem cells (ASCs) co-cultured with bladder cancer cells. Concentrations of GM-CSF, MCP-1 and RANTES were also elevated. Bioactive molecules produced by ASCs increased the viability of 5637 and HT-1376 cells by respectively 15.4% and 10.4% (p < 0.0001). A trend in reduction of adhesion to ECM components was also noted, even though no differences in β-catenin expression were detected. When HT-1376 cells were co-cultured with ASCs their migration and invasion increased by 24.5% (p < 0.0002) and 18.2% (p < 0.002). Expression of p-ERK1/2 increased in 5637 cells (2.2-fold; p < 0.001) and p-AKT in HB-CLS-1 cells (2.0-fold; p < 0.001). Our results confirm that ASCs crosstalk with bladder cancer cells in vitro what influences their proliferation and invasive properties. Since ASCs tropism to tumour microenvironment is well documented their application towards post-oncologic reconstruction should be approached with caution.
Collapse
Affiliation(s)
- Malgorzata Maj
- Chair of Urology, Department of Tissue Engineering, Collegium Medicum, Nicolaus Copernicus University, Karlowicza 24, 85-092, Bydgoszcz, Poland.
| | - Anna Kokocha
- Chair of Urology, Department of Tissue Engineering, Collegium Medicum, Nicolaus Copernicus University, Karlowicza 24, 85-092, Bydgoszcz, Poland
| | - Anna Bajek
- Chair of Urology, Department of Tissue Engineering, Collegium Medicum, Nicolaus Copernicus University, Karlowicza 24, 85-092, Bydgoszcz, Poland
| | - Tomasz Drewa
- Chair of Urology, Department of Tissue Engineering, Collegium Medicum, Nicolaus Copernicus University, Karlowicza 24, 85-092, Bydgoszcz, Poland
| |
Collapse
|
10
|
Abstract
Background Human adipose-derived stem cells (hASCs) have been shown to have immunoregulatory properties in many studies. However, the mechanisms remain unknown. miRNAs are associated with many cellular processes, including immune responses. Thus, we hypothesized that miRNAs act as immunoregulators when hASCs are stimulated by inflammatory environments. Methods A set of cytokines was used to stimulate the hASCs in the cytokine group, while no cytokines were used to stimulate the cells in the normal group. A microarray was used to obtain the miRNA expression profile of hASCs, and RT-PCR was used to validate the miRNAs that were differentially expressed between the two groups. Target genes were predicted using online databases, and KEGG analysis was performed to identify the pathways enriched by the target genes of all the differentially expressed miRNAs. Results Five miRNAs were significantly upregulated, and 2 miRNAs were downregulated in the cytokine group compared with the normal group. We identified several immune-related pathways that are targeted individually or collectively by those miRNAs. Conclusion Inflammatory stimuli changed the miRNA expression profile of hASCs. miRNAs may play a pivotal role in the immune response in hASCs and may be targets through which the immunoregulatory functions of hASCs can be enhanced.
Collapse
|
11
|
Visweswaran M, Arfuso F, Dilley RJ, Newsholme P, Dharmarajan A. The inhibitory influence of adipose tissue-derived mesenchymal stem cell environment and Wnt antagonism on breast tumour cell lines. Int J Biochem Cell Biol 2018; 95:63-72. [DOI: 10.1016/j.biocel.2017.12.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 12/15/2017] [Accepted: 12/19/2017] [Indexed: 12/12/2022]
|
12
|
Xie H, Liao N, Lan F, Cai Z, Liu X, Liu J. 3D-cultured adipose tissue-derived stem cells inhibit liver cancer cell migration and invasion through suppressing epithelial-mesenchymal transition. Int J Mol Med 2017; 41:1385-1396. [PMID: 29286072 PMCID: PMC5819936 DOI: 10.3892/ijmm.2017.3336] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 12/13/2017] [Indexed: 02/07/2023] Open
Abstract
Adipose tissue-derived stem cells (ADSCs) are considered promising candidates for stem cell therapy; however, the tumorigenicity of ADSCs remains controversial. The present study aimed to investigate the association between ADSCs and liver cancer cells, and to determine whether culture methods could influence the effects of ADSCs on liver cancer cell growth in vitro. Liver cancer cells were treated with ADSCs-conditioned medium (CM) that was collected using the two-dimensional (2D) culture method, sphere culture method, or three-dimensional (3D) culture method. After that, cell viability and apoptosis were measured using CCK-8 and Annexin V-FITC assay, respectively; the cell motility and adhesive capacity were analyzed by scratch wound healing and cell adhesion assay, respectively; the cell migration and invasion were examined by Transwell units; and the molecular mechanisms of ADSCs on effecting epithelial mesenchymal transition signaling pathway were further analyzed. The results demonstrated that ADSCs-CM was able to inhibit the growth of liver cancer cells by inhibiting cell proliferation and promoting cell apoptosis, as well as by suppressing cell motility, adhesive capacity, migration and invasion. In addition, ADSCs-CM was able to suppress cell growth via the downregulation of epithelial-mesenchymal transition signaling. Notably, the enhanced inhibitory effects of ADSCs on liver cancer cell growth could be achieved after cultu ring using a 3D approach. These findings suggested that ADSCs may provide a novel promising therapeutic approach for the treatment of patients with liver cancer, and the 3D culture method may provide a novel approach to explore the association between ADSCs and cancer.
Collapse
Affiliation(s)
- Haihua Xie
- Department of Clinical Genetics and Experimental Medicine, Fuzong Clinical College, Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Naishun Liao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Fenghua Lan
- Department of Clinical Genetics and Experimental Medicine, Fuzong Clinical College, Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Zhixiong Cai
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Jingfeng Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| |
Collapse
|
13
|
Jin R, Shen M, Yu L, Wang X, Lin X. Adipose-Derived Stem Cells Suppress Inflammation Induced by IL-1β through Down-Regulation of P2X7R Mediated by miR-373 in Chondrocytes of Osteoarthritis. Mol Cells 2017; 40:222-229. [PMID: 28343378 PMCID: PMC5386960 DOI: 10.14348/molcells.2017.2314] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 01/17/2017] [Accepted: 02/07/2017] [Indexed: 12/12/2022] Open
Abstract
Adipose-derived stem cells (ADSCs) were previously considered to have an anti-inflammatory effect, and Interleukin-1β (IL-1β) was found to be a pro-inflammatory factor in chondrocytes, but the mechanism underlying ADSCs and IL-1β is unclear. In this study, we investigate whether P2X7 receptor (P2X7R) signalling, regulated by microRNA 373 (miR-373), was involved in the ADSCs and IL-1β mediated inflammation in osteoarthritis (OA). Chondrocytes were collected from 20 OA patients and 20 control participants, and ADSCs were collected from patients who had undergone abdominal surgery. The typical surface molecules of ASDCs were detected by flow cytometry. The level of nitric oxide (NO) was determined by Griess reagent. Concentrations of prostaglandin E2 (PGE2), interleukin 6 (IL-6), matrix metallopeptidase 3 (MMP-3) were detected by enzyme-linked immunosorbent assay (ELISA). The expressions of IL-6, MMP-3, miR-373 and P2X7R were determined by real-time polymerase chain reaction (PCR), and Western blot was used to detect the protein expression of P2X7R. The typical potential characters of ADSCs were verified. In chondrocytes or OA tissues, the miR-373 expression level was decreased, but the P2X7R expression was increased. IL-1β stimulation increased the level of inflammatory factors in OA chondrocytes, and ADSCs co-cultured with IL-1β-stimulated chondrocytes decreased the inflammation. OA chondrocytes transfected with the miR-373 inhibitor increased the inflammation level. The miR-373 mimic suppressed the inflammation by targeting P2X7R and regulated its expression, while its effect was reversed by overexpression of P2X7R. IL-1β induced inflammation in OA chondrocytes, while ADSCs seemed to inhibit the expression of P2X7R that was regulated by miR-373 and involved in the anti-inflammatory process in OA.
Collapse
Affiliation(s)
- Rilong Jin
- Department of Orthopedics Surgery, The First Affiliated Hospital, College of Medical Zhejiang University, Hangzhou, 310003
China
| | - Miaoda Shen
- Department of Orthopedics Surgery, The First Affiliated Hospital, College of Medical Zhejiang University, Hangzhou, 310003
China
| | - Liedao Yu
- Department of Orthopedics Surgery, The First Affiliated Hospital, College of Medical Zhejiang University, Hangzhou, 310003
China
| | - Xuanwei Wang
- Department of Orthopedics Surgery, The First Affiliated Hospital, College of Medical Zhejiang University, Hangzhou, 310003
China
| | - Xiangjin Lin
- Department of Orthopedics Surgery, The First Affiliated Hospital, College of Medical Zhejiang University, Hangzhou, 310003
China
| |
Collapse
|
14
|
Induction of apoptosis, stimulation of cell-cycle arrest and inhibition of angiogenesis make human amnion-derived cells promising sources for cell therapy of cancer. Cell Tissue Res 2016; 363:599-608. [DOI: 10.1007/s00441-016-2364-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/14/2016] [Indexed: 12/11/2022]
|