Wu GJ, Lin YW, Tsai HC, Lee YW, Chen JT, Chen RM. Sepsis-induced liver dysfunction was ameliorated by propofol via suppressing hepatic lipid peroxidation, inflammation, and drug interactions.
Life Sci 2018;
213:279-286. [PMID:
30352244 DOI:
10.1016/j.lfs.2018.10.038]
[Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 12/13/2022]
Abstract
AIMS
Our previous study showed that propofol can protect against sepsis-induced insults through suppressing liver nitrosation and inflammation. This study further evaluated the mechanisms of propofol-caused protection from sepsis-induced liver dysfunction.
MAIN METHODS
Male Wistar rats were subjected to cecal ligation and puncture (CLP) and then exposed to propofol. Levels of hepatic oxidative stress and lipid peroxidation were consecutively measured. Expressions of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-4 messenger (m)RNA or proteins were quantified. Effects of propofol on microsomal pentoxyresorufin O-dealkelase (PROD) and ethoxycoumarin O-deethylase (ECOD) activities were determined.
KEY FINDINGS
Administration of propofol to CLP-treated rats significantly attenuated sepsis-induced insults. CLP caused augmented serum aspartate aminotransferase and alanine aminotransferase activities and concurrently triggered liver damage. In contrast, treatment with propofol protected against CLP-induced liver dysfunction. As to the mechanisms, the CLP-induced increases in oxidative stress and lipid peroxidation levels and TNF-α and IL-1β mRNA and protein expressions were subsequently attenuated by propofol. Furthermore, administration of CLP-treated rats with propofol augmented levels of IL-4 in the liver. Phenobarbital treatment of liver microsomes in CLP-treated rats produced less amplification of PROD and ECOD activities, and a smaller amount of 4-hydroxypropofol was metabolized from propofol by liver microsomes. In contrast, more drug interactions occurred with propofol, which decreased PROD and ECOD activities in liver microsomes of CLP-treated rats.
SIGNIFICANCE
Taken together, the present study showed that propofol can protect against sepsis-induced liver dysfunction through suppressing hepatic oxidative stress, lipid peroxidation, inflammation, and drug biotransformation and interactions in the liver.
Collapse