1
|
An YA, Xiong W, Chen S, Bu D, Rutkowski JM, Berger JP, Kusminski CM, Zhang N, An Z, Scherer PE. Endotrophin neutralization through targeted antibody treatment protects from renal fibrosis in a podocyte ablation model. Mol Metab 2023; 69:101680. [PMID: 36696925 PMCID: PMC9918787 DOI: 10.1016/j.molmet.2023.101680] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/26/2022] [Accepted: 01/18/2023] [Indexed: 01/23/2023] Open
Abstract
OBJECTIVE Renal fibrosis is a hallmark for chronic kidney disease (CKD), and often leads to end stage renal disease (ESRD). However, limited interventions are available clinically to ameliorate or reverse renal fibrosis. METHODS Herein, we evaluated whether blockade of endotrophin through neutralizing antibodies protects from renal fibrosis in the podocyte insult model (the "POD-ATTAC" mouse). We determined the therapeutic effects of endotrophin targeted antibody through assessing renal function, renal inflammation and fibrosis at histological and transcriptional levels, and podocyte regeneration. RESULTS We demonstrated that neutralizing endotrophin antibody treatment significantly ameliorates renal fibrosis at the transcriptional, morphological, and functional levels. In the antibody treatment group, expression of pro-inflammatory and pro-fibrotic genes was significantly reduced, normal renal structures were restored, collagen deposition was decreased, and proteinuria and renal function were improved. We further performed a lineage tracing study confirming that podocytes regenerate as de novo podocytes upon injury and loss, and blockade of endotrophin efficiently enhances podocyte-specific marker expressions. CONCLUSION Combined, we provide pre-clinical evidence supporting neutralizing endotrophin as a promising therapy for intervening with renal fibrosis in CKD, and potentially in other chronic fibro-inflammatory diseases.
Collapse
Affiliation(s)
- Yu A An
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Wei Xiong
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Shiuhwei Chen
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dawei Bu
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joseph M Rutkowski
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Division of Lymphatic Biology, Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX, USA
| | - Joel P Berger
- JP Berger Consulting, 580 Washington Street, #15C, Boston, MA, USA
| | - Christine M Kusminski
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ningyan Zhang
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zhiqiang An
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Cell Biology, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
2
|
Watanabe M, Hiura K, Sasaki H, Okamura T, Sasaki N. Genetic background strongly influences the transition to chronic kidney disease of adriamycin nephropathy in mice. Exp Anim 2023; 72:47-54. [PMID: 36058845 PMCID: PMC9978128 DOI: 10.1538/expanim.22-0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Animal models of podocytopathy and chronic kidney diseases (CKD) help elucidate these pathologies. Adriamycin (ADR)-induced nephropathy is a common rodent model of podocytopathy. BALB/c mice are sensitive to ADR, whereas C57BL/6 (B6) mice, the most commonly used strain, are resistant to ADR. Therefore, mouse strains with the B6 genetic background cannot be used as an ADR nephropathy model. We previously generated DNA-dependent protein kinase catalytic subunit (Prkdc) mutant B6 mice (B6-PrkdcR2140C) carrying the R2140C mutation that causes ADR nephropathy. However, whether ADR nephropathy in the novel strain progresses to CKD after ADR administration has not been evaluated. Therefore, we examined whether the B6-PrkdcR2140C mice develop CKD after ADR administration. We also evaluated whether differences existed in the genetic background in ADR nephropathy by comparing the B6-PrkdcR2140C mice with BALB/c mice. Our findings demonstrated that B6-PrkdcR2140C progresses to CKD and is resistant to nephropathy compared with the BALB/c mice. The B6-PrkdcR2140C and BALB/c mice differed in the expression of genes related to inflammatory mediators, and further analysis is required to identify factors that contribute to resistance to nephropathy.
Collapse
Affiliation(s)
- Masaki Watanabe
- Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University, 35-1 Higashi-23, Towada, Aomori 034-8628, Japan
| | - Koki Hiura
- Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University, 35-1 Higashi-23, Towada, Aomori 034-8628, Japan
| | - Hayato Sasaki
- Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University, 35-1 Higashi-23, Towada, Aomori 034-8628, Japan
| | - Tadashi Okamura
- Department of Laboratory Animal Medicine, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Nobuya Sasaki
- Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University, 35-1 Higashi-23, Towada, Aomori 034-8628, Japan
| |
Collapse
|
3
|
Watanabe M, Takahashi Y, Hiura K, Nakano K, Okamura T, Sasaki H, Sasaki N. A single amino acid substitution in PRKDC is a determinant of sensitivity to Adriamycin-induced renal injury in mouse. Biochem Biophys Res Commun 2021; 556:121-126. [PMID: 33839407 DOI: 10.1016/j.bbrc.2021.03.150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 03/26/2021] [Indexed: 10/21/2022]
Abstract
Adriamycin (ADR)-induced nephropathy is frequently utilized in rodent models of podocytopathy. However, the application of this model in mice is limited to a few strains, such as BALB/c mice. The most commonly used mouse strain, C57BL/6 (B6), is resistant to ADR-induced nephropathy, as are all mouse strains with a B6 genetic background. Reportedly, the R2140C variant of the Prkdc gene is the cause of susceptibility to ADR-induced nephropathy in mice. To verify this hypothesis, we produced Prkdc mutant B6 mice, termed B6-PrkdcR2140C, that possess the R2140C mutation. After administration of ADR, B6-PrkdcR2140C mice exhibited massive proteinuria and glomerular and renal tubular injuries. In addition, there was no significant difference in the severity between B6-PrkdcR2140C and BALB/c. These findings demonstrated that B6-PrkdcR2140C show ADR-induced nephropathy susceptibility at a similar level to BALB/c, and that the PRKDC R2140C variant causes susceptibility to ADR-induced nephropathy. In future studies, ADR-induced nephropathy may become applicable to various kinds of genetically modified mice with a B6 background by mating with B6-PrkdcR2140C.
Collapse
Affiliation(s)
- Masaki Watanabe
- Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University, Towada, 034-8628, Japan
| | - Yuki Takahashi
- Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University, Towada, 034-8628, Japan
| | - Koki Hiura
- Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University, Towada, 034-8628, Japan
| | - Kenta Nakano
- Department of Laboratory Animal Medicine, Section of Animal Models, Research Institute, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Tadashi Okamura
- Department of Laboratory Animal Medicine, Section of Animal Models, Research Institute, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Hayato Sasaki
- Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University, Towada, 034-8628, Japan.
| | - Nobuya Sasaki
- Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University, Towada, 034-8628, Japan.
| |
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW Podocytes are critical components of the nephron filtration barrier and are depleted in many kidney injuries and disease states. Terminally differentiated adult podocytes are highly specialized, postmitotic cells, raising the question of whether the body has any ability to regenerate lost podocytes. This timely question has recently been illuminated by a series of innovative studies. Here, we review recent progress on this topic of significant interest and debate. RECENT FINDINGS The innovation of genetic labeling techniques enables fate tracing of individual podocytes, providing the strongest evidence yet that podocytes can be replaced by nearby progenitor cells. In particular, two progenitor pools have recently been identified in multiple studies: parietal epithelial cells and cells of renin lineage. These studies furthermore suggest that podocyte regeneration can be enhanced using ex-vivo or pharmacological interventions. SUMMARY Recent studies indicate that the podocyte compartment is more dynamic than previously believed. Bidirectional exchange with neighboring cellular compartments provides a mechanism for podocyte replacement. Based on these findings, we propose a set of criteria for evaluating podocyte regeneration and suggest that restoration of podocyte number to a subsclerotic threshold be targeted as a potentially achievable clinical goal.
Collapse
|
5
|
Yang JW, Dettmar AK, Kronbichler A, Gee HY, Saleem M, Kim SH, Shin JI. Recent advances of animal model of focal segmental glomerulosclerosis. Clin Exp Nephrol 2018; 22:752-763. [PMID: 29556761 DOI: 10.1007/s10157-018-1552-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 02/26/2018] [Indexed: 12/15/2022]
Abstract
In the last decade, great advances have been made in understanding the genetic basis for focal segmental glomerulosclerosis (FSGS). Animal models using specific gene disruption of the slit diaphragm and cytoskeleton of the foot process mirror the etiology of the human disease. Many animal models have been developed to understand the complex pathophysiology of FSGS. Therefore, we need to know the usefulness and exact methodology of creating animal models. Here, we review classic animal models and newly developed genetic animal models. Classic animal models of FSGS involve direct podocyte injury and indirect podocyte injury due to adaptive responses. However, the phenotype depends on the animal background. Renal ablation and direct podocyte toxin (PAN, adriamycin) models are leading animal models for FSGS, which have some limitations depending on mice background. A second group of animal models were developed using combinations of genetic mutation and toxin, such as NEP25, diphtheria toxin, and Thy1.1 models, which specifically injure podocytes. A third group of animal models involves genetic engineering techniques targeting podocyte expression molecules, such as podocin, CD2-associated protein, and TRPC6 channels. More detailed information about podocytopathy and FSGS can be expected in the coming decade. Different animal models should be used to study FSGS depending on the specific aim and sometimes should be used in combination.
Collapse
Affiliation(s)
- Jae Won Yang
- Department of Nephrology, Yonsei University Wonju College of Medicine, Wonju, Gangwon, Republic of Korea
| | - Anne Katrin Dettmar
- Pediatric Nephrology, Department of Pediatrics, Medical University Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas Kronbichler
- Department of Internal Medicine IV (Nephrology and Hypertension), Universitätskliniken Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Heon Yung Gee
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Moin Saleem
- Paediatric Renal Medicine, University of Bristol, Bristol, UK.,Children's Renal Unit, Bristol Royal Hospital for Children, Bristol, UK
| | - Seong Heon Kim
- Department of Pediatrics, Pusan National University Children's Hospital, Yangsan, Republic of Korea. .,Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea.
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, 50 Yonsei-Ro, Seodaemun-gu, Seoul, 120-752, Republic of Korea.
| |
Collapse
|
6
|
Abstract
Ultimately, the common final pathway of any glomerular disease is podocyte effacement, podocyte loss, and, eventually, glomerular scarring. There has been a long-standing debate on the underlying mechanisms for podocyte depletion, ranging from necrosis and apoptosis to detachment of viable cells from the glomerular basement membrane. However, this debate still continues because additional pathways of programmed cell death have been reported in recent years. Interestingly, viable podocytes can be isolated out of the urine of proteinuric patients easily, emphasizing the importance of podocyte detachment in glomerular diseases. In contrast, detection of apoptosis and other pathways of programmed cell death in podocytes is technically challenging. In fact, we still are lacking direct evidence showing, for example, the presence of apoptotic bodies in podocytes, leaving the question unanswered as to whether podocytes undergo mechanisms of programmed cell death. However, understanding the mechanisms leading to podocyte depletion is of particular interest because future therapeutic strategies might interfere with these to prevent glomerular scarring. In this review, we summarize our current knowledge on podocyte cell death, the different molecular pathways and experimental approaches to study these, and, finally, focus on the mechanisms that prevent the onset of programmed cell death.
Collapse
Affiliation(s)
- Fabian Braun
- Department II of Internal Medicine, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases, University of Cologne, Cologne, Germany
| | - Jan U Becker
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Paul T Brinkkoetter
- Department II of Internal Medicine, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases, University of Cologne, Cologne, Germany.
| |
Collapse
|
7
|
Lin X, Huang H, You Y, Tang C, Gu X, Huang M, Tan J, Wang J. Activation of TLR5 induces podocyte apoptosis. Cell Biochem Funct 2016; 34:63-8. [PMID: 26914743 DOI: 10.1002/cbf.3165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 12/27/2015] [Accepted: 01/07/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Xu Lin
- Department of Nephrology; the Affiliated Hospital of Youjiang Medical University for Nationalities; Baise China
| | - Haiting Huang
- Department of Nephrology; the Affiliated Hospital of Youjiang Medical University for Nationalities; Baise China
| | - Yanwu You
- Department of Nephrology; the Affiliated Hospital of Youjiang Medical University for Nationalities; Baise China
| | - Chunrong Tang
- Department of Nephrology; the Affiliated Hospital of Youjiang Medical University for Nationalities; Baise China
| | - Xiangjun Gu
- Department of Nephrology; the Affiliated Hospital of Youjiang Medical University for Nationalities; Baise China
| | - Meiying Huang
- Department of Nephrology; the Affiliated Hospital of Youjiang Medical University for Nationalities; Baise China
| | - Junhua Tan
- Department of Nephrology; the Affiliated Hospital of Youjiang Medical University for Nationalities; Baise China
| | - Jie Wang
- Department of Nephrology; the Affiliated Hospital of Youjiang Medical University for Nationalities; Baise China
| |
Collapse
|
8
|
Lombardi D, Becherucci F, Romagnani P. How much can the tubule regenerate and who does it? An open question. Nephrol Dial Transplant 2015; 31:1243-50. [PMID: 26175143 PMCID: PMC4967725 DOI: 10.1093/ndt/gfv262] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/22/2015] [Indexed: 01/09/2023] Open
Abstract
The tubular compartment of the kidney is the primary site of a wide range of insults that can result in acute kidney injury (AKI), a condition associated with high mortality and an increased risk to develop end-stage renal disease. Nevertheless, kidney function is often quickly recovered after tubular injury. How this happens has only partially been unveiled. Indeed, although it has clearly been demonstrated that regenerated epithelial cells arise from survived intratubular cells, the true entity, as well as the cellular source of this regenerative process, remains mostly unknown. Is whichever proximal tubular epithelial cell able to dedifferentiate and divide to replace neighboring lost tubular cells, thus suggesting an extreme regenerative ability of residual tubular epithelium, or is the regenerative potential of tubular epithelium limited, and mostly related to a preexisting population of intratubular scattered progenitor cells which are more resistant to death? Gaining insights on how this process takes place is essential for developing new therapeutic strategies to prevent AKI, as well as AKI-related chronic kidney disease. The aim of this review is to discuss why the answers to these questions are still open, and how further investigations are needed to understand which is the true regenerative potential of the tubule and who are the players that allow functional recovery after AKI.
Collapse
Affiliation(s)
- Duccio Lombardi
- Excellence Centre for Research, Transfer and High Education for the Development of DE NOVO Therapies (DENOTHE), University of Florence, Florence, Italy
| | - Francesca Becherucci
- Nephrology and Dialysis Unit, Meyer Children's University Hospital, Florence, Italy
| | - Paola Romagnani
- Excellence Centre for Research, Transfer and High Education for the Development of DE NOVO Therapies (DENOTHE), University of Florence, Florence, Italy Nephrology and Dialysis Unit, Meyer Children's University Hospital, Florence, Italy Department of Clinical and Experimental Biomedical Sciences, University of Florence, Florence, Italy
| |
Collapse
|