1
|
Zuo J, Ma S. Resveratrol-laden mesoporous silica nanoparticles regulate the autophagy and apoptosis via ROS-mediated p38-MAPK/HIF-1a /p53 signaling in hypertrophic scar fibroblasts. Heliyon 2024; 10:e24985. [PMID: 38370262 PMCID: PMC10867619 DOI: 10.1016/j.heliyon.2024.e24985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 02/20/2024] Open
Abstract
Background During the regression of hypertrophic scars, autophagy and apoptosis are the main ways of cell death. Recent investigations demonstrated effective inhibition of resveratrol on hypertrophic scar fibroblasts (HSFs). But its therapeutic value is limited by chemical instability and hydrophobicity, as well as the mechanism of its role in regulation of autophagy and apoptosis remains unknown. Aim of the study We prepared a mesoporous silica nanoparticle laden with resveratrol (MSN@Res) which can effectively improve the solubility and stability of resveratrol. The purpose of this study was to investigate whether MSN@Res regulate autophagy and apoptosis of HSFs via inhibition of ROS/p38/HIF-1α/p53 signaling axis, as to reveal its pharmacological action and target. Materials and methods Network pharmacology, molecular docking, and in vitro assays were carried out in this study. An in vitro model of fibroblasts cultivated in hypoxic and ischemic situations was established to simulate the scar in the proliferative phase. Results MSN@Res surpresses HSFs by reducing physiological autophagy and inducing apoptosis, autosis may be another cell death involed in this process. According to the network pharmacological analysis and molecular docking, the mechanism by which MSN@Res alleviates hypertrophic scar may be closely related to the MAPK signaling pathway. MSN@Res significantly downregulate the expression of HIF-1α and p53 through the inhibition of ROS induced p38-MAPK phosphorylation with corresponding changes in the expression of autophagy and apoptosis related protein. Conclusion MSN@Res is a novel drug delivery system with excellent chemical stability and drug release performance. It can inhibit protective autophagy of fibroblasts in hypoxic environment, and induce the apoptosis and autosis via the ROS -mediated p38-MAPK/HIF-1α/p53 signaling axis.
Collapse
Affiliation(s)
- Jun Zuo
- Department of Plastic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Shaolin Ma
- Department of Plastic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
2
|
Pasupulati AK, Nagati V, Paturi ASV, Reddy GB. Non-enzymatic glycation and diabetic kidney disease. VITAMINS AND HORMONES 2024; 125:251-285. [PMID: 38997166 DOI: 10.1016/bs.vh.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Chronic diabetes leads to various complications including diabetic kidney disease (DKD). DKD is a major microvascular complication and the leading cause of morbidity and mortality in diabetic patients. Varying degrees of proteinuria and reduced glomerular filtration rate are the cardinal clinical manifestations of DKD that eventually progress into end-stage renal disease. Histopathologically, DKD is characterized by renal hypertrophy, mesangial expansion, podocyte injury, glomerulosclerosis, and tubulointerstitial fibrosis, ultimately leading to renal replacement therapy. Amongst the many mechanisms, hyperglycemia contributes to the pathogenesis of DKD via a mechanism known as non-enzymatic glycation (NEG). NEG is the irreversible conjugation of reducing sugars onto a free amino group of proteins by a series of events, resulting in the formation of initial Schiff's base and an Amadori product and to a variety of advanced glycation end products (AGEs). AGEs interact with cognate receptors and evoke aberrant signaling cascades that execute adverse events such as oxidative stress, inflammation, phenotypic switch, complement activation, and cell death in different kidney cells. Elevated levels of AGEs and their receptors were associated with clinical and morphological manifestations of DKD. In this chapter, we discussed the mechanism of AGEs accumulation, AGEs-induced cellular and molecular events in the kidney and their impact on the pathogenesis of DKD. We have also reflected upon the possible options to curtail the AGEs accumulation and approaches to prevent AGEs mediated adverse renal outcomes.
Collapse
Affiliation(s)
- Anil K Pasupulati
- Department of Biochemistry, University of Hyderabad, Hyderabad, India.
| | - Veerababu Nagati
- Department of Biochemistry, University of Hyderabad, Hyderabad, India
| | - Atreya S V Paturi
- Department of Biochemistry, University of Hyderabad, Hyderabad, India
| | - G Bhanuprakash Reddy
- Department of Biochemistry, ICMR-National Institute of Nutrition, Hyderabad, India.
| |
Collapse
|
3
|
Kong S, Yu J, Li HF, Xie YL, Song LF, Wang QQ, Chen YJ, Zhao FR, Zhang WF, Zhu TT. A ring N(CH 3) 2-based derivative of resveratrol inhibits pulmonary vascular remodeling in hypoxia pulmonary hypertension. Eur J Pharmacol 2023; 959:176077. [PMID: 37820784 DOI: 10.1016/j.ejphar.2023.176077] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
Pulmonary artery smooth muscle cells (PASMCs) phenotypic switching and pulmonary artery endothelial cells (PAECs) endothelial-mesenchymal transition (EndMT) are important in promoting pulmonary hypertension (PH)-pulmonary vascular remodeling (PVR). Resveratrol can efficiently inhibit the proliferation of PASMCs, but its application is limited due to its low bioavailability and solubility. In this study, we modified resveratrol to assess the role of A ring N(CH3)2-based derivatives of resveratrol (Res4) in PVR-PASMCs phenotypic switching and PVR-PAECs EndMT. Chemical methods were used for the preparation of Res4; NMRS and HPLC were used to authenticate Res4. Mice developed PVR after 4 weeks of hypoxia (10% O2). Res4 (50 mg/kg/d) attenuated right ventricular systolic pressure, right ventricular hypertrophy, and PVR. PASMCs developed phenotypic switching and PAECs developed EndMT after 2 days of hypoxia (3% O2). Res4 (10 μM) could inhibit PASMCs and PAECs viability. Res4 could decrease proliferating cell nuclear antigen (PCNA) and osteopontin (OPN) expression, and increase α-smooth muscle actin (α-SMA) and vimentin expression in PASMCs. It could also decrease PCNA, α-SMA, vimentin expression and increase platelet endothelial cell adhesion molecule (CD31) expression in PAECs. Notably, Res4 inhibited the phosphorylation levels of mitogen-activated protein kinase kinase (MEK), extracellular signal-regulated protein kinase (ERK), Jun-N-terminal kinase (JNK), and p38 kinase in hypoxia-treated PASMCs and PAECs, indicating MAPK pathway may be involved in Res4-induced inhibition of PASMCs phenotypic switching and PAECs EndMT. Our data demonstrated that Res4 exerts antiproliferative effects by regulating PASMCs phenotypic switching and PAECs EndMT. Res4 may be potentially used as a drug against PH-PVR.
Collapse
Affiliation(s)
- Shuang Kong
- College of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China; Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, 453003, China; Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, 453003, China
| | - Jiang Yu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China; Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, 453003, China; Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, 453003, China
| | - Han-Fei Li
- College of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China; Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, 453003, China; Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, 453003, China
| | - Yu-Liang Xie
- College of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China; Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, 453003, China; Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, 453003, China
| | - Liao-Fan Song
- College of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China; Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, 453003, China; Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, 453003, China
| | - Qian-Qian Wang
- College of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China; Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, 453003, China; Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, 453003, China
| | - Yu-Jing Chen
- College of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China; Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, 453003, China; Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, 453003, China
| | - Fan-Rong Zhao
- College of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China; Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, 453003, China; Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, 453003, China
| | - Wei-Fang Zhang
- Departments of Pharmacy, The Second Affiliated Hospital, Nanchang University, Nanchang, 330006, China.
| | - Tian-Tian Zhu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China; Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, 453003, China; Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, 453003, China.
| |
Collapse
|
4
|
Taguchi K, Fukami K. RAGE signaling regulates the progression of diabetic complications. Front Pharmacol 2023; 14:1128872. [PMID: 37007029 PMCID: PMC10060566 DOI: 10.3389/fphar.2023.1128872] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Diabetes, the ninth leading cause of death globally, is expected to affect 642 million people by 2040. With the advancement of an aging society, the number of patients with diabetes having multiple underlying diseases, such as hypertension, obesity, and chronic inflammation, is increasing. Thus, the concept of diabetic kidney disease (DKD) has been accepted worldwide, and comprehensive treatment of patients with diabetes is required. Receptor for advanced glycation endproducts (RAGE), a multiligand receptor, belonging to the immunoglobulin superfamily is extensively expressed throughout the body. Various types of ligands, including advanced glycation endproducts (AGEs), high mobility group box 1, S100/calgranulins, and nucleic acids, bind to RAGE, and then induces signal transduction to amplify the inflammatory response and promote migration, invasion, and proliferation of cells. Furthermore, the expression level of RAGE is upregulated in patients with diabetes, hypertension, obesity, and chronic inflammation, suggesting that activation of RAGE is a common denominator in the context of DKD. Considering that ligand–and RAGE–targeting compounds have been developed, RAGE and its ligands can be potent therapeutic targets for inhibiting the progression of DKD and its complications. Here, we aimed to review recent literature on various signaling pathways mediated by RAGE in the pathogenesis of diabetic complications. Our findings highlight the possibility of using RAGE–or ligand–targeted therapy for treating DKD and its complications.
Collapse
|
5
|
Zhang L, Guo YN, Liu J, Wang LH, Wu HQ, Wang T, Deng B, Wang JY, Lu L, Chen ZX, He JQ, Liang BR, Li H, Huang YS, Yang ZQ, Xian SX, Wang LJ, Ye XH. Plantamajoside attenuates cardiac fibrosis via inhibiting AGEs activated-RAGE/autophagy/EndMT pathway. Phytother Res 2023; 37:834-847. [PMID: 36349468 DOI: 10.1002/ptr.7663] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/06/2022] [Accepted: 10/01/2022] [Indexed: 11/10/2022]
Abstract
Advanced glycation end products (AGEs) have been identified to transduce fibrogenic signals via inducing the activation of their receptor (RAGE)-mediated pathway. Recently, disrupting AGE-RAGE interaction has become a promising therapeutic strategy for chronic heart failure (CHF). Endothelial-to-mesenchymal transition (EndMT) is close to the cardiac fibrosis pathological process. Our previous studies have demonstrated that knockout RAGE suppressed the autophagy-mediated EndMT, and thus alleviated cardiac fibrosis. Plantamajoside (PMS) is the major bioactive compound of Plantago Asiatica, and its activity of anti-fibrosis has been documented in many reports. However, its effect on CHF and the underlying mechanism remains elusive. Thus, we tried to elucidate the protective role of PMS in CHF from the viewpoint of the AGEs/RAGE/autophagy/EndMT axis. Herein, PMS was found to attenuate cardiac fibrosis and dysfunction, suppress EndMT, reduce autophagy levels and serum levels of AGEs, yet did not affect the expression of RAGE in CHF mice. Mechanically, PMS possibly binds to the V-domain of RAGE, which is similar to the interaction between AGEs and RAGE. Importantly, this competitive binding disturbed AGEs-induced the RAGE-autophagy-EndMT pathway in vitro. Collectively, our results indicated that PMS might exert an anti-cardiac fibrosis effect by specifically binding RAGE to suppress the AGEs-activated RAGE/autophagy/EndMT pathway.
Collapse
Affiliation(s)
- Lu Zhang
- Dongguan Hospital, Guangzhou University of Chinese Medicine, Dongguan, China.,The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi-Ning Guo
- Dongguan Hospital, Guangzhou University of Chinese Medicine, Dongguan, China.,The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jing Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lin-Hai Wang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Han-Qin Wu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ting Wang
- Dongguan Hospital, Guangzhou University of Chinese Medicine, Dongguan, China
| | - Bo Deng
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jun-Yan Wang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lu Lu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, China
| | - Zi-Xin Chen
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, China
| | - Jia-Qi He
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bi-Rong Liang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huan Li
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, China
| | - Yu-Sheng Huang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, China
| | - Zhong-Qi Yang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, China.,National Clinical Research Base of Traditional Chinese Medicine, Guangzhou, China
| | - Shao-Xiang Xian
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, China.,National Clinical Research Base of Traditional Chinese Medicine, Guangzhou, China
| | - Ling-Jun Wang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, China.,National Clinical Research Base of Traditional Chinese Medicine, Guangzhou, China
| | - Xiao-Han Ye
- Dongguan Hospital, Guangzhou University of Chinese Medicine, Dongguan, China
| |
Collapse
|
6
|
Hsu PC, Huang JC, Tsai WC, Hung WW, Chang WA, Wu LY, Chang CY, Tsai YC, Hsu YL. Tumor Necrosis Factor Receptor Superfamily Member 21 Induces Endothelial-Mesenchymal Transition in Coronary Artery Endothelium of Type 2 Diabetes Mellitus. Biomedicines 2022; 10:biomedicines10061282. [PMID: 35740304 PMCID: PMC9220259 DOI: 10.3390/biomedicines10061282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 12/02/2022] Open
Abstract
Diabetes mellitus (DM) is an increasing threat to human health and regarded as an important public issue. Coronary artery disease is one of the main causes of death in type 2 DM patients. However, the effect of hyperglycemia on coronary artery endothelial cells (CAECs) and the pathophysiologic mechanisms are still not well-explored. This study aims to explore the signal pathway and novel biomarkers of injury of CAECs in DM in understanding the microenvironment changes and mechanisms of diabetic heart disease. Next-generation sequence (NGS) and bioinformatics analysis to analyze the CAECs of one type 2 DM patient and one normal individual was performed, and it was found that tumor necrosis factor receptor superfamily member 21 (TNFRSF21) was a soluble factor in circulating system. Further experiments confirmed that advanced glycation end products (AGEs), the metabolite derived by hyperglycemia, increased the expression of TNFRSF21 in CAECs. TNFRSF21 induced endothelial–mesenchymal transition (EndoMT) in CAECs, resulting in increased permeability of CAECs. In addition, levels of serum TNFRSF21 were higher in type 2 DM patients with left ventricular hypertrophy (LVH) than those without LVH. Serum TNFRSF21 levels were also positively correlated with the LV mass index and negatively with LV systolic function. Serum TNFRSF21 levels were associated with changes in cardiac structure and function in patients with type 2 DM. In conclusion, TNFRSF21 plays a pathogenic role in heart disease of type 2 DM, and can be used as a biomarker of the impairment of cardiac structure and function in type 2 DM patients.
Collapse
Affiliation(s)
- Po-Chao Hsu
- Division of Cardiology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (P.-C.H.); (W.-C.T.)
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (J.-C.H.); (W.-A.C.)
| | - Jiun-Chi Huang
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (J.-C.H.); (W.-A.C.)
- Division of Nephrology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Wei-Chung Tsai
- Division of Cardiology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (P.-C.H.); (W.-C.T.)
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (J.-C.H.); (W.-A.C.)
| | - Wei-Wen Hung
- Division of Endocrinology and Metabolism, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Wei-An Chang
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (J.-C.H.); (W.-A.C.)
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Medical University, Kaohsiung 807, Taiwan
| | - Ling-Yu Wu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Chao-Yuan Chang
- Department of Anatomy, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Yi-Chun Tsai
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (J.-C.H.); (W.-A.C.)
- Division of Nephrology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Division of General Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: (Y.-C.T.); (Y.-L.H.); Tel.: +886-7-312-1101-5029 (Y.-C.T.); +886-7-312-1101-2015 (Y.-L.H.)
| | - Ya-Ling Hsu
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: (Y.-C.T.); (Y.-L.H.); Tel.: +886-7-312-1101-5029 (Y.-C.T.); +886-7-312-1101-2015 (Y.-L.H.)
| |
Collapse
|
7
|
Fibrotic Changes to Schlemm's Canal Endothelial Cells in Glaucoma. Int J Mol Sci 2021; 22:ijms22179446. [PMID: 34502356 PMCID: PMC8431431 DOI: 10.3390/ijms22179446] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 12/21/2022] Open
Abstract
Previous studies have shown that glaucomatous Schlemm’s canal endothelial cells (gSCECs) are stiffer and associated with reduced porosity and increased extracellular matrix (ECM) material compared to SCECs from healthy individuals. We hypothesised that Schlemm’s canal (SC) cell stiffening was a function of fibrotic changes occurring at the inner wall of SC in glaucoma. This study was performed in primary cell cultures isolated from the SC lumen of human donor eyes. RNA and protein quantification of both fibrotic and endothelial cell markers was carried out on both healthy and gSCECs. Functional assays to assess cell density, size, migration, proliferation, and mitochondrial function of these cells were also carried out. Indeed, we found that gSCECs deviate from typical endothelial cell characteristics and exhibit a more fibrotic phenotype. For example, gSCECs expressed significantly higher protein levels of the fibrotic markers α-SMA, collagen I-α1, and fibronectin, as well as significantly increased protein expression of TGFβ-2, the main driver of fibrosis, compared to healthy SCECs. Interestingly, we observed a significant increase in protein expression of endothelial marker VE-cadherin in gSCECs, compared to healthy SCECs. gSCECs also appeared to be significantly larger, and surprisingly proliferate and migrate at a significantly higher rate, as well as showing significantly reduced mitochondrial activity, compared to healthy SCECs.
Collapse
|
8
|
Resveratrol and endothelial function: A literature review. Pharmacol Res 2021; 170:105725. [PMID: 34119624 DOI: 10.1016/j.phrs.2021.105725] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022]
Abstract
Endothelial dysfunction is a major contributing factor to diseases such as atherosclerosis, diabetes mellitus, obesity, hypertension, acute lung injury, preeclampsia, among others. Resveratrol (RSV) is a naturally occurring bioactive polyphenol found in grapes and red wine. According to experimental studies, RSV modulates several events involved in endothelial dysfunction such as impaired vasorelaxation, eNOS uncoupling, leukocyte adhesion, endothelial senescence, and endothelial mesenchymal transition. The endothelial protective effects of RSV are found to be mediated by numerous molecular targets (e.g. Silent Information Regulator 1 (SIRT1), 5' AMP-activated protein kinase (AMPK), endothelial nitric oxide synthase (eNOS), nuclear factor-erythroid-derived 2-related factor-2 (Nrf2), peroxisome proliferator-activated receptor (PPAR), Krüppel-like factor-2 (KLF2), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB)). Herein, we present an updated review addressing pharmacological effects and molecular targets of RSV in maintaining endothelial function, and the potential of this phytochemical for endothelial dysfunction-associated disorders.
Collapse
|
9
|
Zhang L, He J, Wang J, Liu J, Chen Z, Deng B, Wei L, Wu H, Liang B, Li H, Huang Y, Lu L, Yang Z, Xian S, Wang L. Knockout RAGE alleviates cardiac fibrosis through repressing endothelial-to-mesenchymal transition (EndMT) mediated by autophagy. Cell Death Dis 2021; 12:470. [PMID: 33976108 PMCID: PMC8113558 DOI: 10.1038/s41419-021-03750-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023]
Abstract
Endothelial-to-mesenchymal transition (EndMT) has been shown to contribute to cardiac fibrosis and heart failure (HF). Recent studies have demonstrated that EndMT is regulated by autophagy, and we previously showed suppression of excessive autophagy and alleviation of cardiac fibrosis in HF mice with inactivated receptor for advanced glycation end products (RAGE). Thus, we investigated whether reduced cardiac fibrosis due to RAGE knockout occurred by inhibiting EndMT mediated by excessive autophagy. We found a decrease in endothelial cells (CD31+/VE-Cadherin+) and an increase in cells co-expressing CD31 and α-smooth muscle actin (α-SMA, myofibroblast marker) at 8 weeks in heart tissue of mice subjected to transverse aortic constriction (TAC), which implied EndMT. Knockout RAGE decreased EndMT accompanied by decreased expression of autophagy-related proteins (LC3BII/I and Beclin 1), and alleviated cardiac fibrosis and improved cardiac function in TAC mice. Moreover, 3-methyladenine (3-MA) and chloroquine (CQ), inhibitors of autophagy, attenuated EndMT, and cardiac fibrosis in TAC mice. Importantly, EndMT induced by AGEs could be blocked by autophagy inhibitor in vivo and in vitro. These results suggested that AGEs/RAGE-autophagy-EndMT axis involved in the development of cardiac fibrosis and knockout RAGE ameliorated cardiac fibrosis through decreasing EndMT regulated by autophagy, which could be a promising therapeutic strategy for HF.
Collapse
Affiliation(s)
- Lu Zhang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jiaqi He
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Junyan Wang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jing Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zixin Chen
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, 510405, China
| | - Bo Deng
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Lan Wei
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Hanqin Wu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Birong Liang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Huan Li
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, 510405, China
| | - Yusheng Huang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, 510405, China
| | - Lu Lu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, 510405, China
| | - Zhongqi Yang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, 510405, China
- National Clinical Research Base of Traditional Chinese Medicine, Guangzhou, 510405, China
| | - Shaoxiang Xian
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, 510405, China
- National Clinical Research Base of Traditional Chinese Medicine, Guangzhou, 510405, China
| | - Lingjun Wang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, 510405, China.
- National Clinical Research Base of Traditional Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
10
|
Jeon GY, Nam MH, Lee KW. Inhibitory effect of caffeic acid on advanced glycation end product-induced renal fibrosis in vitro: A potential therapeutic target. J Food Sci 2021; 86:579-586. [PMID: 33448051 DOI: 10.1111/1750-3841.15588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 11/18/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022]
Abstract
Advanced glycation end products (AGEs) are formed from amino acids and reducing sugars through nonenzymatic Maillard reaction. AGEs are known to induce oxidative stress, which may cause fibrosis or cancer. In this study, we investigated the protective effect of caffeic acid (CA) on AGE-mediated kidney epithelial to mesenchymal transition (EMT) in human HK-2 cells. Exposure to 100 µg/mL of AGEs by kidney epithelial cells raised the production of reactive oxygen species by 5.2-fold and decreased levels of glutathione. In addition, cardamonin, a β-catenin inhibitor, was used to determine the signaling pathway for β-catenin in which cardamonin inhibited the AGEs-induced translocation of β-catenin into the nucleus, resulting in an inhibition of the EMT process. Similarly, our findings showed that, close to the control level, CA treatment decreased AGE-mediated oxidative stress, loss of E-cadherin expression, and overexpression of α-smooth muscle actin and fibronectin by inactivation of the β-catenin pathway. Furthermore, AGE treatment enhanced the expression of collagen type I (1.99-fold) as well as the activity of metalloproteinases 2 (1.86-fold) and 9 (2.79-fold), but such increase was inhibited by the pretreatment of CA. In conclusion, this study determined the inhibitory effect of CA on AGE-induced β-catenin signaling, which prevented the occurrence of EMT in kidney epithelial cells. This suggests that CA may be a potential target for AGE-induced renal fibrosis. PRACTICAL APPLICATION: Exposure of kidney epithelial cells to advanced glycation end products (AGEs) leads to a rise in reactive oxygen species and a decrease in glutathione, thereby increasing oxidative stress that may cause fibrosis. However, treatment of kidney cells with caffeic acid (CA) prior to their exposure to AGEs lowers oxidative stress and decreases fibrosis. This research reveals the beneficial influence of CA on renal fibrosis in laboratory-cultured kidney cells (in vitro), which makes CA a potential therapeutic target for AGE-induced fibrosis.
Collapse
Affiliation(s)
- Gyeong Yun Jeon
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.,Department of Ophthalmology, Seoul National University Bundang Hospital, Gyeonggi-do, 13605, Republic of Korea
| | - Mi-Hyun Nam
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.,Sue Anschutz-Rodgers Eye Center and Department of Ophthalmology, University of Colorado, Aurora, CO, 80045, U.S.A
| | - Kwang-Won Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
11
|
AGEs-RAGE axis causes endothelial-to-mesenchymal transition in early calcific aortic valve disease via TGF-β1 and BMPR2 signaling. Exp Gerontol 2020; 141:111088. [DOI: 10.1016/j.exger.2020.111088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/24/2020] [Accepted: 09/03/2020] [Indexed: 01/08/2023]
|
12
|
Wyman AE, Nguyen TTT, Karki P, Tulapurkar ME, Zhang CO, Kim J, Feng TG, Dabo AJ, Todd NW, Luzina IG, Geraghty P, Foronjy RF, Hasday JD, Birukova AA, Atamas SP, Birukov KG. SIRT7 deficiency suppresses inflammation, induces EndoMT, and increases vascular permeability in primary pulmonary endothelial cells. Sci Rep 2020; 10:12497. [PMID: 32719338 PMCID: PMC7385158 DOI: 10.1038/s41598-020-69236-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 06/30/2020] [Indexed: 12/21/2022] Open
Abstract
Acute lung injury (ALI), a common condition in critically ill patients, has limited treatments and high mortality. Aging is a risk factor for ALI. Sirtuins (SIRTs), central regulators of the aging process, decrease during normal aging and in aging-related diseases. We recently showed decreased SIRT7 expression in lung tissues and fibroblasts from patients with pulmonary fibrosis compared to controls. To gain insight into aging-related mechanisms in ALI, we investigated the effects of SIRT7 depletion on lipopolysaccharide (LPS)-induced inflammatory responses and endothelial barrier permeability in human primary pulmonary endothelial cells. Silencing SIRT7 in pulmonary artery or microvascular endothelial cells attenuated LPS-induced increases in ICAM1, VCAM1, IL8, and IL6 and induced endomesenchymal transition (EndoMT) with decreases in VE-Cadherin and PECAM1 and increases in collagen, alpha-smooth muscle actin, TGFβ receptor 1, and the transcription factor Snail. Loss of endothelial adhesion molecules was accompanied by increased F-actin stress fibers and increased endothelial barrier permeability. Together, these results show that an aging phenotype induced by SIRT7 deficiency promotes EndoMT with impaired inflammatory responses and dysfunction of the lung vascular barrier.
Collapse
Affiliation(s)
- Anne E Wyman
- Geriatric Research Education and Clinical Center (GRECC), VA Maryland Health Care System, Baltimore VA Medical Center, Baltimore, MD, USA. .,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA. .,Research Service, Baltimore VA Medical Center, Baltimore, MD, USA. .,Departments of Medicine and Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA.
| | - Trang T T Nguyen
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Pratap Karki
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mohan E Tulapurkar
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Chen-Ou Zhang
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Junghyun Kim
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Theresa G Feng
- Department of Anesthesiology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Abdoulaye J Dabo
- Departments of Medicine and Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Nevins W Todd
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.,Research Service, Baltimore VA Medical Center, Baltimore, MD, USA
| | - Irina G Luzina
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.,Research Service, Baltimore VA Medical Center, Baltimore, MD, USA
| | - Patrick Geraghty
- Departments of Medicine and Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Robert F Foronjy
- Departments of Medicine and Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Jeffrey D Hasday
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.,Research Service, Baltimore VA Medical Center, Baltimore, MD, USA
| | - Anna A Birukova
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sergei P Atamas
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.,Research Service, Baltimore VA Medical Center, Baltimore, MD, USA
| | - Konstantin G Birukov
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
13
|
Dermal microvessel density and maturity is closely associated with atherogenic dyslipidemia and accumulation of advanced glycation end products in adult patients with type 1 diabetes. Microvasc Res 2019; 121:46-51. [DOI: 10.1016/j.mvr.2018.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 10/08/2018] [Accepted: 10/08/2018] [Indexed: 12/19/2022]
|
14
|
Li Z, Wang F, Zha S, Cao Q, Sheng J, Chen S. SIRT1 inhibits TGF‐β‐induced endothelial‐mesenchymal transition in human endothelial cells with Smad4 deacetylation. J Cell Physiol 2018; 233:9007-9014. [PMID: 29856490 DOI: 10.1002/jcp.26846] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 05/10/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Zhen Li
- Department of Geriatrics, Xinhua Hospital, School of Medicine Shanghai Jiao Tong University Shanghai China
| | - Fei Wang
- Department of Geriatrics, Xinhua Hospital, School of Medicine Shanghai Jiao Tong University Shanghai China
| | - Siyuan Zha
- Department of Geriatrics, Xinhua Hospital, School of Medicine Shanghai Jiao Tong University Shanghai China
| | - Qing Cao
- Department of Geriatrics, Xinhua Hospital, School of Medicine Shanghai Jiao Tong University Shanghai China
| | - Jing Sheng
- Department of Geriatrics Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Shuyan Chen
- Department of Geriatrics, Xinhua Hospital, School of Medicine Shanghai Jiao Tong University Shanghai China
| |
Collapse
|
15
|
Ribera J, Pauta M, Melgar-Lesmes P, Córdoba B, Bosch A, Calvo M, Rodrigo-Torres D, Sancho-Bru P, Mira A, Jiménez W, Morales-Ruiz M. A small population of liver endothelial cells undergoes endothelial-to-mesenchymal transition in response to chronic liver injury. Am J Physiol Gastrointest Liver Physiol 2017; 313:G492-G504. [PMID: 28798084 DOI: 10.1152/ajpgi.00428.2016] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 07/07/2017] [Accepted: 07/25/2017] [Indexed: 01/31/2023]
Abstract
Rising evidence points to endothelial-to-mesenchymal transition (EndMT) as a significant source of the mesenchymal cell population in fibrotic diseases. In this context, we hypothesized that liver endothelial cells undergo EndMT during fibrosis progression. Cirrhosis in mice was induced by CCl4 A transgenic mouse expressing a red fluorescent protein reporter under the control of Tie2 promoter (Tie2-tdTomato) was used to trace the acquisition of EndMT. Sinusoidal vascular connectivity was evaluated by intravital microscopy and high-resolution three-dimensional confocal microscopy. A modest but significant fraction of liver endothelial cells from both cirrhotic patients and CCl4-treated Tie2-tdTomato mice acquired an EndMT phenotype characterized by the coexpression of CD31 and α-smooth muscle actin, compared with noncirrhotic livers. Bone morphogenetic protein-7 (BMP-7) inhibited the acquisition of EndMT induced by transforming growth factor-β1 (TGF-β1) treatment in cultured primary mouse liver endothelial cells from control mice. EndMT was also reduced significantly in vivo in cirrhotic Tie2-tdTomato mice treated intraperitoneally with BMP-7 compared with untreated mice (1.9 ± 0.2 vs. 3.8 ± 0.3%, respectively; P < 0.05). The decrease of EndMT in cirrhotic livers correlated with a significant decrease in liver fibrosis (P < 0.05) and an improvement in the vascular disorganization rate (P < 0.05). We demonstrated the acquisition of the EndMT phenotype by a subpopulation of endothelial cells from cirrhotic livers in both animal models and patients. BMP-7 treatment decreases the occurrence of the EndMT phenotype and has a positive impact on the severity of disease by reducing fibrosis and sinusoidal vascular disorganization.NEW & NOTEWORTHY A subpopulation of liver endothelial cells from cirrhotic patients and mice with liver fibrosis undergoes endothelial-to-mesenchymal transition. Liver endothelial cells from healthy mice could transition into a mesenchymal phenotype in culture in response to TGF-β1 treatment. Fibrotic livers treated chronically with BMP-7 showed lower EndMT acquisition, reduced fibrosis, and improved vascular organization.
Collapse
Affiliation(s)
- Jordi Ribera
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain
| | - Montse Pauta
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain
| | - Pedro Melgar-Lesmes
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain
| | - Bernat Córdoba
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain
| | - Anna Bosch
- Advanced Optic Microscopy Unit, School of Medicine, Centres Científics i Tecnològics, University of Barcelona, Barcelona, Spain
| | - Maria Calvo
- Advanced Optic Microscopy Unit, School of Medicine, Centres Científics i Tecnològics, University of Barcelona, Barcelona, Spain
| | - Daniel Rodrigo-Torres
- Liver Unit, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain; and
| | - Pau Sancho-Bru
- Liver Unit, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain; and
| | - Aurea Mira
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain.,Department of Biomedicine-Biochemistry Unit, School of Medicine University of Barcelona, Barcelona, Spain
| | - Wladimiro Jiménez
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain.,Department of Biomedicine-Biochemistry Unit, School of Medicine University of Barcelona, Barcelona, Spain
| | - Manuel Morales-Ruiz
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain; .,Department of Biomedicine-Biochemistry Unit, School of Medicine University of Barcelona, Barcelona, Spain
| |
Collapse
|
16
|
Kidney, heart and brain: three organs targeted by ageing and glycation. Clin Sci (Lond) 2017; 131:1069-1092. [PMID: 28515343 DOI: 10.1042/cs20160823] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/01/2017] [Accepted: 02/06/2017] [Indexed: 12/20/2022]
Abstract
Advanced glycation end-product (AGE) is the generic term for a heterogeneous group of derivatives arising from a non-enzymatic reaction between reducing sugars and proteins. In recent years, evidence has accumulated that incriminates AGEs in pathogenic processes associated with both chronic hyperglycaemia and age-related diseases. Regardless of their exogenous or endogenous origin, the accumulation of AGEs and their derivatives could promote accelerated ageing by leading to protein modifications and activating several inflammatory signalling pathways via AGE-specific receptors. However, it remains to be demonstrated whether preventing the accumulation of AGEs and their effects is an important therapeutic option for successful ageing. The present review gives an overview of the current knowledge on the pathogenic role of AGEs by focusing on three AGE target organs: kidney, heart and brain. For each of these organs we concentrate on an age-related disease, each of which is a major public health issue: chronic kidney disease, heart dysfunction and neurodegenerative diseases. Even though strong connections have been highlighted between glycation and age-related pathogenesis, causal links still need to be validated. In each case, we report evidence and uncertainties suggested by animal or epidemiological studies on the possible link between pathogenesis and glycation in a chronic hyperglycaemic state, in the absence of diabetes, and with exogenous AGEs alone. Finally, we present some promising anti-AGE strategies that are currently being studied.
Collapse
|
17
|
Resveratrol Prevents Reactive Oxygen Species-Induced Effects of Light-Emitting Diode-Generated Blue Light in Human Skin Fibroblasts. Dermatol Surg 2017; 42:727-32. [PMID: 27176863 DOI: 10.1097/dss.0000000000000744] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Light-emitting diode-generated blue light (LED-BL) is part of the visible light spectrum that does not cause DNA damage and may represent a safer alternative to ultraviolet phototherapy. Previous research demonstrated that LED-BL can inhibit adult human skin fibroblast proliferation and migration speed and is associated with increased reactive oxygen species (ROS) generation in a dose-dependent manner. In addition, resveratrol possesses potent intracellular antioxidative effects on ROS-free radicals in human skin fibroblasts. OBJECTIVE The authors studied the effects on migration speed as a surrogate to measure LED-BL effects on fibroblast function. The authors hypothesized that resveratrol, a potent scavenger of ROS, could prevent the effects of LED-BL on fibroblast migration speed. This would implicate ROS as the mechanistic driver of LED-BL effects on human skin fibroblasts. METHODS To demonstrate that resveratrol could prevent the effects of LED-BL (415-nm), fibroblasts were incubated with resveratrol (Sigma-Aldrich, St. Louis, MO) at concentrations of 0.001% and 0.0001% for 24 hours and then irradiated with LED-BL at fluences of 30, 45, and 80 J/cm. Postirradiation fibroblast migratory speed was assayed in an environment-controlled computer-assisted video microscopy system. Reactive oxygen species levels were measured by flow cytometric analysis of dihydrorhodamine. Statistical analyses with analysis of variance and Student t-test were performed to compare individual treatment arms and matched controls. RESULTS The experimental results demonstrate that pretreatment of skin fibroblasts with resveratrol at concentrations of 0.001% and 0.0001% prevents the effects of 30, 45, and 80 J/cm of LED-BL on fibroblast migration speed. The authors found that LED-BL at a fluences of 30, 45, and 80 J/cm significantly increased ROS, whereas pretreatment with 0.001% resveratrol significantly reduced ROS generation. CONCLUSION The findings demonstrate that LED-BL-induced decreases in fibroblast migration speed can be prevented by pretreating cells with resveratrol. This finding supports the hypothesis that ROS generation is the most likely driver of LED-BL-induced alterations in migration speed and suggests that ROS generation may be responsible for a number of other alterations seen after LED-BL phototherapy, such as decreases in cellular migration, cytokine levels, and myofibroblast differentiation. The authors hypothesize that their findings may result in greater understanding of the fundamental mechanisms underlying visible light interaction with skin and they hope dermatologists and other researchers may use these pathways for patient benefit.
Collapse
|
18
|
The Combination of Resveratrol and High-Fluence Light Emitting Diode-Red Light Produces Synergistic Photobotanical Inhibition of Fibroblast Proliferation and Collagen Synthesis: A Novel Treatment for Skin Fibrosis. Dermatol Surg 2017; 43:81-86. [DOI: 10.1097/dss.0000000000000921] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
AGE-RAGE interaction in the TGFβ2-mediated epithelial to mesenchymal transition of human lens epithelial cells. Glycoconj J 2016; 33:631-43. [PMID: 27263094 DOI: 10.1007/s10719-016-9686-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/18/2016] [Accepted: 05/24/2016] [Indexed: 01/12/2023]
Abstract
Basement membrane (BM) proteins accumulate chemical modifications with age. One such modification is glycation, which results in the formation of advanced glycation endproducts (AGEs). In a previous study, we reported that AGEs in the human lens capsule (BM) promote the TGFβ2-mediated epithelial-to-mesenchymal transition (EMT) of lens epithelial cells, which we proposed as a mechanism for posterior capsule opacification (PCO) or secondary cataract formation. In this study, we investigated the role of a receptor for AGEs (RAGE) in the TGFβ2-mediated EMT in a human lens epithelial cell line (FHL124). RAGE was present in FHL124 cells, and its levels were unaltered in cells cultured on either native or AGE-modified BM or upon treatment with TGFβ2. RAGE overexpression significantly enhanced the TGFβ2-mediated EMT responses in cells cultured on AGE-modified BM compared with the unmodified matrix. In contrast, treatment of cells with a RAGE antibody or EN-RAGE (an endogenous ligand for RAGE) resulted in a significant reduction in the TGFβ2-mediated EMT response. This was accompanied by a reduction in TGFβ2-mediated Smad signaling and ROS generation. These results imply that the interaction of matrix AGEs with RAGE plays a role in the TGFβ2-mediated EMT of lens epithelial cells and suggest that the blockade of RAGE could be a strategy to prevent PCO and other age-associated fibrosis.
Collapse
|
20
|
Mamalis A, Koo E, Isseroff RR, Murphy W, Jagdeo J. Resveratrol Prevents High Fluence Red Light-Emitting Diode Reactive Oxygen Species-Mediated Photoinhibition of Human Skin Fibroblast Migration. PLoS One 2015; 10:e0140628. [PMID: 26488596 PMCID: PMC4619307 DOI: 10.1371/journal.pone.0140628] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/29/2015] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Skin fibrosis is a significant medical problem that leads to a functional, aesthetic, and psychosocial impact on quality-of-life. Light-emitting diode-generated 633-nm red light (LED-RL) is part of the visible light spectrum that is not known to cause DNA damage and is considered a safe, non-invasive, inexpensive, and portable potential alternative to ultraviolet phototherapy that may change the treatment paradigm of fibrotic skin disease. OBJECTIVE The goal of our study was to investigate the how reactive oxygen species (ROS) free radicals generated by high fluence LED-RL inhibit the migration of skin fibroblasts, the main cell type involved in skin fibrosis. Fibroblast migration speed is increased in skin fibrosis, and we studied cellular migration speed of cultured human skin fibroblasts as a surrogate measure of high fluence LED-RL effect on fibroblast function. To ascertain the inhibitory role of LED-RL generated ROS on migration speed, we hypothesized that resveratrol, a potent antioxidant, could prevent the photoinhibitory effects of high fluence LED-RL on fibroblast migration speed. METHODS High fluence LED-RL generated ROS were measured by flow cytometry analysis using dihydrorhodamine (DHR). For purposes of comparison, we assessed the effects of ROS generated by hydrogen peroxide (H2O2) on fibroblast migration speed and the ability of resveratrol, a well known antioxidant, to prevent LED-RL and H2O2 generated ROS-associated changes in fibroblast migration speed. To determine whether resveratrol could prevent the high fluence LED-RL ROS-mediated photoinhibition of human skin fibroblast migration, treated cells were incubated with resveratrol at concentrations of 0.0001% and 0.001% for 24 hours, irradiated with high fluences LED-RL of 480, 640, and 800 J/cm2. RESULTS High fluence LED-RL increases intracellular fibroblast ROS and decreases fibroblast migration speed. LED-RL at 480, 640 and 800 J/cm2 increased ROS levels to 132.8%, 151.0%, and 158.4% relative to matched controls, respectively. These LED-RL associated increases in ROS were prevented by pretreating cells with 0.0001% or 0.001% resveratrol. Next, we quantified the effect of hydrogen peroxide (H2O2)-associated ROS on fibroblast migration speed, and found that while H2O2-associated ROS significantly decreased relative fibroblast migration speed, pretreatment with 0.0001% or 0.001% resveratrol significantly prevented the decreases in migration speed. Furthermore, we found that LED-RL at 480, 640 and 800 J/cm2 decreased fibroblast migration speed to 83.0%, 74.4%, and 68.6% relative to matched controls, respectively. We hypothesized that these decreases in fibroblast migration speed were due to associated increases in ROS generation. Pretreatment with 0.0001% and 0.001% resveratrol prevented the LED-RL associated decreases in migration speed. CONCLUSION High fluence LED-RL increases ROS and is associated with decreased fibroblast migration speed. We provide mechanistic support that the decreased migration speed associated with high fluence LED-RL is mediated by ROS, by demonstrating that resveratrol prevents high fluence LED-RL associated migration speed change. These data lend support to an increasing scientific body of evidence that high fluence LED-RL has anti-fibrotic properties. We hypothesize that our findings may result in a greater understanding of the fundamental mechanisms underlying visible light interaction with skin and we anticipate clinicians and other researchers may utilize these pathways for patient benefit.
Collapse
Affiliation(s)
- Andrew Mamalis
- Department of Dermatology, University of California Davis, Sacramento, CA, United States of America
- Dermatology Service, Sacramento VA Medical Center, Mather, CA, United States of America
| | - Eugene Koo
- Department of Dermatology, University of California Davis, Sacramento, CA, United States of America
- Dermatology Service, Sacramento VA Medical Center, Mather, CA, United States of America
| | - R. Rivkah Isseroff
- Department of Dermatology, University of California Davis, Sacramento, CA, United States of America
- Dermatology Service, Sacramento VA Medical Center, Mather, CA, United States of America
| | - William Murphy
- Department of Dermatology, University of California Davis, Sacramento, CA, United States of America
- Department of Internal Medicine, University of California Davis, Sacramento, CA, United States of America
| | - Jared Jagdeo
- Department of Dermatology, University of California Davis, Sacramento, CA, United States of America
- Dermatology Service, Sacramento VA Medical Center, Mather, CA, United States of America
- Department of Dermatology, SUNY Downstate Medical Center, Brooklyn, NY, United States of America
- * E-mail:
| |
Collapse
|