1
|
Mwesigwa A, Tukwasibwe S, Cummings B, Kawalya H, Kiyaga S, Okoboi S, Castelnuovo B, Bikaitwoha EM, Kalyango JN, Nsobya SL, Karamagi C, Byakika-Kibwika P, Nankabirwa JI. Genetic diversity and population structure of Plasmodium falciparum across areas of varied malaria transmission intensities in Uganda. Malar J 2025; 24:97. [PMID: 40128854 PMCID: PMC11934718 DOI: 10.1186/s12936-025-05325-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 03/07/2025] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND Malaria remains a significant global health threat, with sub-Saharan Africa (SSA) bearing the highest burden of the disease. Plasmodium falciparum is the predominant species in the region, leading to substantial morbidity and mortality. Despite intensified control efforts over the last two decades, P. falciparum genetic diversity and multiplicity of infections (MOI) continue to pose significant challenges to malaria elimination in the region. This study assessed P. falciparum genetic diversity and population structure in areas with low, medium, and high malaria transmission intensities in Uganda. METHODS A total of 288 P. falciparum-positive samples from children (6 months to 10 years) and adults (≥ 18 years) living in Jinja (low transmission), Kanungu (medium transmission), and Tororo (high transmission) were genotyped using seven neutral microsatellite markers. Genetic diversity was assessed based on the number of alleles (Na), allelic richness (Ar), and expected heterozygosity (He). Population structure was assessed using the fixation index, analysis of molecular variance (AMOVA), and clustering analysis. RESULTS High P. falciparum genetic diversity was observed across all study sites, with Kanungu exhibiting the highest mean He (0.81 ± 0.14), while Jinja and Tororo had lower mean He (0.78 ± 0.16). P. falciparum MOI varied significantly, with Tororo showing the highest mean MOI (2.5 ± 0.5) and 70% of samples exhibiting polyclonal infections, compared to Jinja's mean MOI of 1.9 ± 0.3 and 58% polyclonal infections. Significant multilocus linkage disequilibrium (LD) was noted (p < 0.01), ranging from 0.07 in Tororo to 0.14 in Jinja. Parasite population structure showed minimal genetic differentiation (FST ranged from 0.011 to 0.021) and a low AMOVA value (0.03), indicating high gene flow. CONCLUSION This study demonstrates high P. falciparum genetic diversity and MOI but low population structure, suggesting significant parasite gene flow between study sites. This highlights the need for integrated malaria control strategies across areas with varying malaria transmission intensities in Uganda.
Collapse
Affiliation(s)
- Alex Mwesigwa
- Clinical Epidemiology Unit, School of Medicine, Makerere University College of Health Sciences, P. O. Box 7072, Kampala, Uganda.
- Department of Microbiology and Immunology, School of Medicine, Kabale University, P. O. Box 314, Kabale, Uganda.
| | - Stephen Tukwasibwe
- Infectious Diseases Research Collaboration (IDRC), P.O. Box 7475, Kampala, Uganda
| | - Bryan Cummings
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 655 W. Baltimore St, Baltimore, MA, 21201, USA
| | - Hakiimu Kawalya
- Department of Immunology and Molecular Biology, Makerere University College of Health Sciences, P. O. Box 7072, Kampala, Uganda
| | - Shahiid Kiyaga
- Infectious Diseases Research Collaboration (IDRC), P.O. Box 7475, Kampala, Uganda
- Department of Immunology and Molecular Biology, Makerere University College of Health Sciences, P. O. Box 7072, Kampala, Uganda
- African Center of Excellence in Bioinformatics and Data Intensive Sciences, Kampala, Uganda
| | - Stephen Okoboi
- Infectious Diseases Institute, College of Health Sciences, Makerere University, P. O. Box 7072, Kampala, Uganda
| | - Barbara Castelnuovo
- Infectious Diseases Institute, College of Health Sciences, Makerere University, P. O. Box 7072, Kampala, Uganda
| | - Everd Maniple Bikaitwoha
- Department of Community Health, School of Medicine, Kabale University, P. O. Box 314, Kabale, Uganda
| | - Joan N Kalyango
- Clinical Epidemiology Unit, School of Medicine, Makerere University College of Health Sciences, P. O. Box 7072, Kampala, Uganda
| | - Samuel L Nsobya
- Infectious Diseases Research Collaboration (IDRC), P.O. Box 7475, Kampala, Uganda
| | - Charles Karamagi
- Clinical Epidemiology Unit, School of Medicine, Makerere University College of Health Sciences, P. O. Box 7072, Kampala, Uganda
| | - Pauline Byakika-Kibwika
- Department of Medicine, School of Medicine, Makerere University College of Health Sciences, P. O. Box 7072, Kampala, Uganda
- Mbarara University of Science and Technology, Mbarara, Uganda
| | - Joaniter I Nankabirwa
- Clinical Epidemiology Unit, School of Medicine, Makerere University College of Health Sciences, P. O. Box 7072, Kampala, Uganda
- Infectious Diseases Research Collaboration (IDRC), P.O. Box 7475, Kampala, Uganda
| |
Collapse
|
2
|
Abriham ZY, Belew AK, Baffa LD, Mengistu B, Gasahw M, Mohammod EA, Agimas MC, Sisay M, Angaw DA. Plasmodium falciparum genetic diversity; implications for malaria control in Ethiopia: Systematic review and meta-analysis. Health Sci Rep 2024; 7:e70092. [PMID: 39355094 PMCID: PMC11439746 DOI: 10.1002/hsr2.70092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 08/19/2024] [Accepted: 09/05/2024] [Indexed: 10/03/2024] Open
Abstract
Background In malaria endemic regions, Plasmodium falciparum infection is characterized by variable genetic diversity at different settings. The parasite's various forms are found at varied frequency in different geographic areas. Understanding malaria parasite diversity and transmission is vital to evaluate control interventions. The aim of this study was under taken to determine the status of P. falciparum genetic diversity and MOI in different regions of Ethiopia. Methods Relevant publications were identified from electronic databases such as; PubMed, EMBASE, Google scholar and Google. Besides, an online search was done using the above databases for all articles published in English on genetic diversity of P. falciparum in Ethiopia. STATA software was used for data analysis. The pooled estimates were calculated using random effect model. The summary estimates were presented using forest plots and tables. Results A total of 11 studies were included in the systematic review. However, only 8, 10 and 2 studies were included for Pfmsp-1, Pfmsp-2 and glurp gene meta-analysis, respectively. However, the meta-analysis result showed that the pooled prevalence of Pfmsp-1, msp-2 and glurp gene were 84% for both msp-1/2% and 51%, respectively. The pooled prevalence of msp-1 gene was higher in Amhara followed by Oromia region and lower in SNNPR while, for msp-2 gene the pooled prevalence was higher in Benshangul gumez region. Among the allelic family of msp-1 and msp-2 genes, MAD20 (34%) and FC27 (44%) were the most predominant respectively. Conclusion Based on the review, there is evidence of the presence of high genetic diversity of P. falciparum parasites in Ethiopia, suggesting that malaria transmission remain high and that strengthened control efforts are needed. The approaches and methods used for investigation of diversified parasites have similarity between studies and should use advanced molecular techniques, like microsatellite, to assess the genetic diversity of P. falciparum for better results.
Collapse
Affiliation(s)
- Zufan Y. Abriham
- Department of Medical Parasitology, School of Biomedical and Laboratory SciencesCollege of Medicine and Health Sciences, University of GondarGondarEthiopia
| | - Aysheshim K. Belew
- Department of Human Nutrition, Institute of Public HealthCollege of Medicine and Health Sciences, University of GondarGondarEthiopia
| | - Lemlem D. Baffa
- Department of Human Nutrition, Institute of Public HealthCollege of Medicine and Health Sciences, University of GondarGondarEthiopia
| | - Berhanu Mengistu
- Department of Human Nutrition, Institute of Public HealthCollege of Medicine and Health Sciences, University of GondarGondarEthiopia
| | - Moges Gasahw
- Department of Physiotherapy, School of MedicineCollege of Medicine and Health Sciences, University of GondarGondarEthiopia
| | - Esmeal A. Mohammod
- Department of Human Nutrition, Institute of Public HealthCollege of Medicine and Health Sciences, University of GondarGondarEthiopia
| | - Muluken C. Agimas
- Department of Epidemiology and Biostatistics, Institute of Public HealthCollege of Medicine and Health Sciences, University of GondarGondarEthiopia
| | - Mekonnen Sisay
- Department of Human Nutrition, Institute of Public HealthCollege of Medicine and Health Sciences, University of GondarGondarEthiopia
| | - Dessie A. Angaw
- Department of Epidemiology and Biostatistics, Institute of Public HealthCollege of Medicine and Health Sciences, University of GondarGondarEthiopia
| |
Collapse
|
3
|
Mwesigwa A, Ocan M, Musinguzi B, Nante RW, Nankabirwa JI, Kiwuwa SM, Kinengyere AA, Castelnuovo B, Karamagi C, Obuku EA, Nsobya SL, Mbulaiteye SM, Byakika-Kibwika P. Plasmodium falciparum genetic diversity and multiplicity of infection based on msp-1, msp-2, glurp and microsatellite genetic markers in sub-Saharan Africa: a systematic review and meta-analysis. Malar J 2024; 23:97. [PMID: 38589874 PMCID: PMC11000358 DOI: 10.1186/s12936-024-04925-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/01/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND In sub-Saharan Africa (SSA), Plasmodium falciparum causes most of the malaria cases. Despite its crucial roles in disease severity and drug resistance, comprehensive data on Plasmodium falciparum genetic diversity and multiplicity of infection (MOI) are sparse in SSA. This study summarizes available information on genetic diversity and MOI, focusing on key markers (msp-1, msp-2, glurp, and microsatellites). The systematic review aimed to evaluate their influence on malaria transmission dynamics and offer insights for enhancing malaria control measures in SSA. METHODS The review was conducted following the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines. Two reviewers conducted article screening, assessed the risk of bias (RoB), and performed data abstraction. Meta-analysis was performed using the random-effects model in STATA version 17. RESULTS The review included 52 articles: 39 cross-sectional studies and 13 Randomized Controlled Trial (RCT)/cohort studies, involving 11,640 genotyped parasite isolates from 23 SSA countries. The overall pooled mean expected heterozygosity was 0.65 (95% CI: 0.51-0.78). Regionally, values varied: East (0.58), Central (0.84), Southern (0.74), and West Africa (0.69). Overall pooled allele frequencies of msp-1 alleles K1, MAD20, and RO33 were 61%, 44%, and 40%, respectively, while msp-2 I/C 3D7 and FC27 alleles were 61% and 55%. Central Africa reported higher frequencies (K1: 74%, MAD20: 51%, RO33: 48%) than East Africa (K1: 46%, MAD20: 42%, RO33: 31%). For msp-2, East Africa had 60% and 55% for I/C 3D7 and FC27 alleles, while West Africa had 62% and 50%, respectively. The pooled allele frequency for glurp was 66%. The overall pooled mean MOI was 2.09 (95% CI: 1.88-2.30), with regional variations: East (2.05), Central (2.37), Southern (2.16), and West Africa (1.96). The overall prevalence of polyclonal Plasmodium falciparum infections was 63% (95% CI: 56-70), with regional prevalences as follows: East (62%), West (61%), Central (65%), and South Africa (71%). CONCLUSION The study shows substantial regional variation in Plasmodium falciparum parasite genetic diversity and MOI in SSA. These findings suggest a need for malaria control strategies and surveillance efforts considering regional-specific factors underlying Plasmodium falciparum infection.
Collapse
Affiliation(s)
- Alex Mwesigwa
- Clinical Epidemiology Unit, School of Medicine, College of Health Sciences, Makerere University, P. O. Box 7072, Kampala, Uganda.
- Department of Microbiology and Immunology, School of Medicine, Kabale University, P. O Box 314, Kabale, Uganda.
| | - Moses Ocan
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, College of Health Sciences, Makerere University, P.O. Box 7072, Kampala, Uganda
- African Center for Systematic Reviews and Knowledge Translation, College of Health Sciences, Makerere University, P.O. Box 7072, Kampala, Uganda
| | - Benson Musinguzi
- Departent of Medical Laboratory Science, Faculty of Health Sciences, Muni University, P.O Box 725, Arua, Uganda
| | - Rachel Wangi Nante
- African Center for Systematic Reviews and Knowledge Translation, College of Health Sciences, Makerere University, P.O. Box 7072, Kampala, Uganda
| | - Joaniter I Nankabirwa
- Clinical Epidemiology Unit, School of Medicine, College of Health Sciences, Makerere University, P. O. Box 7072, Kampala, Uganda
- Infectious Diseases Research Collaboration, College of Health Sciences, Makerere University, P.O. Box 7072, Kampala, Uganda
| | - Steven M Kiwuwa
- Department of Biochemistry, School of Biomedical Sciences, College of Health Sciences, Makerere, University, P.O. Box 7072, Kampala, Uganda
| | - Alison Annet Kinengyere
- Albert Cook Library, College of Health Sciences, Makerere University, P.O. Box 7072, Kampala, Uganda
| | - Barbara Castelnuovo
- Infectious Diseases Institute, College of Health Sciences, Makerere University, P. O. Box 7072, Kampala, Uganda
| | - Charles Karamagi
- Clinical Epidemiology Unit, School of Medicine, College of Health Sciences, Makerere University, P. O. Box 7072, Kampala, Uganda
| | - Ekwaro A Obuku
- Infectious Diseases Institute, College of Health Sciences, Makerere University, P. O. Box 7072, Kampala, Uganda
- African Center for Systematic Reviews and Knowledge Translation, College of Health Sciences, Makerere University, P.O. Box 7072, Kampala, Uganda
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Samuel L Nsobya
- Infectious Diseases Research Collaboration, College of Health Sciences, Makerere University, P.O. Box 7072, Kampala, Uganda
| | - Sam M Mbulaiteye
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Dr, 6E-118, Bethesda, MD, 20892, USA
| | - Pauline Byakika-Kibwika
- Department of Medicine, School of Medicine, College of Health Sciences, Makerere University, P. O. Box 7072, Kampala, Uganda
- Infectious Diseases Institute, College of Health Sciences, Makerere University, P. O. Box 7072, Kampala, Uganda
| |
Collapse
|
4
|
Plasmodium falciparum Merozoite Surface Proteins Polymorphisms and Treatment Outcomes among Patients with Uncomplicated Malaria in Mwanza, Tanzania. J Trop Med 2022; 2022:5089143. [DOI: 10.1155/2022/5089143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/26/2022] [Accepted: 10/20/2022] [Indexed: 11/25/2022] Open
Abstract
Background. The severity of malaria infection depends on the host, parasite and environmental factors. Merozoite surface protein (msp) diversity determines transmission dynamics, P. falciparum immunity evasion, and pathogenesis or virulence. There is limited updated information on P. falciparum msp polymorphisms and their impact on artemether-lumefantrine treatment outcomes in Tanzania. Therefore, this study is aimed at examining msp genetic diversity and multiplicity of infection (MOI) among P. falciparum malaria patients. The influence of MOI on peripheral parasite clearance and adequate clinical and parasitological response (ACPR) was also assessed. Methods. Parasite DNA was extracted from dried blood spots according to the manufacture’s protocol. Primary and nested PCR were performed. The PCR products for both the block 2 region of msp1 and the block 3 regions of msp2 genes and their specific allelic families were visualized on a 2.5% agarose gel. Results. The majority of the isolates, 58/102 (58.8%) for msp1 and 69/115 (60.1%) for msp2, harboured more than one parasite genotypes. For the msp1 gene, K1 was the predominant allele observed (75.64%), whereas RO33 occurred at the lowest frequency (43.6%). For the msp2 gene, the 3D7 allele was observed at a higher frequency (81.7%) than the FC27 allele (76.9%). The MOIs were 2.44 for msp1 and 2.27 for msp2 (
). A significant correlation between age and multiplicity of infection (MOI) for msp1 or MOI for msp2 was not established in this study (rho = 0.074,
and rho = −0.129,
, respectively). Similarly, there was no positive correlation between parasite density at day 1 and MOI for both msp1 (rho = 0.113,
) and msp2 (rho = 0.043,
). The association between MOI and ACPR was not observed for either msp1 or mps2 (
and 0.296, respectively). Conclusions. This study reports high polyclonal infections, MOI and allelic frequencies for both msp1 and msp2. There was a lack of correlation between MOI and ACPR. However, a borderline significant correlation was observed between day 2 parasitaemia and MOI.
Collapse
|
5
|
Kimenyi KM, Wamae K, Ngoi JM, de Laurent ZR, Ndwiga L, Osoti V, Obiero G, Abdi AI, Bejon P, Ochola-Oyier LI. Maintenance of high temporal Plasmodium falciparum genetic diversity and complexity of infection in asymptomatic and symptomatic infections in Kilifi, Kenya from 2007 to 2018. Malar J 2022; 21:192. [PMID: 35725456 PMCID: PMC9207840 DOI: 10.1186/s12936-022-04213-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 06/03/2022] [Indexed: 11/30/2022] Open
Abstract
Background High levels of genetic diversity are common characteristics of Plasmodium falciparum parasite populations in high malaria transmission regions. There has been a decline in malaria transmission intensity over 12 years of surveillance in the community in Kilifi, Kenya. This study sought to investigate whether there was a corresponding reduction in P. falciparum genetic diversity, using msp2 as a genetic marker. Methods Blood samples were obtained from children (< 15 years) enrolled into a cohort with active weekly surveillance between 2007 and 2018 in Kilifi, Kenya. Asymptomatic infections were defined during the annual cross-sectional blood survey and the first-febrile malaria episode was detected during the weekly follow-up. Parasite DNA was extracted and successfully genotyped using allele-specific nested polymerase chain reactions for msp2 and capillary electrophoresis fragment analysis. Results Based on cross-sectional surveys conducted in 2007–2018, there was a significant reduction in malaria prevalence (16.2–5.5%: P-value < 0.001), however msp2 genetic diversity remained high. A high heterozygosity index (He) (> 0.95) was observed in both asymptomatic infections and febrile malaria over time. About 281 (68.5%) asymptomatic infections were polyclonal (> 2 variants per infection) compared to 46 (56%) polyclonal first-febrile infections. There was significant difference in complexity of infection (COI) between asymptomatic 2.3 [95% confidence interval (CI) 2.2–2.5] and febrile infections 2.0 (95% CI 1.7–2.3) (P = 0.016). Majority of asymptomatic infections (44.2%) carried mixed alleles (i.e., both FC27 and IC/3D7), while FC27 alleles were more frequent (53.3%) among the first-febrile infections. Conclusions Plasmodium falciparum infections in Kilifi are still highly diverse and polyclonal, despite the reduction in malaria transmission in the community. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-022-04213-7.
Collapse
Affiliation(s)
- Kelvin M Kimenyi
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya. .,Department of Biochemistry, University of Nairobi, Nairobi, Kenya.
| | - Kevin Wamae
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Joyce M Ngoi
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya.,West Africa Centre for Cell Biology and Infectious Pathogen, Accra, Ghana
| | | | | | - Victor Osoti
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - George Obiero
- Department of Biochemistry, University of Nairobi, Nairobi, Kenya
| | | | - Philip Bejon
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | |
Collapse
|
6
|
Deletions of the Plasmodium falciparum histidine-rich protein 2/3 genes are common in field isolates from north-eastern Tanzania. Sci Rep 2022; 12:5802. [PMID: 35388127 PMCID: PMC8987040 DOI: 10.1038/s41598-022-09878-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/30/2022] [Indexed: 11/26/2022] Open
Abstract
Plasmodium falciparum parasites lacking histidine-rich protein 2 and 3 (pfhrp2/3) genes have been reported in several parts of the world. These deletions are known to compromise the effectiveness of HRP2-based malaria rapid diagnostic tests (HRP2-RDT). The National Malaria Control Programme (NMCP) in Tanzania adopted HRP2-RDTs as a routine tool for malaria diagnosis in 2009 replacing microscopy in many Health facilities. We investigated pfhrp2/3 deletions in 122 samples from two areas with diverse malaria transmission intensities in Northeastern Tanzania. Pfhrp2 deletion was confirmed in 1.6% of samples while pfhrp3 deletion was confirmed in 50% of samples. We did not find parasites with both pfhrp2 and pfhrp3 deletions among our samples. Results from this study highlight the need for systematic surveillance of pfhrp2/3 deletions in Tanzania to understand their prevalence and determine their impact on the performance of mRDT.
Collapse
|
7
|
In Vitro Antiprotozoal Effects of Nano-chitosan on Plasmodium falciparum, Giardia lamblia and Trichomonas vaginalis. Acta Parasitol 2021; 66:39-52. [PMID: 32666158 DOI: 10.1007/s11686-020-00255-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/09/2020] [Indexed: 01/02/2023]
Abstract
BACKGROUND Treatment of parasitic infections with conventional drugs is associated with high toxicity, and undesirable side effects require cogent substitutions. Nanotechnology has provided novel approaches to synthesize nano-drugs to improve efficient antipathetic treatment. PURPOSE Nano-chitosan as a nontoxic antimicrobial agent was examined against three most prevalent protozoa in humans, Plasmodium falciparum, Giardia lamblia and Trichomonas vaginalis. METHODS Chitosan extracted from Penicillium fungi was converted to nanoparticles to maximize its therapeutic properties. Safety of nano-chitosan was examined by determining its hemolytic property and toxicity on PC12 cells. The studied parasites were identified with RFLP-PCR and cultivation in relevant media. Characteristics of nano-chitosan as an useful and valuable curative compound was evaluated by FTIR, DLS and SEM. Dose dependent anti-parasitic effect of nano-chitosan was evaluated. RESULTS The highest anti-parasitic activity of the nano-chitosan was observed at 50 μg/mL by which growth rates of cultivated P. falciparum, T. vaginalis and G. lamblia were inhibited by 59.5%, 99.4%, and 31.3%, respectively. The study demonstrated that nano-chitosan with the least toxicity, low side effects, and substantial efficacy deserved to be considered as an anti-parasitic nano-compound. CONCLUSION Nano-chitosan significantly inhibited protozoan growth in vitro promising to explore its use to combat parasitic infections. Further investigations covering extended sample size, in vivo experiments and optimizing the concentration used may lead to efficient treatment of protozoan diseases.
Collapse
|
8
|
Mohammed H, Assefa A, Chernet M, Wuletaw Y, Commons RJ. Genetic polymorphisms of Plasmodium falciparum isolates from Melka-Werer, North East Ethiopia based on the merozoite surface protein-2 (msp-2) gene as a molecular marker. Malar J 2021; 20:85. [PMID: 33579293 PMCID: PMC7881608 DOI: 10.1186/s12936-021-03625-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/04/2021] [Indexed: 11/21/2022] Open
Abstract
Background The characterization of parasite populations circulating in malaria endemic areas is necessary to evaluate the success of ongoing interventions and malaria control strategies. This study was designed to investigate the genetic diversity of Plasmodium falciparum isolates from the semi-arid area in North East Ethiopia, using the highly polymorphic merozoite surface protein-2 (msp2) gene as a molecular marker. Methods Dried blood spot isolates were collected from patients with P. falciparum infection between September 2014 and January 2015 from Melka-Werer, North East Ethiopia. Parasite DNA was extracted and genotyped using allele-specific nested polymerase chain reactions for msp2. Results 52 isolates were collected with msp2 identified in 41 (78.8%) isolates. Allele typing of the msp2 gene detected the 3D7/IC allelic family in 54% and FC27 allelic family in 46%. A total of 14 different msp2 genotypes were detected including 6 belonging to the 3D7/IC family and 8 to the FC27 family. Forty percent of isolates had multiple genotypes and the overall mean multiplicity of infections (MOI) was 1.2 (95%CI 0.96–1.42). The heterozygosity index was 0.50 for the msp2 locus. There was no difference in MOI between age groups. A negative correlation between parasite density and multiplicity of infection was found (p = 0.02). Conclusion Plasmodium falciparum isolates from the semi-arid area of North East Ethiopia are mainly monoclonal with low MOI and limited genetic diversity in the study population.
Collapse
Affiliation(s)
- Hussein Mohammed
- Malaria, Neglected Tropical Diseases Research Team, Bacterial, Parasitic, Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia.
| | - Ashenafi Assefa
- Malaria, Neglected Tropical Diseases Research Team, Bacterial, Parasitic, Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Melkie Chernet
- Malaria, Neglected Tropical Diseases Research Team, Bacterial, Parasitic, Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Yonas Wuletaw
- Malaria, Neglected Tropical Diseases Research Team, Bacterial, Parasitic, Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Robert J Commons
- Global Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia.,Internal Medicine Services, Ballarat Health Services, Ballarat, Australia
| |
Collapse
|
9
|
Santamaría AM, Vásquez V, Rigg C, Moreno D, Romero L, Justo C, Chaves LF, Saldaña A, Calzada JE. Plasmodium falciparum Genetic Diversity in Panamá Based on glurp, msp-1 and msp-2 Genes: Implications for Malaria Elimination in Mesoamerica. Life (Basel) 2020; 10:E319. [PMID: 33260605 PMCID: PMC7760695 DOI: 10.3390/life10120319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 11/17/2020] [Accepted: 11/24/2020] [Indexed: 12/26/2022] Open
Abstract
Panamá, together with all the nations in Mesoamerica, has committed to eliminate malaria from the region by 2020. As these countries approach malaria elimination and local transmission decreases, an active molecular surveillance to identify genotypes circulating along the border areas is particularly needed to accurately infer infection origin, drug resistance and disease propagation patterns in the region. This study evaluated the genetic diversity and allele frequencies of msp-1, msp-2 and glurp genes using different molecular analyses (nested PCR, PCR-restriction fragment length polymorphism (RFLP) and sequencing) from 106 autochthonous and imported P. falciparum isolates collected from different endemic areas in Panamá between 2003 and 2019. We also explored if P. falciparum genotypes assessed with these molecular markers were associated with relevant malaria epidemiological parameters using a multiple correspondence analysis. A strong association of certain local haplotypes with their geographic distribution in endemic areas, but also with parasite load and presence of gametocytes, was evidenced. Few multiclonal infections and low genetic diversity among locally transmitted P. falciparum samples were detected, consequent with the low transmission intensity of this parasite in Panamá, a pattern likely to be extended across Mesoamerica. In addition, several imported cases were genetically dissimilar to local infections and representative of more diverse extra-continental lineages.
Collapse
Affiliation(s)
- Ana María Santamaría
- Departamento de Investigación en Parasitología, Instituto Conmemorativo Gorgas de Estudios de la Salud, Panamá 0816-02593, Republic of Panama; (A.M.S.); (V.V.); (C.R.); (A.S.)
- Facultades de Ciencias Naturales Exactas y Ciencias de la Salud, Universidad de Panamá, Panamá 4 3366, Republic of Panama
| | - Vanessa Vásquez
- Departamento de Investigación en Parasitología, Instituto Conmemorativo Gorgas de Estudios de la Salud, Panamá 0816-02593, Republic of Panama; (A.M.S.); (V.V.); (C.R.); (A.S.)
| | - Chystrie Rigg
- Departamento de Investigación en Parasitología, Instituto Conmemorativo Gorgas de Estudios de la Salud, Panamá 0816-02593, Republic of Panama; (A.M.S.); (V.V.); (C.R.); (A.S.)
| | - Dianik Moreno
- Laboratorio Central de Referencia en Salud Publica, Instituto Conmemorativo Gorgas de Estudios de la Salud, Panamá 0816-02593, Republic of Panama; (D.M.); (L.R.); (C.J.)
| | - Luis Romero
- Laboratorio Central de Referencia en Salud Publica, Instituto Conmemorativo Gorgas de Estudios de la Salud, Panamá 0816-02593, Republic of Panama; (D.M.); (L.R.); (C.J.)
| | - Carlos Justo
- Laboratorio Central de Referencia en Salud Publica, Instituto Conmemorativo Gorgas de Estudios de la Salud, Panamá 0816-02593, Republic of Panama; (D.M.); (L.R.); (C.J.)
| | - Luis Fernando Chaves
- Instituto Costarricense de Investigación y Enseñanza en Nutrición y Salud (INCIENSA), Tres Ríos 4-2250, Cartago 1, Costa Rica;
| | - Azael Saldaña
- Departamento de Investigación en Parasitología, Instituto Conmemorativo Gorgas de Estudios de la Salud, Panamá 0816-02593, Republic of Panama; (A.M.S.); (V.V.); (C.R.); (A.S.)
- Facultades de Ciencias Naturales Exactas y Ciencias de la Salud, Universidad de Panamá, Panamá 4 3366, Republic of Panama
| | - José E. Calzada
- Departamento de Investigación en Parasitología, Instituto Conmemorativo Gorgas de Estudios de la Salud, Panamá 0816-02593, Republic of Panama; (A.M.S.); (V.V.); (C.R.); (A.S.)
- Facultades de Ciencias Naturales Exactas y Ciencias de la Salud, Universidad de Panamá, Panamá 4 3366, Republic of Panama
| |
Collapse
|
10
|
Sondo P, Derra K, Rouamba T, Nakanabo Diallo S, Taconet P, Kazienga A, Ilboudo H, Tahita MC, Valéa I, Sorgho H, Lefèvre T, Tinto H. Determinants of Plasmodium falciparum multiplicity of infection and genetic diversity in Burkina Faso. Parasit Vectors 2020; 13:427. [PMID: 32819420 PMCID: PMC7441709 DOI: 10.1186/s13071-020-04302-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/10/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Investigating malaria transmission dynamics is essential to inform policy decision making. Whether multiplicity of infection (MOI) dynamic from individual infections could be a reliable malaria metric in high transmission settings with marked variation in seasons of malaria transmission has been poorly assessed. This study aimed at investigating factors driving Plasmodium falciparum MOI and genetic diversity in a hyperendemic area of Burkina Faso. METHODS Blood samples collected from a pharmacovigilance trial were used for polymerase chain reaction genotyping of the merozoite surface proteins 1 and 2. MOI was defined as the number of distinct parasite genotypes co-existing within a particular infection. Monthly rainfall data were obtained from satellite data of the Global Precipitation Measurement Database while monthly malaria incidence aggregated data were extracted from District Health Information Software 2 medical data of the Center-West health regional direction. RESULTS In the study area, infected people harboured an average of 2.732 (± 0.056) different parasite genotypes. A significant correlation between the monthly MOI and the monthly malaria incidence was observed, suggesting that MOI could be a good predictor of transmission intensity. A strong effect of season on MOI was observed, with infected patients harbouring higher number of parasite genotypes during the rainy season as compared to the dry season. There was a negative relationship between MOI and host age. In addition, MOI decreased with increasing parasite densities, suggesting that there was a within-host competition among co-infecting genetically distinct P. falciparum variants. Each allelic family of the msp1 and msp2 genes was present all year round with no significant monthly fluctuation. CONCLUSIONS In high malaria endemic settings with marked variation in seasons of malaria transmission, MOI represents an appropriate malaria metric which provides useful information about the longitudinal changes in malaria transmission in a given area. Besides transmission season, patient age and parasite density are important factors to consider for better understanding of variations in MOI. All allelic families of msp1 and msp2 genes were found in both dry and rainy season. The approach offers the opportunity of translating genotyping data into relevant epidemiological information for malaria control.
Collapse
Affiliation(s)
- Paul Sondo
- Institut de Recherche en Sciences de la Santé/Clinical Research Unit of Nanoro (IRSS-URCN), Nanoro, Burkina Faso.
| | - Karim Derra
- Institut de Recherche en Sciences de la Santé/Clinical Research Unit of Nanoro (IRSS-URCN), Nanoro, Burkina Faso
| | - Toussaint Rouamba
- Institut de Recherche en Sciences de la Santé/Clinical Research Unit of Nanoro (IRSS-URCN), Nanoro, Burkina Faso
| | - Seydou Nakanabo Diallo
- Institut National de Santé Publique/Centre Muraz de Bobo-Dioulasso, Bobo-Dioulasso, Burkina Faso
| | - Paul Taconet
- Centre de Recherche en Écologie et Évolution de la Santé (CREES), Montpellier, France
| | - Adama Kazienga
- Institut de Recherche en Sciences de la Santé/Clinical Research Unit of Nanoro (IRSS-URCN), Nanoro, Burkina Faso
| | - Hamidou Ilboudo
- Institut de Recherche en Sciences de la Santé/Clinical Research Unit of Nanoro (IRSS-URCN), Nanoro, Burkina Faso
| | - Marc Christian Tahita
- Institut de Recherche en Sciences de la Santé/Clinical Research Unit of Nanoro (IRSS-URCN), Nanoro, Burkina Faso
| | - Innocent Valéa
- Institut de Recherche en Sciences de la Santé/Clinical Research Unit of Nanoro (IRSS-URCN), Nanoro, Burkina Faso
| | - Hermann Sorgho
- Institut de Recherche en Sciences de la Santé/Clinical Research Unit of Nanoro (IRSS-URCN), Nanoro, Burkina Faso
| | - Thierry Lefèvre
- Centre de Recherche en Écologie et Évolution de la Santé (CREES), Montpellier, France.,Laboratoire Mixte International sur les Vecteurs (LAMIVECT), Bobo-Dioulasso, Burkina Faso.,Institut de Recherche pour le Développement (IRD), Centre National pour la Recherche Scientifique (CNRS), Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Université de Montpellier, Montpellier, France
| | - Halidou Tinto
- Institut de Recherche en Sciences de la Santé/Clinical Research Unit of Nanoro (IRSS-URCN), Nanoro, Burkina Faso
| |
Collapse
|
11
|
Abukari Z, Okonu R, Nyarko SB, Lo AC, Dieng CC, Salifu SP, Gyan BA, Lo E, Amoah LE. The Diversity, Multiplicity of Infection and Population Structure of P. falciparum Parasites Circulating in Asymptomatic Carriers Living in High and Low Malaria Transmission Settings of Ghana. Genes (Basel) 2019; 10:genes10060434. [PMID: 31181699 PMCID: PMC6628376 DOI: 10.3390/genes10060434] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 11/24/2022] Open
Abstract
Background: Diversity in Plasmodium falciparum poses a major threat to malaria control and elimination interventions. This study utilized 12 polymorphic microsatellite (MS) markers and the Msp2 marker to examine diversity, multiplicity of infection (MOI) as well as the population structure of parasites circulating in two sites separated by about 92 km and with varying malaria transmission intensities within the Greater Accra Region of Ghana. Methods: The diversity and MOI of P. falciparum parasites in 160 non-symptomatic volunteers living in Obom (high malaria transmission intensity) and Asutsuare (low malaria transmission intensity) aged between 8 and 60 years was determined using Msp2 genotyping and microsatellite analysis. Results: The prevalence of asymptomatic P. falciparum carriers as well as the parasite density of infections was significantly higher in Obom than in Asutsuare. Samples from Asutsuare and Obom were 100% and 65% clonal, respectively, by Msp2 genotyping but decreased to 50% and 5%, respectively, when determined by MS analysis. The genetic composition of parasites from Obom and Asutsuare were highly distinct, with parasites from Obom being more diverse than those from Asutsuare. Conclusion: Plasmodium falciparum parasites circulating in Obom are genetically more diverse and distinct from those circulating in Asutsuare. The MOI in samples from both Obom and Asutsuare increased when assessed by MS analysis relative to MSP2 genotyping. The TA40 and TA87 loci are useful markers for estimating MOI in high and low parasite prevalence settings.
Collapse
Affiliation(s)
- Zakaria Abukari
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
- Immunology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.
| | - Ruth Okonu
- Immunology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.
| | - Samuel B Nyarko
- School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana.
| | - Aminata C Lo
- Immunology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.
- Department of Parasitology, University Cheikh Anta Diop, Dakar, Senegal.
| | - Cheikh C Dieng
- Department of Biological Sciences, University of North Carolina at Charlotte, NC 28223, USA.
| | - Samson P Salifu
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| | - Ben A Gyan
- Immunology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.
| | - Eugenia Lo
- Department of Biological Sciences, University of North Carolina at Charlotte, NC 28223, USA.
| | - Linda E Amoah
- Immunology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.
- West Africa Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana.
| |
Collapse
|
12
|
Low genetic diversity and complexity of submicroscopic Plasmodium falciparum infections among febrile patients in low transmission areas in Senegal. PLoS One 2019; 14:e0215755. [PMID: 31022221 PMCID: PMC6483351 DOI: 10.1371/journal.pone.0215755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 04/08/2019] [Indexed: 11/20/2022] Open
Abstract
INTRODUCTION Submicroscopic Plasmodium infections are common in malaria endemic countries, but very little studies have been done in Senegal. This study investigates the genetic diversity and complexity of submicroscopic P. falciparum infections among febrile patients in low transmission areas in Senegal. MATERIALS AND METHODS Hundred and fifty blood samples were collected from febrile individuals living in Dielmo and Ndiop (Senegal) between August 2014 and January 2015, tested for microscopic and sub-microscopic P. falciparum infections and characterized for their genetic diversity and complexity of infections using msp-1 and msp-2 genotyping. RESULTS Submicroscopic P. falciparum infections were 19.6% and 25% in Dielmo and Ndiop, respectively. K1 and 3D7 were the predominant msp-1 and msp-2 allelic types with respective frequencies of 67.36% and 67.10% in microscopic isolates and 58.24% and 78% in submicroscopic ones. Frequencies of msp-1 allelic types were statistically comparable between the studied groups (p>0.05), and were respectively 93.54% vs 87.5% for K1, 60% vs 54.83% for MAD20 and 41.93% vs 22.5% for RO33 while frequencies of msp-2 allelic types were significantly highest in the microscopy group for FC27 (41.93% vs 10%, Fisher's Exact Test, p = 0.001) and 3D7 (61.29% vs 32.5%, Fisher's Exact Test, p = 0.02). Multiplicities of infection were lowest in submicroscopic P. falciparum isolates. CONCLUSIONS The study revealed a high submicroscopic P. falciparum carriage among patients in the study areas, and that submicroscopic P. falciparum isolates had a lower genetic diversity and complexity of malaria infections.
Collapse
|
13
|
Singana BP, Mayengue PI, Niama RF, Ndounga M. Genetic diversity of Plasmodium falciparum infection among children with uncomplicated malaria living in Pointe-Noire, Republic of Congo. Pan Afr Med J 2019; 32:183. [PMID: 31312296 PMCID: PMC6620066 DOI: 10.11604/pamj.2019.32.183.15694] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 12/12/2018] [Indexed: 01/28/2023] Open
Abstract
Introduction Molecular characterization of malaria parasites from different localities is important to improve understanding of acquisition of natural immunity to Plasmodium falciparum, to assist in identifying the most appropriate strategies for control and to evaluate the impact of control interventions. This study aimed to determine the genetic diversity and the multiplicity of infection in Plasmodium falciparum isolates from Pointe-Noire, Republic of Congo. Methods Plasmodium falciparum isolates were collected from 71 children with uncomplicated malaria; enrolled into the study for evaluating the therapeutic efficacy of artemether-lumefantrine combination. Both msp-1 and msp-2 genes were genotyped. Results From 296 distinct fragments detected, 13 msp-1 and 27 msp-2 different alleles were identified. For msp-1, RO33 family was poorly polymorphic. The K1 family has shown the trend of predominance (41%), followed by Mad20 (35%). Comparatively to msp-2, 49.6% and 48.8% fragments belonged to 3D7 and FC27 respectively. Taking together msp-1 and msp-2 genes, the overall multiplicity of infection has been increased to 2.64 and 86% harbored more than one parasite genotype. Parasite density was not influenced by age as well as the multiplicity of infection which was not influenced neither by age nor by parasite density. Conclusion Genetic diversity of Plasmodium falciparum in isolates from patients with uncomplicated malaria in Pointe-Noire is high and consisted mainly of multiple clones. The overall multiplicity of infection has been largely increased when considering msp-1 and msp-2 genes together. With the changes in malaria epidemiology, the use of both msp-1 and msp-2 genes in the characterization of Plasmodium falciparum infection is recommended.
Collapse
Affiliation(s)
- Brice Pembet Singana
- Faculté des Sciences et Techniques, Université Marien Ngouabi, BP 69 Brazzaville, République du Congo
| | - Pembe Issamou Mayengue
- Faculté des Sciences et Techniques, Université Marien Ngouabi, BP 69 Brazzaville, République du Congo.,Laboratoire National de Santé Publique, BP 120 Brazzaville, République du Congo
| | - Roch Fabien Niama
- Faculté des Sciences et Techniques, Université Marien Ngouabi, BP 69 Brazzaville, République du Congo.,Laboratoire National de Santé Publique, BP 120 Brazzaville, République du Congo
| | - Mathieu Ndounga
- Programme National de Lutte contre le Paludisme, Direction Générale de l'Epidémiologie de la Maladie, Ministère de la Santé et de la Population, République du Congo
| |
Collapse
|
14
|
Lamptey H, Ofori MF, Kusi KA, Adu B, Owusu-Yeboa E, Kyei-Baafour E, Arku AT, Bosomprah S, Alifrangis M, Quakyi IA. The prevalence of submicroscopic Plasmodium falciparum gametocyte carriage and multiplicity of infection in children, pregnant women and adults in a low malaria transmission area in Southern Ghana. Malar J 2018; 17:331. [PMID: 30223841 PMCID: PMC6142636 DOI: 10.1186/s12936-018-2479-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 09/10/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The gametocyte stage of Plasmodium falciparum is considered an important target for disrupting malaria transmission. Indications are that various demographic groups, such as children and pregnant women may differ in risk of harbouring gametocytes, which may be crucial for targeted control. In this study, the relationship between the prevalence and multiplicity of P. falciparum, asexual parasite infections and gametocytaemia was assessed in three different demographic groups in an area of southern Ghana with low malaria endemicity. Levels of antibody responses to Pfs230 were also assessed as a proxy for the presence of gametocytes. METHODS The study involved multiple cross-sectional sampling of children (N = 184, aged 2-15 years), male and non-pregnant female adults (N = 154, aged 16-65 years) and pregnant women (N = 125, aged 18-45 years) from Asutsuare in the Shai Osudoku District of Greater Accra Region in Ghana. Asexual parasitaemia was detected by microscopy and PCR, and gametocytaemia was assessed by Pfs25-real time PCR. Multiclonal P. falciparum infections were estimated by msp2 genotyping and an indirect ELISA was used to measure plasma IgG antibodies to Pfs230 antigen. RESULTS Overall, children and pregnant women had higher prevalence of submicroscopic gametocytes (39.5% and 29.7%, respectively) compared to adults (17.4%). Multiplicity of infection observed amongst children (3.1) and pregnant women (3.9) were found to be significantly higher (P = 0.006) compared with adults (2.7). Risk of gametocyte carriage was higher in individuals infected with P. falciparum having both Pfmsp2 3D7 and FC27 parasite types (OR = 5.92, 95% CI 1.56-22.54, P = 0.009) compared with those infected with only 3D7 or FC27 parasite types. In agreement with the parasite prevalence data, anti-Pfs230 antibody levels were lower in gametocyte positive adults (β = - 0.57, 95% CI - 0.81, - 0.34, P < 0.001) compared to children. CONCLUSIONS These findings suggest that children and pregnant women are particularly important as P. falciparum submicroscopic gametocyte reservoirs and represent important focus groups for control interventions. The number of clones increased in individuals carrying gametocytes compared to those who did not carry gametocytes. The higher anti-gametocyte antibody levels in children suggests recent exposure and may be a marker of gametocyte carriage.
Collapse
Affiliation(s)
- Helena Lamptey
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana.
| | - Michael Fokuo Ofori
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Kwadwo Asamoah Kusi
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Bright Adu
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Eunice Owusu-Yeboa
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Eric Kyei-Baafour
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Andrea Twumwaa Arku
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Samuel Bosomprah
- Department of Biostatistics, School of Public Health, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Michael Alifrangis
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Disease, National University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Isabella A Quakyi
- Department of Biological, Environmental and Occupational Health Sciences, School of Public Health, College of Health Sciences, University of Ghana, Legon, Ghana
| |
Collapse
|
15
|
Huang B, Tuo F, Liang Y, Wu W, Wu G, Huang S, Zhong Q, Su XZ, Zhang H, Li M, Bacar A, Abdallah KS, Mliva AMSA, Wang Q, Yang Z, Zheng S, Xu Q, Song J, Deng C. Temporal changes in genetic diversity of msp-1, msp-2, and msp-3 in Plasmodium falciparum isolates from Grande Comore Island after introduction of ACT. Malar J 2018; 17:83. [PMID: 29458365 PMCID: PMC5819244 DOI: 10.1186/s12936-018-2227-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 02/08/2018] [Indexed: 11/26/2022] Open
Abstract
Background Malaria is still one of the serious public health problems in Grande Comore Island, although the number of annual cases has been greatly reduced in recent years. A better understanding of malaria parasite population diversity and transmission dynamics is critical for assessing the effectiveness of malaria control measures. The objective of this study is to investigate temporal changes in genetic diversity of Plasmodium falciparum populations and multiplicity of infection (MOI) in Grande Comore 10 years after introduction of ACT. Methods A total of 232 P. falciparum clinical isolates were collected from the Grande Comore Island during two sampling periods (118 for 2006‒2007 group, and 114 for 2013‒2016 group). Parasite isolates were characterized for genetic diversity and complexity of infection by genotyping polymorphic regions in merozoite surface protein gene 1 (msp-1), msp-2, and msp-3 using nested PCR and DNA sequencing. Results Three msp-1 alleles (K1, MAD20, and RO33), two msp-2 alleles (FC27 and 3D7), and two msp-3 alleles (K1 and 3D7) were detected in parasites of both sampling periods. The RO33 allele of msp-1 (84.8%), 3D7 allele of msp-2 (90.8%), and K1 allele of msp-3 (66.7%) were the predominant allelic types in isolates from 2006–2007 group. In contrast, the RO33 allele of msp-1 (63.4%), FC27 allele of msp-2 (91.1%), and 3D7 allele of msp-3 (53.5%) were the most prevalent among isolates from the 2013–2016 group. Compared with the 2006‒2007 group, polyclonal infection rates of msp-1 (from 76.7 to 29.1%, P < 0.01) and msp-2 (from 62.4 to 28.3%, P < 0.01) allelic types were significantly decreased in those from 2013‒2016 group. Similarly, the MOIs for both msp-1 and msp-2 were higher in P. falciparum isolates in the 2006–2007 group than those in 2013–2016 group (MOI = 3.11 vs 1.63 for msp-1; MOI = 2.75 vs 1.35 for msp-2). DNA sequencing analyses also revealed reduced numbers of distinct sequence variants in the three genes from 2006‒2007 to 2013‒2016: msp-1, from 32 to 23 (about 28% decline); msp-2 from 29 to 21 (about 28% decline), and msp-3 from 11 to 3 (about 72% decline). Conclusions The present data showed dramatic reduction in genetic diversity and MOI among Grande Comore P. falciparum populations over the course of the study, suggesting a trend of decreasing malaria transmission intensity and genetic diversity in Grande Comore Island. These data provide valuable information for surveillance of P. falciparum infection and for assessing the appropriateness of the current malarial control strategies in the endemic area.
Collapse
Affiliation(s)
- Bo Huang
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, People's Republic of China.,Science and Technology Park, Guangzhou University of Chinese Medicine, Guangzhou, 510445, Guangdong, People's Republic of China
| | - Fei Tuo
- Science and Technology Park, Guangzhou University of Chinese Medicine, Guangzhou, 510445, Guangdong, People's Republic of China
| | - Yuan Liang
- Science and Technology Park, Guangzhou University of Chinese Medicine, Guangzhou, 510445, Guangdong, People's Republic of China
| | - Wanting Wu
- Science and Technology Park, Guangzhou University of Chinese Medicine, Guangzhou, 510445, Guangdong, People's Republic of China
| | - Guangchao Wu
- Science and Technology Park, Guangzhou University of Chinese Medicine, Guangzhou, 510445, Guangdong, People's Republic of China
| | - Shiguang Huang
- School of Stomatology, Jinan University, Guangzhou, 510632, Guangdong, People's Republic of China
| | - Qirun Zhong
- Artepharm, Co., Ltd, Guangzhou, 510405, Guangdong, People's Republic of China
| | - Xin-Zhuan Su
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Hongying Zhang
- Science and Technology Park, Guangzhou University of Chinese Medicine, Guangzhou, 510445, Guangdong, People's Republic of China
| | - Mingqiang Li
- Artepharm, Co., Ltd, Guangzhou, 510405, Guangdong, People's Republic of China
| | - Affane Bacar
- National Malaria Control Programme, BP 500, Moroni, Comoros
| | | | | | - Qi Wang
- Science and Technology Park, Guangzhou University of Chinese Medicine, Guangzhou, 510445, Guangdong, People's Republic of China
| | - Zhaoli Yang
- Science and Technology Park, Guangzhou University of Chinese Medicine, Guangzhou, 510445, Guangdong, People's Republic of China
| | - Shaoqin Zheng
- Science and Technology Park, Guangzhou University of Chinese Medicine, Guangzhou, 510445, Guangdong, People's Republic of China
| | - Qin Xu
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Jianping Song
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, People's Republic of China. .,Science and Technology Park, Guangzhou University of Chinese Medicine, Guangzhou, 510445, Guangdong, People's Republic of China.
| | - Changsheng Deng
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, People's Republic of China. .,Science and Technology Park, Guangzhou University of Chinese Medicine, Guangzhou, 510445, Guangdong, People's Republic of China.
| |
Collapse
|
16
|
Kusi KA, Manu EA, Manful Gwira T, Kyei-Baafour E, Dickson EK, Amponsah JA, Remarque EJ, Faber BW, Kocken CHM, Dodoo D, Gyan BA, Awandare GA, Atuguba F, Oduro AR, Koram KA. Variations in the quality of malaria-specific antibodies with transmission intensity in a seasonal malaria transmission area of Northern Ghana. PLoS One 2017; 12:e0185303. [PMID: 28945794 PMCID: PMC5612719 DOI: 10.1371/journal.pone.0185303] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 09/11/2017] [Indexed: 02/07/2023] Open
Abstract
Introduction Plasmodium falciparum induced antibodies are key components of anti-malarial immunity in malaria endemic areas, but their antigen targets can be polymorphic. Induction of a high proportion of strain-specific antibodies will limit the recognition of a broad diversity of parasite strains by these responses. There are indications that circulating parasite diversity varies with malaria transmission intensity, and this may affect the specificity of elicited anti-malarial antibodies. This study therefore assessed the effect of varying malaria transmission patterns on the specificity of elicited antibody responses and to identify possible antibody correlates of naturally acquired immunity to malaria in children in an area of Ghana with seasonal malaria transmission. Methods This retrospective study utilized plasma samples collected longitudinally at six time points from children aged one to five years. Multiplex assays were used to measure antibody levels against four P. falciparum AMA 1 variants (from the 3D7, FVO, HB3 and CAMP parasite strains) and the 3D7 variant of the EBA 175 region II antigen and the levels compared between symptomatic and asymptomatic children. The relative proportions of cross-reactive and strain-specific antibodies against the four AMA 1 variants per sampling time point were assessed by Bland-Altman plots. The levels of antibodies against allelic AMA1 variants, measured by singleplex and multiplex luminex assays, were also compared. Results The data show that increased transmission intensity is associated with higher levels of cross-reactive antibody responses, most likely a result of a greater proportion of multiple parasite clone infections during the high transmission period. Anti-AMA1 antibodies were however associated with a history of infection rather than protection in this age group. Conclusion The data contribute to understanding the underlying mechanism of the acquisition of strain-transcending antibody immunity following repeated exposure to diverse parasite strains.
Collapse
Affiliation(s)
- Kwadwo A. Kusi
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
- * E-mail:
| | - Emmanuel A. Manu
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Theresa Manful Gwira
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Eric Kyei-Baafour
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Emmanuel K. Dickson
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Jones A. Amponsah
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Edmond J. Remarque
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Bart W. Faber
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Clemens H. M. Kocken
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Daniel Dodoo
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Ben A. Gyan
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Gordon A. Awandare
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Frank Atuguba
- Navrongo Health Research Centre, Ghana Health Service, Navrongo, Ghana
| | - Abraham R. Oduro
- Navrongo Health Research Centre, Ghana Health Service, Navrongo, Ghana
| | - Kwadwo A. Koram
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| |
Collapse
|
17
|
Chang HH, Worby CJ, Yeka A, Nankabirwa J, Kamya MR, Staedke SG, Dorsey G, Murphy M, Neafsey DE, Jeffreys AE, Hubbart C, Rockett KA, Amato R, Kwiatkowski DP, Buckee CO, Greenhouse B. THE REAL McCOIL: A method for the concurrent estimation of the complexity of infection and SNP allele frequency for malaria parasites. PLoS Comput Biol 2017; 13:e1005348. [PMID: 28125584 PMCID: PMC5300274 DOI: 10.1371/journal.pcbi.1005348] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 02/09/2017] [Accepted: 01/05/2017] [Indexed: 12/24/2022] Open
Abstract
As many malaria-endemic countries move towards elimination of Plasmodium falciparum, the most virulent human malaria parasite, effective tools for monitoring malaria epidemiology are urgent priorities. P. falciparum population genetic approaches offer promising tools for understanding transmission and spread of the disease, but a high prevalence of multi-clone or polygenomic infections can render estimation of even the most basic parameters, such as allele frequencies, challenging. A previous method, COIL, was developed to estimate complexity of infection (COI) from single nucleotide polymorphism (SNP) data, but relies on monogenomic infections to estimate allele frequencies or requires external allele frequency data which may not available. Estimates limited to monogenomic infections may not be representative, however, and when the average COI is high, they can be difficult or impossible to obtain. Therefore, we developed THE REAL McCOIL, Turning HEterozygous SNP data into Robust Estimates of ALelle frequency, via Markov chain Monte Carlo, and Complexity Of Infection using Likelihood, to incorporate polygenomic samples and simultaneously estimate allele frequency and COI. This approach was tested via simulations then applied to SNP data from cross-sectional surveys performed in three Ugandan sites with varying malaria transmission. We show that THE REAL McCOIL consistently outperforms COIL on simulated data, particularly when most infections are polygenomic. Using field data we show that, unlike with COIL, we can distinguish epidemiologically relevant differences in COI between and within these sites. Surprisingly, for example, we estimated high average COI in a peri-urban subregion with lower transmission intensity, suggesting that many of these cases were imported from surrounding regions with higher transmission intensity. THE REAL McCOIL therefore provides a robust tool for understanding the molecular epidemiology of malaria across transmission settings.
Collapse
Affiliation(s)
- Hsiao-Han Chang
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States
| | - Colin J. Worby
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States
| | - Adoke Yeka
- Makerere University School of Public Health, College of Health Sciences, Kampala, Uganda
- Infectious Disease Research Collaboration, Kampala, Uganda
| | - Joaniter Nankabirwa
- Infectious Disease Research Collaboration, Kampala, Uganda
- Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Moses R. Kamya
- Infectious Disease Research Collaboration, Kampala, Uganda
- Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Sarah G. Staedke
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Grant Dorsey
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States
| | - Maxwell Murphy
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States
| | - Daniel E. Neafsey
- Genome Sequencing and Analysis Program, Broad Institute, Cambridge, Massachusetts, United States
| | - Anna E. Jeffreys
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Christina Hubbart
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Kirk A. Rockett
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Roberto Amato
- Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Dominic P. Kwiatkowski
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Caroline O. Buckee
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States
| | - Bryan Greenhouse
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States
| |
Collapse
|
18
|
Duah NO, Matrevi SA, Quashie NB, Abuaku B, Koram KA. Genetic diversity of Plasmodium falciparum isolates from uncomplicated malaria cases in Ghana over a decade. Parasit Vectors 2016; 9:416. [PMID: 27460474 PMCID: PMC4962487 DOI: 10.1186/s13071-016-1692-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/11/2016] [Indexed: 11/11/2022] Open
Abstract
Background Genotyping malaria parasites to assess their diversity in different geographic settings have become necessary for the selection of antigenic epitopes for vaccine development and for antimalarial drug efficacy or resistance investigations. This study describes the genetic diversity of Plasmodium falciparum isolates from uncomplicated malaria cases over a ten year period (2003–2013) in Ghana using the polymorphic antigenic marker, merozoite surface protein 2 (msp2). Methods Archived filter paper blood blots from children aged nine years and below with uncomplicated malaria collected from nine sites in Ghana were typed for the presence of the markers. A total of 880 samples were genotyped for msp2 for the two major allelic families, FC27 and 3D7, using nested polymerase chain reaction (PCR). The allele frequencies and the multiplicity of infection were determined for the nine sites for five time points over a period of ten years, 2003–2004, 2005–2006, 2007–2008, 2010 and 2012–2013 malaria transmission seasons. Results The number of different alleles detected for the msp2 gene by resolving PCR products on agarose gels was 14. Both of the major allelic families, 3D7 and FC27 were common in all population samples. The highest multiplicity of infection (MOI) was observed in isolates from Begoro (forest zone, rural site): 3.31 for the time point 2007–2008. A significant variation was observed among the sites in the MOIs detected per infection (Fisher's exact test, P < 0.001) for the 2007 isolates and also at each of the three sites with data for three different years, Hohoe, P = 0.03; Navrongo, P < 0.001; Cape Coast, P < 0.001. Overall, there was no significant difference between the MOIs of the three ecological zones over the years (P = 0.37) and between the time points when data from all sites were pooled (P = 0.40). Conclusions The diversity and variation between isolates detected using the msp2 gene in Ghanaian isolates were observed to be profound; however, there was homogeneity throughout the three ecological zones studied. This is indicative of gene flow between the parasite populations across the country probably due to human population movements (HPM). Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1692-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nancy O Duah
- Epidemiology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, P. O. Box LG581, Legon, Ghana.
| | - Sena A Matrevi
- Epidemiology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, P. O. Box LG581, Legon, Ghana
| | - Neils B Quashie
- Epidemiology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, P. O. Box LG581, Legon, Ghana.,Centre for Tropical Clinical Pharmacology and Therapeutics, School of Medicine and Dentistry, College of Health Sciences, University of Ghana, P. O. Box GP 4260, Accra, Ghana
| | - Benjamin Abuaku
- Epidemiology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, P. O. Box LG581, Legon, Ghana
| | - Kwadwo A Koram
- Epidemiology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, P. O. Box LG581, Legon, Ghana
| |
Collapse
|