1
|
Amin NS, El Tayebi HM. More gain, less pain: How resistance training affects immune system functioning in multiple sclerosis patients: A review. Mult Scler Relat Disord 2023; 69:104401. [PMID: 36403379 DOI: 10.1016/j.msard.2022.104401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 11/13/2022]
Abstract
Multiple sclerosis (MS) is characterized by a complex etiology that is mirrored by the perplexing and inconsistent treatment responses observed across different patients. Although epigenetic research has garnered rightful interest in its efforts towards demystifying and understanding aberrant responses to treatment, the interim undoubtedly requires alternative non-pharmacological approaches towards attaining more effective management strategies. Of particular interest in this review is resistance training (RT) as a non-pharmacological exercise-based interventional strategy and its potential role as a disease-modifying tool. RT has been reported across literature to positively influence numerous aspects in the quality of life (QoL) and functional capacity of MS patients, and one of the attributes of these benefits may be a shift in the immune system of these individuals. RT has also been proven to affect different immune system key players associated with MS pathology. Ultimately, this brief review aims to provide a potential yet crucial link between RT, alterations in the expression profile of the immune system, and finally an imminent improvement in the overall well-being and QoL of MS patients, suggesting that utilizing RT as an interventional exercise modality may be an effective strategy that would aid in managing such a complex and debilitating disease.
Collapse
Affiliation(s)
- Nada Sherif Amin
- Department of Pharmacology and Toxicology, Molecular Pharmacology Research Group, Faculty of Pharmacy and Biotechnology, Head of Molecular Genetics and Pharmacology Research Group, German University in Cairo, Cairo 11835, Egypt
| | - Hend M El Tayebi
- Department of Pharmacology and Toxicology, Molecular Pharmacology Research Group, Faculty of Pharmacy and Biotechnology, Head of Molecular Genetics and Pharmacology Research Group, German University in Cairo, Cairo 11835, Egypt.
| |
Collapse
|
2
|
Salimans L, Liberman K, Njemini R, Kortekaas Krohn I, Gutermuth J, Bautmans I. The effect of resistance exercise on the immune cell function in humans: A systematic review. Exp Gerontol 2022; 164:111822. [PMID: 35490790 DOI: 10.1016/j.exger.2022.111822] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 03/18/2022] [Accepted: 04/25/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Resistance exercise is beneficial for the immune system, including decreased susceptibility to infections and improved effectiveness of vaccinations. This review aims to provide a systematic analysis of the literature regarding the impact of resistance exercise on immune cells in the blood circulation. MATERIALS AND METHODS The protocol of this review followed the PRISMA guidelines and registered in PROSPERO (ID: CRD42020157834). PubMed and Web-of-Science were systematically searched for relevant articles. Outcomes were divided into two categories: 1) inflammatory gene expression or secretion of inflammation-related cytokines and 2) other aspects such as cell migration, proliferation, apoptosis, phagocytosis, and redox status. RESULTS Thirty intervention studies were included in this review, of which 11 articles were randomized controlled trials and six non-randomized controlled trials. Although only resistance exercise interventions were included, there was a high heterogeneity regarding specific exercise modalities. The most frequently studied outcome measures were the gene and protein expression levels in peripheral blood mononuclear cells (PBMC). This review reveals that already one acute exercise bout activates the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway in PBMC. Although resistance exercise induces an acute cytosolic oxidative stress response, the antioxidant enzyme expression is improved after resistance training period. Natural killer cell activity increases in older but decreases in younger adults immediately after a resistance exercise bout. Moreover, resistance exercise improves neutrophil phagocytic activity. Finally, effects on lymphocyte proliferation remain unclear. CONCLUSIONS The results of this systematic review demonstrate that resistance exercise has beneficial effects on several aspects of immune cell function both in young and older individuals. Acute changes in immune cell function occur already after a single bout of resistance exercise. However, regular resistance training during several weeks seems necessary to obtain beneficial adaptations that can be related to better immunity and reduced inflammation. The effects documented in this review confirm the beneficial effects of resistance exercise in young as well as older persons on the immune cell function.
Collapse
Affiliation(s)
- Lene Salimans
- Vrije Universiteit Brussel (VUB), Frailty in Aging (FRIA) Research Group, Laarbeeklaan 103, 1090 Brussels, Belgium; Vrije Universiteit Brussel (VUB), Department of Gerontology, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Keliane Liberman
- Vrije Universiteit Brussel (VUB), Frailty in Aging (FRIA) Research Group, Laarbeeklaan 103, 1090 Brussels, Belgium; Vrije Universiteit Brussel (VUB), Department of Gerontology, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Rose Njemini
- Vrije Universiteit Brussel (VUB), Frailty in Aging (FRIA) Research Group, Laarbeeklaan 103, 1090 Brussels, Belgium; Vrije Universiteit Brussel (VUB), Department of Gerontology, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Inge Kortekaas Krohn
- Vrije Universiteit Brussel (VUB), Skin Immunology & Immune Tolerance (SKIN) Research Group, Laarbeeklaan 103, 1090 Brussels, Belgium; Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Department of Dermatology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Jan Gutermuth
- Vrije Universiteit Brussel (VUB), Skin Immunology & Immune Tolerance (SKIN) Research Group, Laarbeeklaan 103, 1090 Brussels, Belgium; Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Department of Dermatology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Ivan Bautmans
- Vrije Universiteit Brussel (VUB), Frailty in Aging (FRIA) Research Group, Laarbeeklaan 103, 1090 Brussels, Belgium; Vrije Universiteit Brussel (VUB), Department of Gerontology, Laarbeeklaan 101, 1090 Brussels, Belgium; Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Department of Dermatology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium.
| |
Collapse
|
3
|
Figueiredo C, Padilha C, Dorneles G, Peres A, Krüger K, Rosa Neto JC, Lira F. Type and Intensity as Key Variable of Exercise in Metainflammation diseases: A Review. Int J Sports Med 2021; 43:743-767. [PMID: 34902867 DOI: 10.1055/a-1720-0369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Monocyte and lymphocyte subpopulations exhibit functions that vary between the anti- and pro-inflammatory spectrum, such as classic CD16- and non-classical CD16+ monocytes, as well as T helper 2 lymphocytes (Th2), the Th1/Th17 lymphocytes ratio, and T regulatory lymphocytes (Treg). Metabolic disease-associated inflammation is accompanied by an imbalance in monocyte and lymphocyte phenotypes and functionality, as well as a stronger proportion of inflammatory subpopulations. These changes appear to be important for the development and progression of diseases like diabetes and cardiovascular disease. On the other hand, the regular practice of physical exercise is an important tool to restore the functionality of monocytes and lymphocytes, and to balance the subtypes ratio. However, key variables regarding exercise prescription, such as the type of exercise, intensity, and volume differentially impact on the acute and chronic immune response in individuals diagnosed with meta inflammation diseases. Here, we discuss the impact of different physical exercise protocols, acutely and chronically, on monocytes and lymphocytes of individuals with metabolic disease-associated inflammation. In this review, we focus on the best effects of different exercise protocols to dose the "exercise pill" in different inflammatory status.
Collapse
Affiliation(s)
- Caique Figueiredo
- Physical Education, Universidade Estadual Paulista Julio de Mesquita Filho - Campus de Presidente Prudente, Presidente Prudente, Brazil
| | - Camila Padilha
- Physical Education, Universidade Estadual de Londrina, Londrina, Brazil
| | - Gilson Dorneles
- Immunology, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Alessandra Peres
- Immunology, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Karsten Krüger
- Dept. of Sport Medicine, Institute of Sport Science, Giessen, Germany
| | | | - Fábio Lira
- Department of Physical Education, Unesp, Presidente Prudente, Brazil
| |
Collapse
|
4
|
Schauer T, Hojman P, Gehl J, Christensen JF. Exercise training as prophylactic strategy in the management of neutropenia during chemotherapy. Br J Pharmacol 2020; 179:2925-2937. [DOI: 10.1111/bph.15141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/28/2020] [Accepted: 05/11/2020] [Indexed: 12/23/2022] Open
Affiliation(s)
- Tim Schauer
- Centre for Physical Activity Research, RigshospitaletUniversity of Copenhagen Copenhagen Denmark
| | - Pernille Hojman
- Centre for Physical Activity Research, RigshospitaletUniversity of Copenhagen Copenhagen Denmark
| | - Julie Gehl
- Center for Experimental Drug and Gene Electrotransfer (C*EDGE), Department of Clinical Oncology and Palliative CareZealand University Hospital Køge Denmark
- Faculty of Health and Medical Sciences, Department of Clinical MedicineUniversity of Copenhagen Copenhagen Denmark
| | - Jesper Frank Christensen
- Centre for Physical Activity Research, RigshospitaletUniversity of Copenhagen Copenhagen Denmark
| |
Collapse
|
5
|
Sellami M, Gasmi M, Denham J, Hayes LD, Stratton D, Padulo J, Bragazzi N. Effects of Acute and Chronic Exercise on Immunological Parameters in the Elderly Aged: Can Physical Activity Counteract the Effects of Aging? Front Immunol 2018; 9:2187. [PMID: 30364079 PMCID: PMC6191490 DOI: 10.3389/fimmu.2018.02187] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 09/04/2018] [Indexed: 12/22/2022] Open
Abstract
Immunosenescence is characterized by deterioration of the immune system caused by aging which induces changes to innate and adaptive immunity. Immunosenescence affects function and phenotype of immune cells, such as expression and function of receptors for immune cells which contributes to loss of immune function (chemotaxis, intracellular killing). Moreover, these alterations decrease the response to pathogens, which leads to several age-related diseases including cardiovascular disease, Alzheimer's disease, and diabetes in older individuals. Furthermore, increased risk of autoimmune disease and chronic infection is increased with an aging immune system, which is characterized by a pro-inflammatory environment, ultimately leading to accelerated biological aging. During the last century, sedentarism rose dramatically, with a concomitant increase in certain type of cancers (such as breast cancer, colon, or prostate cancer), and autoimmune disease. Numerous studies on physical activity and immunity, with focus on special populations (i.e., people with diabetes, HIV patients) demonstrate that chronic exercise enhances immunity. However, the majority of previous work has focused on either a pathological population or healthy young adults whilst research in elderly populations is scarce. Research conducted to date has primarily focused on aerobic and resistance exercise training and its effect on immunity. This review focuses on the potential for exercise training to affect the aging immune system. The concept is that some lifestyle strategies such as high-intensity exercise training may prevent disease through the attenuation of immunosenescence. In this context, we take a top-down approach and review the effect of exercise and training on immunological parameters in elderly at rest and during exercise in humans, and how they respond to different modes of training. We highlight the impact of these different exercise modes on immunological parameters, such as cytokine and lymphocyte concentration in elderly individuals.
Collapse
Affiliation(s)
- Maha Sellami
- Sport Science Program (SSP), College of Arts and Sciences (QU-CAS), University of Qatar, Doha, Qatar
| | - Maha Gasmi
- Higher Institute of Sport and Physical Education of Ksar Said, Mannouba, Tunisia
| | - Joshua Denham
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Lawrence D Hayes
- Active Ageing Research Group, Department of Medical and Sport Sciences, University of Cumbria, Lancaster, United Kingdom
| | - Dan Stratton
- Cellular and Molecular Immunology Research Center, London Metropolitan University, London, United Kingdom
| | | | - Nicola Bragazzi
- Department of Health Sciences (DISSAL), Postgraduate School of Public Health, University of Genoa, Genoa, Italy
| |
Collapse
|