1
|
Iourov IY, Vorsanova SG, Kurinnaia OS, Kutsev SI, Yurov YB. Somatic mosaicism in the diseased brain. Mol Cytogenet 2022; 15:45. [PMID: 36266706 PMCID: PMC9585840 DOI: 10.1186/s13039-022-00624-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 11/10/2022] Open
Abstract
It is hard to believe that all the cells of a human brain share identical genomes. Indeed, single cell genetic studies have demonstrated intercellular genomic variability in the normal and diseased brain. Moreover, there is a growing amount of evidence on the contribution of somatic mosaicism (the presence of genetically different cell populations in the same individual/tissue) to the etiology of brain diseases. However, brain-specific genomic variations are generally overlooked during the research of genetic defects associated with a brain disease. Accordingly, a review of brain-specific somatic mosaicism in disease context seems to be required. Here, we overview gene mutations, copy number variations and chromosome abnormalities (aneuploidy, deletions, duplications and supernumerary rearranged chromosomes) detected in the neural/neuronal cells of the diseased brain. Additionally, chromosome instability in non-cancerous brain diseases is addressed. Finally, theoretical analysis of possible mechanisms for neurodevelopmental and neurodegenerative disorders indicates that a genetic background for formation of somatic (chromosomal) mosaicism in the brain is likely to exist. In total, somatic mosaicism affecting the central nervous system seems to be a mechanism of brain diseases.
Collapse
Affiliation(s)
- Ivan Y Iourov
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia. .,Vorsanova's Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow, Russia. .,Department of Medical Biological Disciplines, Belgorod State University, Belgorod, Russia.
| | - Svetlana G Vorsanova
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia.,Vorsanova's Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow, Russia
| | - Oxana S Kurinnaia
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia.,Vorsanova's Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow, Russia
| | | | - Yuri B Yurov
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia.,Vorsanova's Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow, Russia
| |
Collapse
|
2
|
Iourov IY, Vorsanova SG, Kurinnaia OS, Zelenova MA, Vasin KS, Yurov YB. Causes and Consequences of Genome Instability in Psychiatric and Neurodegenerative Diseases. Mol Biol 2021. [DOI: 10.1134/s0026893321010155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
3
|
Vorsanova SG, Kolotii AD, Kurinnaia OS, Kravets VS, Demidova IA, Soloviev IV, Yurov YB, Iourov IY. Turner's syndrome mosaicism in girls with neurodevelopmental disorders: a cohort study and hypothesis. Mol Cytogenet 2021; 14:9. [PMID: 33573679 PMCID: PMC7879607 DOI: 10.1186/s13039-021-00529-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 01/14/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Turner's syndrome is associated with either monosomy or a wide spectrum of structural rearrangements of chromosome X. Despite the interest in studying (somatic) chromosomal mosaicism, Turner's syndrome mosaicism (TSM) remains to be fully described. This is especially true for the analysis of TSM in clinical cohorts (e.g. cohorts of individuals with neurodevelopmental disorders). Here, we present the results of studying TSM in a large cohort of girls with neurodevelopmental disorders and a hypothesis highlighting the diagnostic and prognostic value. RESULTS Turner's syndrome-associated karyotypes were revealed in 111 (2.8%) of 4021 girls. Regular Turner's syndrome-associated karyotypes were detected in 35 girls (0.9%). TSM was uncovered in 76 girls (1.9%). TSM manifested as mosaic aneuploidy (45,X/46,XX; 45,X/47,XXX/46,XX; 45,X/47,XXX) affected 47 girls (1.2%). Supernumerary marker chromosomes derived from chromosome X have been identified in 11 girls with TSM (0.3%). Isochromosomes iX(q) was found in 12 cases (0.3%); one case was non-mosaic. TSM associated with ring chromosomes was revealed in 5 girls (0.1%). CONCLUSION The present cohort study provides data on the involvement of TSM in neurodevelopmental disorders among females. Thus, TSM may be an element of pathogenic cascades in brain diseases (i.e. neurodegenerative and psychiatric disorders). Our data allowed us to propose a hypothesis concerning ontogenetic variability of TSM levels. Accordingly, it appears that molecular cytogenetic monitoring of TSM, which is a likely risk factor/biomarker for adult-onset multifactorial diseases, is required.
Collapse
Affiliation(s)
- Svetlana G Vorsanova
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Ministry of Health of Russian Federation, Moscow, Russia, 125412.,Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia, 115522
| | - Alexey D Kolotii
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Ministry of Health of Russian Federation, Moscow, Russia, 125412.,Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia, 115522
| | - Oksana S Kurinnaia
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Ministry of Health of Russian Federation, Moscow, Russia, 125412.,Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia, 115522
| | - Victor S Kravets
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Ministry of Health of Russian Federation, Moscow, Russia, 125412.,Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia, 115522
| | - Irina A Demidova
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Ministry of Health of Russian Federation, Moscow, Russia, 125412.,Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia, 115522
| | - Ilya V Soloviev
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia, 115522
| | - Yuri B Yurov
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Ministry of Health of Russian Federation, Moscow, Russia, 125412.,Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia, 115522
| | - Ivan Y Iourov
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Ministry of Health of Russian Federation, Moscow, Russia, 125412. .,Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia, 115522. .,Department of Medical Biological Disciplines, Belgorod State University, Belgorod, Russia, 308015.
| |
Collapse
|
4
|
The Cytogenomic "Theory of Everything": Chromohelkosis May Underlie Chromosomal Instability and Mosaicism in Disease and Aging. Int J Mol Sci 2020; 21:ijms21218328. [PMID: 33171981 PMCID: PMC7664247 DOI: 10.3390/ijms21218328] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 01/28/2023] Open
Abstract
Mechanisms for somatic chromosomal mosaicism (SCM) and chromosomal instability (CIN) are not completely understood. During molecular karyotyping and bioinformatic analyses of children with neurodevelopmental disorders and congenital malformations (n = 612), we observed colocalization of regular chromosomal imbalances or copy number variations (CNV) with mosaic ones (n = 47 or 7.7%). Analyzing molecular karyotyping data and pathways affected by CNV burdens, we proposed a mechanism for SCM/CIN, which had been designated as “chromohelkosis” (from the Greek words chromosome ulceration/open wound). Briefly, structural chromosomal imbalances are likely to cause local instability (“wreckage”) at the breakpoints, which results either in partial/whole chromosome loss (e.g., aneuploidy) or elongation of duplicated regions. Accordingly, a function for classical/alpha satellite DNA (protection from the wreckage towards the centromere) has been hypothesized. Since SCM and CIN are ubiquitously involved in development, homeostasis and disease (e.g., prenatal development, cancer, brain diseases, aging), we have metaphorically (ironically) designate the system explaining chromohelkosis contribution to SCM/CIN as the cytogenomic “theory of everything”, similar to the homonymous theory in physics inasmuch as it might explain numerous phenomena in chromosome biology. Recognizing possible empirical and theoretical weaknesses of this “theory”, we nevertheless believe that studies of chromohelkosis-like processes are required to understand structural variability and flexibility of the genome.
Collapse
|
5
|
Zelenova MA, Yurov YB, Vorsanova SG, Iourov IY. Laundering CNV data for candidate process prioritization in brain disorders. Mol Cytogenet 2019; 12:54. [PMID: 31890034 PMCID: PMC6933640 DOI: 10.1186/s13039-019-0468-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/17/2019] [Indexed: 01/29/2023] Open
Abstract
Background Prioritization of genomic data has become a useful tool for uncovering the phenotypic effect of genetic variations (e.g. copy number variations or CNV) and disease mechanisms. Due to the complexity, brain disorders represent a major focus of genomic research aimed at revealing pathologic significance of genomic changes leading to brain dysfunction. Here, we propose a “CNV data laundering” algorithm based on filtering and prioritizing of genomic pathways retrieved from available databases for uncovering altered molecular pathways in brain disorders. The algorithm comprises seven consecutive steps of processing individual CNV data sets. First, the data are compared to in-house and web databases to discriminate recurrent non-pathogenic variants. Second, the CNV pool is confined to the genes predominantly expressed in the brain. Third, intergenic interactions are used for filtering causative CNV. Fourth, a network of interconnected elements specific for an individual genome variation set is created. Fifth, ontologic data (pathways/functions) are attributed to clusters of network elements. Sixth, the pathways are prioritized according to the significance of elements affected by CNV. Seventh, prioritized pathways are clustered according to the ontologies. Results The algorithm was applied to 191 CNV data sets obtained from children with brain disorders (intellectual disability and autism spectrum disorders) by SNP array molecular karyotyping. “CNV data laundering” has identified 13 pathway clusters (39 processes/475 genes) implicated in the phenotypic manifestations. Conclusions Elucidating altered molecular pathways in brain disorders, the algorithm may be used for uncovering disease mechanisms and genotype-phenotype correlations. These opportunities are strongly required for developing therapeutic strategies in devastating neuropsychiatric diseases.
Collapse
Affiliation(s)
- Maria A Zelenova
- Mental Health Research Center, Russia Moscow, 115522.,2Academician Yu.E. Veltishchev Research Clinical Institute of Pediatrics, N.I, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Russia Moscow, 125635
| | - Yuri B Yurov
- Mental Health Research Center, Russia Moscow, 115522.,2Academician Yu.E. Veltishchev Research Clinical Institute of Pediatrics, N.I, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Russia Moscow, 125635
| | - Svetlana G Vorsanova
- Mental Health Research Center, Russia Moscow, 115522.,2Academician Yu.E. Veltishchev Research Clinical Institute of Pediatrics, N.I, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Russia Moscow, 125635
| | - Ivan Y Iourov
- Mental Health Research Center, Russia Moscow, 115522.,2Academician Yu.E. Veltishchev Research Clinical Institute of Pediatrics, N.I, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Russia Moscow, 125635
| |
Collapse
|
6
|
Iourov IY, Vorsanova SG, Yurov YB. The variome concept: focus on CNVariome. Mol Cytogenet 2019; 12:52. [PMID: 31890032 PMCID: PMC6924070 DOI: 10.1186/s13039-019-0467-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 12/13/2019] [Indexed: 02/07/2023] Open
Abstract
Background Variome may be used for designating complex system of interplay between genomic variations specific for an individual or a disease. Despite the recognized complexity of genomic basis for phenotypic traits and diseases, studies of genetic causes of a disease are usually dedicated to the identification of single causative genomic changes (mutations). When such an artificially simplified model is employed, genomic basis of phenotypic outcomes remains elusive in the overwhelming majority of human diseases. Moreover, it is repeatedly demonstrated that multiple genomic changes within an individual genome are likely to underlie the phenome. Probably the best example of cumulative effect of variome on the phenotype is CNV (copy number variation) burden. Accordingly, we have proposed a variome concept based on CNV studies providing the evidence for the existence of a CNVariome (the set of CNV affecting an individual genome), a target for genomic analyses useful for unraveling genetic mechanisms of diseases and phenotypic traits. Conclusion Variome (CNVariome) concept suggests that a genomic milieu is determined by the whole set of genomic variations (CNV) within an individual genome. The genomic milieu is likely to result from interplay between these variations. Furthermore, such kind of variome may be either individual or disease-specific. Additionally, such variome may be pathway-specific. The latter is able to affect molecular/cellular pathways of genome stability maintenance leading to occurrence of genomic/chromosome instability and/or somatic mosaicism resulting in somatic variome. This variome type seems to be important for unraveling disease mechanisms, as well. Finally, it appears that bioinformatic analysis of both individual and somatic variomes in the context of diseases- and pathway-specific variomes is the most promising way to determine genomic basis of the phenome and to unravel disease mechanisms for the management and treatment of currently incurable diseases.
Collapse
Affiliation(s)
- Ivan Y Iourov
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, 117152 Moscow, Russia.,2Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Ministry of Health of Russian Federation, 125412 Moscow, Russia
| | - Svetlana G Vorsanova
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, 117152 Moscow, Russia.,2Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Ministry of Health of Russian Federation, 125412 Moscow, Russia
| | - Yuri B Yurov
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, 117152 Moscow, Russia.,2Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Ministry of Health of Russian Federation, 125412 Moscow, Russia
| |
Collapse
|
7
|
Iourov IY, Vorsanova SG, Yurov YB, Kutsev SI. Ontogenetic and Pathogenetic Views on Somatic Chromosomal Mosaicism. Genes (Basel) 2019; 10:E379. [PMID: 31109140 PMCID: PMC6562967 DOI: 10.3390/genes10050379] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 12/27/2022] Open
Abstract
Intercellular karyotypic variability has been a focus of genetic research for more than 50 years. It has been repeatedly shown that chromosome heterogeneity manifesting as chromosomal mosaicism is associated with a variety of human diseases. Due to the ability of changing dynamically throughout the ontogeny, chromosomal mosaicism may mediate genome/chromosome instability and intercellular diversity in health and disease in a bottleneck fashion. However, the ubiquity of negligibly small populations of cells with abnormal karyotypes results in difficulties of the interpretation and detection, which may be nonetheless solved by post-genomic cytogenomic technologies. In the post-genomic era, it has become possible to uncover molecular and cellular pathways to genome/chromosome instability (chromosomal mosaicism or heterogeneity) using advanced whole-genome scanning technologies and bioinformatic tools. Furthermore, the opportunities to determine the effect of chromosomal abnormalities on the cellular phenotype seem to be useful for uncovering the intrinsic consequences of chromosomal mosaicism. Accordingly, a post-genomic review of chromosomal mosaicism in the ontogenetic and pathogenetic contexts appears to be required. Here, we review chromosomal mosaicism in its widest sense and discuss further directions of cyto(post)genomic research dedicated to chromosomal heterogeneity.
Collapse
Affiliation(s)
- Ivan Y Iourov
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, 117152 Moscow, Russia.
- Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, 125412 Moscow, Russia.
| | - Svetlana G Vorsanova
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, 117152 Moscow, Russia.
- Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, 125412 Moscow, Russia.
| | - Yuri B Yurov
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, 117152 Moscow, Russia.
- Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, 125412 Moscow, Russia.
| | - Sergei I Kutsev
- Research Centre for Medical Genetics, 115522 Moscow, Russia.
- Molecular & Cell Genetics Department, Pirogov Russian National Research Medical University, 117997 Moscow, Russia.
| |
Collapse
|
8
|
Iourov IY, Vorsanova SG, Yurov YB. Pathway-based classification of genetic diseases. Mol Cytogenet 2019; 12:4. [PMID: 30766616 PMCID: PMC6362588 DOI: 10.1186/s13039-019-0418-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 01/22/2019] [Indexed: 02/07/2023] Open
Abstract
Background In medical genetics, diseases are classified according to the nature (hypothetical nature) of the underlying genetic defect. The classification is “gene-centric” and “factor-centric”; a disease may be, thereby, designated as monogenic, oligogenic or polygenic/multifactorial. Chromosomal diseases/syndromes and abnormalities are generally considered apart from these designations due to distinctly different formation mechanisms and simultaneous encompassing from several to several hundreds of co-localized genes. These definitions are ubiquitously used and are perfectly suitable for human genetics issues in historical and academic perspective. However, recent achievements in systems biology have offered a possibility to explore the consequences of a genetic defect from genomic variations to molecular/cellular pathway alterations unique to a disease. Since pathogenetic mechanisms (pathways) are more influential on our understating of disease presentation and progression than genetic defects per se, a need for a disease classification reflecting both genetic causes and molecular/cellular mechanisms appears to exist. Here, we propose an extension to the common disease classification based on the underlying genetic defects, which focuses on disease-specific molecular pathways. Conclusion The basic idea of our classification is to propose pathways as parameters for designating a genetic disease. To proceed, we have followed the tradition of using ancient Greek words and prefixes to create the terms for the pathway-based classification of genetic diseases. We have chosen the word “griphos” (γρῖφος), which simultaneously means “net” and “puzzle”, accurately symbolizing the term “pathway” currently used in molecular biology and medicine. Thus, diseases may be classified as monogryphic (single pathway is altered to result in a phenotype), digryphic (two pathways are altered to result in a phenotype), etc.; additionally, diseases may be designated as oligogryphic (several pathways are altered to result in a phenotype), polygryphic (numerous pathways or cascades of pathways are altered to result in a phenotype) and homeogryphic in cases of comorbid diseases resulted from shared pathway alterations. We suppose that classifying illness this way using both “gene-centric” and “pathway-centric” concepts is able to revolutionize current views on genetic diseases.
Collapse
Affiliation(s)
- Ivan Y Iourov
- Mental Health Research Center, 117152 Moscow, Russia.,2Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Ministry of Health of Russian Federation, 125412 Moscow, Russia.,Department of Medical Genetics, Russian Medical Academy of Continuous Professional Education, Moscow, 125993 Russia
| | - Svetlana G Vorsanova
- Mental Health Research Center, 117152 Moscow, Russia.,2Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Ministry of Health of Russian Federation, 125412 Moscow, Russia
| | - Yuri B Yurov
- Mental Health Research Center, 117152 Moscow, Russia.,2Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Ministry of Health of Russian Federation, 125412 Moscow, Russia
| |
Collapse
|
9
|
|
10
|
|
11
|
Yurov YB, Vorsanova SG, Demidova IA, Kolotii AD, Soloviev IV, Iourov IY. Mosaic Brain Aneuploidy in Mental Illnesses: An Association of Low-level Post-zygotic Aneuploidy with Schizophrenia and Comorbid Psychiatric Disorders. Curr Genomics 2018; 19:163-172. [PMID: 29606903 PMCID: PMC5850504 DOI: 10.2174/1389202918666170717154340] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/18/2016] [Accepted: 01/16/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Postzygotic chromosomal variation in neuronal cells is hypothesized to make a substantial contribution to the etiology and pathogenesis of neuropsychiatric disorders. However, the role of somatic genome instability and mosaic genome variations in common mental illnesses is a matter of conjecture. MATERIALS AND METHODS To estimate the pathogenic burden of somatic chromosomal mutations, we determined the frequency of mosaic aneuploidy in autopsy brain tissues of subjects with schizophrenia and other psychiatric disorders (intellectual disability comorbid with autism spectrum disorders). Recently, post-mortem brain tissues of subjects with schizophrenia, intellectual disability and unaffected controls were analyzed by Interphase Multicolor FISH (MFISH), Quantitative Fluorescent in situ Hybridization (QFISH) specially designed to register rare mosaic chromosomal mutations such as lowlevel aneuploidy (whole chromosome mosaic deletion/duplication). The low-level mosaic aneuploidy in the diseased brain demonstrated significant 2-3-fold frequency increase in schizophrenia (p=0.0028) and 4-fold increase in intellectual disability comorbid with autism (p=0.0037) compared to unaffected controls. Strong associations of low-level autosomal/sex chromosome aneuploidy (p=0.001, OR=19.0) and sex chromosome-specific mosaic aneuploidy (p=0.006, OR=9.6) with schizophrenia were revealed. CONCLUSION Reviewing these data and literature supports the hypothesis suggesting that an association of low-level mosaic aneuploidy with common and, probably, overlapping psychiatric disorders does exist. Accordingly, we propose a pathway for common neuropsychiatric disorders involving increased burden of rare de novo somatic chromosomal mutations manifesting as low-level mosaic aneuploidy mediating local and general brain dysfunction.
Collapse
Affiliation(s)
- Yuri B. Yurov
- Mental Health Research Center, Moscow, Russian Federation
- Separated Structural Unit “Clinical Research Institute of Pediatrics named after Y.E Veltishev”, Pirogov Russian National Research Medical University, Moscow, Russian Federation
- Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Svetlana G. Vorsanova
- Mental Health Research Center, Moscow, Russian Federation
- Separated Structural Unit “Clinical Research Institute of Pediatrics named after Y.E Veltishev”, Pirogov Russian National Research Medical University, Moscow, Russian Federation
- Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Irina A. Demidova
- Mental Health Research Center, Moscow, Russian Federation
- Separated Structural Unit “Clinical Research Institute of Pediatrics named after Y.E Veltishev”, Pirogov Russian National Research Medical University, Moscow, Russian Federation
- Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Alexei D. Kolotii
- Mental Health Research Center, Moscow, Russian Federation
- Separated Structural Unit “Clinical Research Institute of Pediatrics named after Y.E Veltishev”, Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | | | - Ivan Y. Iourov
- Mental Health Research Center, Moscow, Russian Federation
- Separated Structural Unit “Clinical Research Institute of Pediatrics named after Y.E Veltishev”, Pirogov Russian National Research Medical University, Moscow, Russian Federation
- Department of Medical Genetics, Russian Medical Academy of Postgraduate Education, Ministry of Health, Moscow, Russian Federation
| |
Collapse
|
12
|
Vorsanova SG, Zelenova MA, Yurov YB, Iourov IY. Behavioral Variability and Somatic Mosaicism: A Cytogenomic Hypothesis. Curr Genomics 2018; 19:158-162. [PMID: 29606902 PMCID: PMC5850503 DOI: 10.2174/1389202918666170719165339] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/11/2016] [Accepted: 01/01/2017] [Indexed: 02/06/2023] Open
Abstract
Behavioral sciences are inseparably related to genetics. A variety of neurobehavioral phenotypes are suggested to result from genomic variations. However, the contribution of genetic factors to common behavioral disorders (i.e. autism, schizophrenia, intellectual disability) remains to be understood when an attempt to link behavioral variability to a specific genomic change is made. Probably, the least appreciated genetic mechanism of debilitating neurobehavioral disorders is somatic mosaicism or the occurrence of genetically diverse (neuronal) cells in an individual’s brain. Somatic mosaicism is assumed to affect directly the brain being associated with specific behavioral patterns. As shown in studies of chromosome abnormalities (syndromes), genetic mosaicism is able to change dynamically the phenotype due to inconsistency of abnormal cell proportions. Here, we hypothesize that brain-specific postzygotic changes of mosaicism levels are able to modulate variability of behavioral phenotypes. More precisely, behavioral phenotype variability in individuals exhibiting somatic mosaicism might correlate with changes in the amount of genetically abnormal cells throughout the lifespan. If proven, the hypothesis can be used as a basis for therapeutic interventions through regulating levels of somatic mosaicism to increase functioning and to improve overall condition of individuals with behavioral problems.
Collapse
Affiliation(s)
- Svetlana G Vorsanova
- Separated Structural Unit "Clinical Research Institute of Pediatrics at Pirogov Russian National Research Medical University named after Y.E Veltishev", Ministry of Health of Russian Federation, Moscow125412, Russian Federation.,Mental Health Research Center, Moscow117152, Russian Federation.,Moscow State University of Psychology and Education, Moscow127051, Russian Federation
| | - Maria A Zelenova
- Separated Structural Unit "Clinical Research Institute of Pediatrics at Pirogov Russian National Research Medical University named after Y.E Veltishev", Ministry of Health of Russian Federation, Moscow125412, Russian Federation.,Mental Health Research Center, Moscow117152, Russian Federation.,Moscow State University of Psychology and Education, Moscow127051, Russian Federation
| | - Yuri B Yurov
- Separated Structural Unit "Clinical Research Institute of Pediatrics at Pirogov Russian National Research Medical University named after Y.E Veltishev", Ministry of Health of Russian Federation, Moscow125412, Russian Federation.,Mental Health Research Center, Moscow117152, Russian Federation.,Moscow State University of Psychology and Education, Moscow127051, Russian Federation
| | - Ivan Y Iourov
- Separated Structural Unit "Clinical Research Institute of Pediatrics at Pirogov Russian National Research Medical University named after Y.E Veltishev", Ministry of Health of Russian Federation, Moscow125412, Russian Federation.,Mental Health Research Center, Moscow117152, Russian Federation.,Department of Medical Genetics, Russian Medical Academy of Postgraduate Education, Moscow123995, Russian Federation
| |
Collapse
|
13
|
Andriani GA, Vijg J, Montagna C. Mechanisms and consequences of aneuploidy and chromosome instability in the aging brain. Mech Ageing Dev 2017; 161:19-36. [PMID: 27013377 PMCID: PMC5490080 DOI: 10.1016/j.mad.2016.03.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/17/2016] [Accepted: 03/19/2016] [Indexed: 01/31/2023]
Abstract
Aneuploidy and polyploidy are a form of Genomic Instability (GIN) known as Chromosomal Instability (CIN) characterized by sporadic abnormalities in chromosome copy numbers. Aneuploidy is commonly linked to pathological states. It is a hallmark of spontaneous abortions and birth defects and it is observed virtually in every human tumor, therefore being generally regarded as detrimental for the development or the maturation of tissues under physiological conditions. Polyploidy however, occurs as part of normal physiological processes during maturation and differentiation of some mammalian cell types. Surprisingly, high levels of aneuploidy are present in the brain, and their frequency increases with age suggesting that the brain is able to maintain its functionality in the presence of high levels of mosaic aneuploidy. Because somatic aneuploidy with age can reach exceptionally high levels, it is likely to have long-term adverse effects in this organ. We describe the mechanisms accountable for an abnormal DNA content with a particular emphasis on the CNS where cell division is limited. Next, we briefly summarize the types of GIN known to date and discuss how they interconnect with CIN. Lastly we highlight how several forms of CIN may contribute to genetic variation, tissue degeneration and disease in the CNS.
Collapse
Affiliation(s)
- Grasiella A Andriani
- Department of Genetics, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA
| | - Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA; Department Ophthalmology and Visual Science, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA; Department of Obstetrics & Gynecology and Women's Health, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA
| | - Cristina Montagna
- Department of Genetics, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA; Department of Pathology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA.
| |
Collapse
|