1
|
Panariello BHD, Denucci GC, Tonon CC, Eckert GJ, Witek L, Nayak VV, Coelho PG, Duarte S. Tissue-Safe Low-Temperature Plasma Treatment for Effective Management of Mature Peri-Implantitis Biofilms on Titanium Surfaces. ACS Biomater Sci Eng 2024; 10:7647-7656. [PMID: 39536298 DOI: 10.1021/acsbiomaterials.4c01413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The unique screw-shape design and microstructure of implants pose a challenge for mechanical debridement in removing biofilms. Biofilms exhibit increased resistance to antimicrobials relative to single planktonic cells, emphasizing the need for effective biofilm removal during periodontal therapy for peri-implantitis treatment. To tackle this issue, our team evaluated the effectiveness of low-temperature plasma (LTP) for disinfecting titanium discs contaminated with multispecies biofilms associated with peri-implantitis, specifically focusing on biofilms matured for 14 and 21 days as well as biofilms that had formed on StraumannⓇ Ti-SLA implants for 21 days. The biofilms included Actinomyces naeslundii, Porphyromonas gingivalis, Streptococcus oralis, and Veillonella dispar, which were grown in anaerobic conditions. These biofilms were subjected to LTP treatment for 1, 3, and 5 min, using distances of 3 or 10 mm from the LTP nozzle to the samples. Control groups included biofilms formed on Ti discs or implants that received no treatment, exposure to argon flow at 3 or 10 mm of distance for 1, 3, or 5 min, application for 1 min of 14 μg/mL amoxicillin, 140 μg/mL metronidazole, or a blend of both, and treatment with 0.12% chlorhexidine (CHX) for 1 min. For the implants, 21-day-old biofilms were treated with 0.12% CHX 0.12% for 1 min and LTP for 1 min at a distance of 3 mm for each quadrant. Biofilm viability was assessed through bacterial counting and confocal laser scanning microscopy. The impact of LTP was investigated on reconstituted oral epithelia (ROE) contaminated with P. gingivalis, evaluating cytotoxicity, cell viability, and histology. The results showed that a 1 min exposure to LTP at distances of 3 or 10 mm significantly lowered bacterial counts on implants and discs compared to the untreated controls (p < 0.017). LTP exposure yielded lower levels of cytotoxicity relative to the untreated contaminated control after 12 h of contamination (p = 0.038), and cell viability was not affected by LTP (p ≥ 0.05); thus, LTP-treated samples were shown to be safe for tissue applications, with low cytotoxicity and elevated cell viability post-treatment, and these results were validated by qualitative histological analysis. In conclusion, the study's results support the effectiveness of 1 min LTP exposure in successfully disinfecting mature peri-implantitis multispecies biofilms on titanium discs and implants. Moreover, it validated the safety of LTP on ROE, suggesting its potential as an adjunctive treatment for peri-implantitis.
Collapse
Affiliation(s)
- Beatriz H D Panariello
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida 34211, United States
| | - Giovanna C Denucci
- Department of Cariology, Indiana University School of Dentistry, Indianapolis, Indiana 46202, United States
| | - Caroline C Tonon
- School of Dental Medicine, University of Buffalo, Buffalo, New York 14214, United States
| | - George J Eckert
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Lukasz Witek
- Biomaterials Division, NYU Dentistry, New York, New York 10010, United States
- Hansjörg Wyss Department of Plastic Surgery, NYU Grossman School of Medicine, New York, New York 10017, United States
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Vasudev V Nayak
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida 33136, United States
| | - Paulo G Coelho
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida 33136, United States
- DeWitt Daughtry Family Department of Surgery, Division of Plastic Surgery, Miller School of Medicine, University of Miami, Miami, Florida 33176, United States
| | - Simone Duarte
- School of Dental Medicine, University of Buffalo, Buffalo, New York 14214, United States
| |
Collapse
|
2
|
Fatima Balderrama I, Schafer S, El Shatanofy M, Bergamo ETP, Mirsky NA, Nayak VV, Marcantonio Junior E, Alifarag AM, Coelho PG, Witek L. Biomimetic Tissue Engineering Strategies for Craniofacial Applications. Biomimetics (Basel) 2024; 9:636. [PMID: 39451842 PMCID: PMC11506466 DOI: 10.3390/biomimetics9100636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/21/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
Biomimetics is the science of imitating nature's designs and processes to create innovative solutions for various fields, including dentistry and craniofacial reconstruction. In these areas, biomimetics involves drawing inspiration from living organisms/systems to develop new materials, techniques, and devices that closely resemble natural tissue structures and enhance functionality. This field has successfully demonstrated its potential to revolutionize craniofacial procedures, significantly improving patient outcomes. In dentistry, biomimetics offers exciting possibilities for the advancement of new dental materials, restorative techniques, and regenerative potential. By analyzing the structure/composition of natural teeth and the surrounding tissues, researchers have developed restorative materials that mimic the properties of teeth, as well as regenerative techniques that might assist in repairing enamel, dentin, pulp, cementum, periodontal ligament, and bone. In craniofacial reconstruction, biomimetics plays a vital role in developing innovative solutions for facial trauma, congenital defects, and various conditions affecting the maxillofacial region. By studying the intricate composition and mechanical properties of the skull and facial bones, clinicians and engineers have been able to replicate natural structures leveraging computer-aided design and manufacturing (CAD/CAM) and 3D printing. This has allowed for the creation of patient-specific scaffolds, implants, and prostheses that accurately fit a patient's anatomy. This review highlights the current evidence on the application of biomimetics in the fields of dentistry and craniofacial reconstruction.
Collapse
Affiliation(s)
- Isis Fatima Balderrama
- Department of Diagnosis and Surgery, School of Dentistry of Araraquara, Sao Paulo State University, Sao Paulo 14801-385, Brazil
- Biomaterials Division, NYU Dentistry, New York, NY 10010, USA
| | - Sogand Schafer
- Division of Plastic, Reconstructive and Oral Surgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Muhammad El Shatanofy
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Edmara T. P. Bergamo
- Biomaterials Division, NYU Dentistry, New York, NY 10010, USA
- Department of Prosthodontics, NYU Dentistry, New York, NY 10010, USA
| | | | - Vasudev Vivekanand Nayak
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Elcio Marcantonio Junior
- Department of Diagnosis and Surgery, School of Dentistry of Araraquara, Sao Paulo State University, Sao Paulo 14801-385, Brazil
| | - Adham M. Alifarag
- Department of General Surgery, Temple University Hospital System, Philadelphia, PA 19140, USA
| | - Paulo G. Coelho
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Division of Plastic Surgery, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Lukasz Witek
- Biomaterials Division, NYU Dentistry, New York, NY 10010, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
- Hansjörg Wyss Department of Plastic Surgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
3
|
Kwon JS, Cho WT, Lee JH, Joo JY, Lee JY, Lim Y, Jeon HJ, Huh JB. Prospective Randomized Controlled Clinical Trial to Evaluate the Safety and Efficacy of ACTLINK Plasma Treatment for Promoting Osseointegration and Bone Regeneration in Dental Implants. Bioengineering (Basel) 2024; 11:980. [PMID: 39451356 PMCID: PMC11505162 DOI: 10.3390/bioengineering11100980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Recent studies have explored surface treatments, such as increasing the hydrophilicity of implant fixtures, to enhance the osseointegration of implants. This prospective clinical study aimed to assess the clinical stability and efficacy of plasma treatment applied to implants with sandblast-acid etching (SLA) surfaces before placement. Twenty-eight patients requiring implant placement provided consent and were assigned randomly to either the SLA group without plasma treatment or the SLA/plasma group with plasma treatment. Recall checks were conducted one and three months after the first-stage surgery, followed by a second surgery at four months. Although no significant differences in buccal bone defects or implant stability were observed between the groups, the SLA/plasma group showed significant increases in marginal bone changes on the mesial and distal sides, as assessed using periapical radiographs. This study underscores the potential of pre-implantation plasma treatment to enhance bone regeneration around implants.
Collapse
Affiliation(s)
- Jin-Seon Kwon
- Department of Prosthodontics, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea;
- Department of Prosthodontics, Dental Research Institute, Dental and Life Sciences Institute, Education and Research Team for Life Science on Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea;
| | - Won-Tak Cho
- Department of Prosthodontics, Dental Research Institute, Dental and Life Sciences Institute, Education and Research Team for Life Science on Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea;
| | - Jong-Ho Lee
- Research and Development Institute, PNUADD Co., Ltd., Busan 46241, Republic of Korea;
| | - Ji-Young Joo
- Department of Periodontology, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea;
| | - Jae-Yeol Lee
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea;
| | - Youbong Lim
- Plasmapp Co., Ltd., Yongin-si 17086, Republic of Korea; (Y.L.); (H.-J.J.)
| | - Hyun-Jeong Jeon
- Plasmapp Co., Ltd., Yongin-si 17086, Republic of Korea; (Y.L.); (H.-J.J.)
| | - Jung-Bo Huh
- Department of Prosthodontics, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea;
- Department of Prosthodontics, Dental Research Institute, Dental and Life Sciences Institute, Education and Research Team for Life Science on Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea;
| |
Collapse
|
4
|
Schafer S, Swain T, Parra M, Slavin BV, Mirsky NA, Nayak VV, Witek L, Coelho PG. Nonthermal Atmospheric Pressure Plasma Treatment of Endosteal Implants for Osseointegration and Antimicrobial Efficacy: A Comprehensive Review. Bioengineering (Basel) 2024; 11:320. [PMID: 38671741 PMCID: PMC11048570 DOI: 10.3390/bioengineering11040320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
The energy state of endosteal implants is dependent on the material, manufacturing technique, cleaning procedure, sterilization method, and surgical manipulation. An implant surface carrying a positive charge renders hydrophilic properties, thereby facilitating the absorption of vital plasma proteins crucial for osteogenic interactions. Techniques to control the surface charge involve processes like oxidation, chemical and topographical adjustments as well as the application of nonthermal plasma (NTP) treatment. NTP at atmospheric pressure and at room temperature can induce chemical and/or physical reactions that enhance wettability through surface energy changes. NTP has thus been used to modify the oxide layer of endosteal implants that interface with adjacent tissue cells and proteins. Results have indicated that if applied prior to implantation, NTP strengthens the interaction with surrounding hard tissue structures during the critical phases of early healing, thereby promoting rapid bone formation. Also, during this time period, NTP has been found to result in enhanced biomechanical fixation. As such, the application of NTP may serve as a practical and reliable method to improve healing outcomes. This review aims to provide an in-depth exploration of the parameters to be considered in the application of NTP on endosteal implants. In addition, the short- and long-term effects of NTP on osseointegration are addressed, as well as recent advances in the utilization of NTP in the treatment of periodontal disease.
Collapse
Affiliation(s)
- Sogand Schafer
- Division of Plastic, Reconstructive and Oral Surgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Tina Swain
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Marcelo Parra
- Center of Excellence in Morphological and Surgical Studies (CEMyQ), Faculty of Medicine, Universidad de la Frontera, Temuco 4811230, Chile
- Department of Comprehensive Adult Dentistry, Faculty of Dentistry, Universidad de la Frontera, Temuco 4811230, Chile
| | - Blaire V. Slavin
- University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | - Vasudev Vivekanand Nayak
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Lukasz Witek
- Biomaterials Division, New York University Dentistry, New York, NY 10010, USA
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
- Hansjörg Wyss Department of Plastic Surgery, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Paulo G. Coelho
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- DeWitt Daughtry Family Department of Surgery, Division of Plastic Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
5
|
Karthik C, Sarngadharan SC, Thomas V. Low-Temperature Plasma Techniques in Biomedical Applications and Therapeutics: An Overview. Int J Mol Sci 2023; 25:524. [PMID: 38203693 PMCID: PMC10779006 DOI: 10.3390/ijms25010524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/04/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Plasma, the fourth fundamental state of matter, comprises charged species and electrons, and it is a fascinating medium that is spread over the entire visible universe. In addition to that, plasma can be generated artificially under appropriate laboratory techniques. Artificially generated thermal or hot plasma has applications in heavy and electronic industries; however, the non-thermal (cold atmospheric or low temperature) plasma finds its applications mainly in biomedicals and therapeutics. One of the important characteristics of LTP is that the constituent particles in the plasma stream can often maintain an overall temperature of nearly room temperature, even though the thermal parameters of the free electrons go up to 1 to 10 keV. The presence of reactive chemical species at ambient temperature and atmospheric pressure makes LTP a bio-tolerant tool in biomedical applications with many advantages over conventional techniques. This review presents some of the important biomedical applications of cold-atmospheric plasma (CAP) or low-temperature plasma (LTP) in modern medicine, showcasing its effect in antimicrobial therapy, cancer treatment, drug/gene delivery, tissue engineering, implant modifications, interaction with biomolecules, etc., and overviews some present challenges in the field of plasma medicine.
Collapse
Affiliation(s)
- Chandrima Karthik
- Department of Materials & Mechanical Engineering, University of Alabama at Birmingham, 1150 10th Avenue South, Birmingham, AL 35205, USA;
| | | | - Vinoy Thomas
- Department of Materials & Mechanical Engineering, University of Alabama at Birmingham, 1150 10th Avenue South, Birmingham, AL 35205, USA;
| |
Collapse
|
6
|
Nayak VV, Mirsky NA, Slavin BV, Witek L, Coelho PG, Tovar N. Non-Thermal Plasma Treatment of Poly(tetrafluoroethylene) Dental Membranes and Its Effects on Cellular Adhesion. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6633. [PMID: 37895615 PMCID: PMC10608478 DOI: 10.3390/ma16206633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023]
Abstract
Non-resorbable dental barrier membranes entail the risk of dehiscence due to their smooth and functionally inert surfaces. Non-thermal plasma (NTP) treatment has been shown to increase the hydrophilicity of a biomaterials and could thereby enhance cellular adhesion. This study aimed to elucidate the role of allyl alcohol NTP treatment of poly(tetrafluoroethylene) in its cellular adhesion. The materials (non-treated PTFE membranes (NTMem) and NTP-treated PTFE membranes (PTMem)) were subjected to characterization using scanning electron microscopy (SEM), contact angle measurements, X-ray photoelectron spectroscopy (XPS), and electron spectroscopy for chemical analysis (ESCA). Cells were seeded upon the different membranes, and cellular adhesion was analyzed qualitatively and quantitatively using fluorescence labeling and a hemocytometer, respectively. PTMem exhibited higher surface energies and the incorporation of reactive functional groups. NTP altered the surface topography and chemistry of PTFE membranes, as seen through SEM, XPS and ESCA, with partial defluorination and polymer chain breakage. Fluorescence labeling indicated significantly higher cell populations on PTMem relative to its untreated counterparts (NTMem). The results of this study support the potential applicability of allyl alcohol NTP treatment for polymeric biomaterials such as PTFE-to increase cellular adhesion for use as dental barrier membranes.
Collapse
Affiliation(s)
- Vasudev Vivekanand Nayak
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (V.V.N.); (N.A.M.); (B.V.S.); (P.G.C.)
| | - Nicholas Alexander Mirsky
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (V.V.N.); (N.A.M.); (B.V.S.); (P.G.C.)
| | - Blaire V. Slavin
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (V.V.N.); (N.A.M.); (B.V.S.); (P.G.C.)
| | - Lukasz Witek
- Biomaterials Division, College of Dentistry, New York University, New York, NY 10010, USA;
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, 6 MetroTech Center, Brooklyn, NY 11201, USA
- Hansjörg Wyss Department of Plastic Surgery, Grossman School of Medicine, New York University, New York, NY 10017, USA
| | - Paulo G. Coelho
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (V.V.N.); (N.A.M.); (B.V.S.); (P.G.C.)
- DeWitt Daughtry Family Department of Surgery, Division of Plastic Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Nick Tovar
- Biomaterials Division, College of Dentistry, New York University, New York, NY 10010, USA;
- Department of Oral and Maxillofacial Surgery, New York University, Langone Medical Center and Bellevue Hospital Center, New York, NY 10016, USA
| |
Collapse
|
7
|
Staehlke S, Brief J, Senz V, Eickner T, Nebe JB. Optimized Gingiva Cell Behavior on Dental Zirconia as a Result of Atmospheric Argon Plasma Activation. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4203. [PMID: 37374388 DOI: 10.3390/ma16124203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023]
Abstract
Several physico-chemical modifications have been developed to improve cell contact with prosthetic oral implant surfaces. The activation with non-thermal plasmas was one option. Previous studies found that gingiva fibroblasts on laser-microstructured ceramics were hindered in their migration into cavities. However, after argon (Ar) plasma activation, the cells concentrated in and around the niches. The change in surface properties of zirconia and, subsequently, the effect on cell behavior is unclear. In this study, polished zirconia discs were activated by atmospheric pressure Ar plasma using the kINPen®09 jet for 1 min. Surfaces were characterized by scanning electron microscopy, X-ray photoelectron spectroscopy (XPS), and water contact angle. In vitro studies with human gingival fibroblasts (HGF-1) focused on spreading, actin cytoskeleton organization, and calcium ion signaling within 24 h. After Ar plasma activation, surfaces were more hydrophilic. XPS revealed decreased carbon and increased oxygen, zirconia, and yttrium content after Ar plasma. The Ar plasma activation boosted the spreading (2 h), and HGF-1 cells formed strong actin filaments with pronounced lamellipodia. Interestingly, the cells' calcium ion signaling was also promoted. Therefore, argon plasma activation of zirconia seems to be a valuable tool to bioactivate the surface for optimal surface occupation by cells and active cell signaling.
Collapse
Affiliation(s)
- Susanne Staehlke
- Institute for Cell Biology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Jakob Brief
- VITA Zahnfabrik H. Rauter GmbH & Co. KG, 79713 Bad Säckingen, Germany
| | - Volkmar Senz
- Institute for Biomedical Engineering, Rostock University Medical Center, 18119 Rostock, Germany
| | - Thomas Eickner
- Institute for Biomedical Engineering, Rostock University Medical Center, 18119 Rostock, Germany
| | - J Barbara Nebe
- Institute for Cell Biology, Rostock University Medical Center, 18057 Rostock, Germany
- Department Science and Technology of Life, Light and Matter, University of Rostock, 18059 Rostock, Germany
| |
Collapse
|
8
|
Wu C, Yang M, Ma K, Zhang Q, Bai N, Liu Y. Improvement implant osseointegration through nonthermal Ar/O 2 plasma. Dent Mater J 2023. [PMID: 37032105 DOI: 10.4012/dmj.2022-158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
This study investigated the effects of nonthermal Ar/O2 plasma on the osseointegration of titanium implants. Through 8 weeks' in vivo evaluation of implants inserted into femoral bones of male Sprague-Dawley rats, the new bone mineralization apposition rate (MAR) is increased by 1.87 and 2.14 times for implants of smooth machined (SM) and sand-blasted and acid-etched (SLA) after plasma treatment. The bone volume fraction (bone volume/total volume, BV/TV) and bone-implant contact (BIC) ratios are improved by 1.31, 1.26 times and 1.35, 1.15 times after 90 s plasma treatment. The improved hydrophilicity rather than implant surface morphology is believed to play a critical role for the osseointegration improvement.
Collapse
Affiliation(s)
- Chengzan Wu
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University
| | - Min Yang
- Department of Oral and Maxillofacial Surgery, Shanxi Provincial People's Hospital
| | - Kai Ma
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University
| | - Qian Zhang
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University
| | - Na Bai
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University
| | - Yanshan Liu
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University
| |
Collapse
|
9
|
Osseointegration Properties of Titanium Implants Treated by Nonthermal Atmospheric-Pressure Nitrogen Plasma. Int J Mol Sci 2022; 23:ijms232315420. [PMID: 36499747 PMCID: PMC9740438 DOI: 10.3390/ijms232315420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Pure titanium is used in dental implants owing to its excellent biocompatibility and physical properties. However, the aging of the material during storage is detrimental to the long-term stability of the implant after implantation. Therefore, in this study, we attempted to improve the surface properties and circumvent the negative effects of material aging on titanium implants by using a portable handheld nonthermal plasma device capable of piezoelectric direct discharge to treat pure titanium discs with nitrogen gas. We evaluated the osteogenic properties of the treated samples by surface morphology and elemental analyses, as well as in vitro and in vivo experiments. The results showed that nonthermal atmospheric-pressure nitrogen plasma can improve the hydrophilicity of pure titanium without damaging its surface morphology while introducing nitrogen-containing functional groups, thereby promoting cell attachment, proliferation, and osseointegration to some extent. Therefore, nitrogen plasma treatment may be a promising method for the rapid surface treatment of titanium implants.
Collapse
|
10
|
Panariello BHD, Mody DP, Eckert GJ, Witek L, Coelho PG, Duarte S. Low-Temperature Plasma Short Exposure to Decontaminate Peri-Implantitis-Related Multispecies Biofilms on Titanium Surfaces In Vitro. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1549774. [PMID: 37228507 PMCID: PMC10205409 DOI: 10.1155/2022/1549774] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/29/2022] [Indexed: 03/10/2024]
Abstract
Background The use of low-temperature plasma (LTP) is a novel approach to treating peri-implantitis. LTP disrupts the biofilm while conditioning the surrounding host environment for bone growth around the infected implant. The main objective of this study was to evaluate the antimicrobial properties of LTP on newly formed (24 h), intermediate (3 days), and mature (7 days) peri-implant-related biofilms formed on titanium surfaces. Methods Actinomyces naeslundii (ATCC 12104), Porphyromonas gingivalis (W83), Streptococcus oralis (ATCC 35037), and Veillonella dispar (ATCC 17748) were cultivated in brain heart infusion supplemented with 1% yeast extract, hemin (0.5 mg/mL), and menadione (5 mg/mL) and kept at 37°C in anaerobic conditions for 24 h. Species were mixed for a final concentration of ~105 colony forming units (CFU)/mL (OD = 0.01), and the bacterial suspension was put in contact with titanium specimens (7.5 mm in diameter by 2 mm in thickness) for biofilm formation. Biofilms were treated with LTP for 1, 3, and 5 min at 3 or 10 mm from plasma tip to sample. Controls were those having no treatment (negative control, NC) and argon flow under the same LTP conditions. Positive controls were those treated with 14 μg/mL amoxicillin and 140 μg/mL metronidazole individually or combined and 0.12% chlorhexidine (n = 6 per group). Biofilms were evaluated by CFU, confocal laser scanning microscopy (CLSM), and fluorescence in situ hybridization (FISH). Comparisons among bacteria; 24 h, 3-day, and 7-day biofilms; and treatments for each biofilm were made. Wilcoxon signed-rank and Wilcoxon rank sum tests were applied (α = 0.05). Results Bacterial growth was observed in all NC groups, corroborated by FISH. LTP treatment significantly reduced all bacteria species compared to the NC in all biofilm periods and treatment conditions (p ≤ 0.016), and CLSM corroborated these results. Conclusion Within the limitation of this study, we conclude that LTP application effectively reduces peri-implantitis-related multispecies biofilms on titanium surfaces in vitro.
Collapse
Affiliation(s)
| | - Drashty P. Mody
- Department of Cariology, Operative Dentistry and Dental Public Health Indianapolis, Indianapolis, IN, USA
| | - George J. Eckert
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, IN, USA
| | - Lukasz Witek
- Department of Biomaterials, New York University College of Dentistry, New York, NY, USA
| | - Paulo G. Coelho
- Department of Biomaterials, New York University College of Dentistry, New York, NY, USA
| | - Simone Duarte
- American Dental Association Science and Research Institute, Chicago, IL, USA
| |
Collapse
|
11
|
Long L, Zhang M, Gan S, Zheng Z, He Y, Xu J, Fu R, Guo Q, Yu D, Chen W. Comparison of early osseointegration of non-thermal atmospheric plasma-functionalized/ SLActive titanium implant surfaces in beagle dogs. Front Bioeng Biotechnol 2022; 10:965248. [DOI: 10.3389/fbioe.2022.965248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Hydrophilic dental implants are gaining increasing interest for their ability to accelerate bone formation. However, commercially available hydrophilic implants, such as SLActive™, have some major limitations due to their time-dependent biological aging and lower cost-effectiveness. The non-thermal atmospheric plasma (NTAP) treatment is a reliable way to gain a hydrophilic surface and enhance osseointegration. However, a few studies have been carried out to compare the osseointegration of NTAP-functionalized titanium implants and commercially available hydrophilic implants.Purpose: In this study, we compare the osseointegration abilities of the NTAP-functionalized titanium implant and Straumann SLActive.Material and methods: The NTAP effectiveness was examined using in vitro cell experiments. Then, six beagle dogs were included in the in vivo experiment. Straumann SLActive implants, SLA implants, and SLA implants treated with NTAP were implanted in the mandibular premolar area of dogs. After 2 w, 4 w, and 8 w, the animals were sacrificed and specimens were collected. Radiographic and histological analyses were used to measure osseointegration.Results: NTAP treatment accelerated the initial attachment and differentiation of MC3T3-E1 cells. In the in vivo experiment, bone parameters (e.g., BIC value and BV/TV) and volume of new bone of NTAP groups were close to those of the SLActive group. Additionally, although there was no statistical difference, the osseointegration of SLActive and NTAP groups was evidently superior to that of the SLA group.Conclusion: NTAP-functionalized implants enhanced cell interaction with material and subsequent bone formation. The osseointegration of the NTAP-functionalized implant was comparable to that of the SLActive implant at the early osseointegration stage.
Collapse
|
12
|
Wagner G, Eggers B, Duddeck D, Kramer FJ, Bourauel C, Jepsen S, Deschner J, Nokhbehsaim M. Influence of cold atmospheric plasma on dental implant materials - an in vitro analysis. Clin Oral Investig 2021; 26:2949-2963. [PMID: 34907458 PMCID: PMC8898257 DOI: 10.1007/s00784-021-04277-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/01/2021] [Indexed: 12/25/2022]
Abstract
Background and objectives Alterations in the microenvironment of implant surfaces could influence the cellular crosstalk and adhesion patterns of dental implant materials. Cold plasma has been described to have an influence on cells, tissues, and biomaterials. Hence, the mechanisms of osseointegration may be altered by non-thermal plasma treatment depending on different chemical compositions and surface coatings of the biomaterial. The aim of the present study is to investigate the influence of cold atmospheric plasma (CAP) treatment on implant surfaces and its biological and physicochemical side effects. Materials and methods Dental implant discs from titanium and zirconia with different surface modifications were treated with CAP at various durations. Cell behavior and adhesion patterns of human gingival fibroblast (HGF-1) and osteoblast-like cells (MG-63) were examined using scanning electron microscopy and fluorescence microscopy. Surface chemical characterization was analyzed using energy-dispersive X-ray spectroscopy (EDS). Quantitative analysis of cell adhesion, proliferation, and extracellular matrix formation was conducted including real-time PCR. Results CAP did not affect the elemental composition of different dental implant materials. Additionally, markers for cell proliferation, extracellular matrix formation, and cell adhesion were differently regulated depending on the application time of CAP treatment in MG-63 cells and gingival fibroblasts. Conclusions CAP application is beneficial for dental implant materials to allow for faster proliferation and adhesion of cells from the surrounding tissue on both titanium and zirconia implant surfaces with different surface properties. Clinical relevance The healing capacity provided through CAP treatment could enhance osseointegration of dental implants and has the potential to serve as an effective treatment option in periimplantitis therapy.
Collapse
Affiliation(s)
- Gunar Wagner
- Department of Periodontology, Operative and Preventive Dentistry, Center of Dento-Maxilo-Facial Medicine, University of Bonn, Welschnonnenstr. 17, 53111, Bonn, Germany.
| | - Benedikt Eggers
- Department of Oral Surgery, Center of Dento-Maxillo-Facial Medicine, University of Bonn, 53111, Bonn, Germany
| | - Dirk Duddeck
- Department of Prosthodontics, Geriatric Dentistry and Craniomandibular Disorders, University Charité Berlin, 14197, Berlin, Germany.,Research Department, CleanImplant Foundation, 10117, Berlin, Germany
| | - Franz-Josef Kramer
- Department of Oral Surgery, Center of Dento-Maxillo-Facial Medicine, University of Bonn, 53111, Bonn, Germany.,Department of Cranio-Maxillofacial Surgery, Center of Dento-Maxillo-Facial Medicine, University of Bonn, 53111, Bonn, Germany
| | - Christoph Bourauel
- Department of Oral Technology, School of Dentistry, University of Bonn, 53111, Bonn, Germany
| | - Søren Jepsen
- Department of Periodontology, Operative and Preventive Dentistry, Center of Dento-Maxilo-Facial Medicine, University of Bonn, Welschnonnenstr. 17, 53111, Bonn, Germany
| | - James Deschner
- Department of Periodontology and Operative Dentistry, University of Mainz, 55131, Mainz, Germany
| | - Marjan Nokhbehsaim
- Section of Experimental Dento-Maxillo-Facial Medicine, Center of Dento-Maxillo-Facial Medicine, University of Bonn, 53111, Bonn, Germany
| |
Collapse
|
13
|
Damerau JM, Bierbaum S, Wiedemeier D, Korn P, Smeets R, Jenny G, Nadalini J, Stadlinger B. A systematic review on the effect of inorganic surface coatings in large animal models and meta-analysis on tricalcium phosphate and hydroxyapatite on periimplant bone formation. J Biomed Mater Res B Appl Biomater 2021; 110:157-175. [PMID: 34272804 PMCID: PMC9292919 DOI: 10.1002/jbm.b.34899] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/15/2021] [Accepted: 06/21/2021] [Indexed: 12/25/2022]
Abstract
The aim of the present systematic review was to analyse studies using inorganic implant coatings and, in a meta‐analysis, the effect of specifically tricalcium phosphate (TCP) and hydroxyapatite (HA) implant surface coatings on bone formation according to the PRISMA criteria. Inclusion criteria were the comparison to rough surfaced titanium implants in large animal studies at different time points of healing. Forty studies met the inclusion criteria for the systematic review. Fifteen of these analyzed the bone‐to‐implant contact (BIC) around the most investigated inorganic titanium implant coatings, namely TCP and HA, and were included in the meta‐analysis. The results of the TCP group show after 14 days a BIC being 3.48% points lower compared with the reference surface. This difference in BIC decreases to 0.85% points after 21–28 days. After 42–84 days, the difference in BIC of 13.79% points is in favor of the TCP‐coatings. However, the results are not statistically significant, in part due to the fact that the variability between the studies increased over time. The results of the HA group show a significant difference in mean BIC of 6.94% points after 14 days in favor of the reference surface. After 21–28 days and 42–84 days the difference in BIC is slightly in favor of the test group with 1.53% points and 1.57% points, respectively, lacking significance. In large animals, there does not seem to be much effect of TCP‐coated or HA‐coated implants over uncoated rough titanium implants in the short term.
Collapse
Affiliation(s)
- Jeanne-Marie Damerau
- Clinic of Cranio-Maxillofacial and Oral Surgery, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Susanne Bierbaum
- Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden, Germany.,International Medical College, Münster, Germany
| | - Daniel Wiedemeier
- Statistical Services, Center for Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Paula Korn
- Department of Oral and Maxillofacial Surgery Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gregor Jenny
- Clinic of Cranio-Maxillofacial and Oral Surgery, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Johanna Nadalini
- Clinic of Cranio-Maxillofacial and Oral Surgery, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Bernd Stadlinger
- Clinic of Cranio-Maxillofacial and Oral Surgery, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
14
|
Tan F, Fang Y, Zhu L, Al-Rubeai M. Cold atmospheric plasma as an interface biotechnology for enhancing surgical implants. Crit Rev Biotechnol 2021; 41:425-440. [PMID: 33622112 DOI: 10.1080/07388551.2020.1853671] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cold atmospheric plasma (CAP) has been intensively researched for direct treatment of living cells and tissues. Significant attention is now being given to its indirect applications in plasma medicine. Surgical implant is an exemplary conveyor to deliver the therapeutic effects of plasma to patients. There is a constant drive to enhance the clinical performance of surgical implants, targeting at the implant-tissue interface. As a versatile and potent tool, CAP is capable of ameliorating surgical implants using various strategies of interface biotechnology, such as surface modification, coating deposition, and drug delivery. Understanding the chemical, physical, mechanical, electrical, and pharmacological processes occurring at the implant-tissue interface is crucial to effective application of CAP as an interface biotechnology. This preclinical review focuses on the recent advances in CAP-assisted implant-based therapy for major surgical specialties. The ultimate goal here is to elicit unique opportunities and challenges for translating implant science to plasma medicine.
Collapse
Affiliation(s)
- Fei Tan
- Department of ORL-HNS, Affiliated East Hospital of Tongji University, Shanghai, China.,School of Medicine and Institute for Advanced Study, Tongji University, Shanghai, China.,The Royal College of Surgeons of England, London, UK
| | - Yin Fang
- School of Medicine and Institute for Advanced Study, Tongji University, Shanghai, China
| | - Liwei Zhu
- Department of ORL-HNS, Affiliated East Hospital of Tongji University, Shanghai, China
| | - Mohamed Al-Rubeai
- School of Chemical and Bioprocess Engineering, and Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| |
Collapse
|
15
|
Comprehensive biomedical applications of low temperature plasmas. Arch Biochem Biophys 2020; 693:108560. [PMID: 32857998 PMCID: PMC7448743 DOI: 10.1016/j.abb.2020.108560] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 02/08/2023]
Abstract
The main component of plasma medicine is the use of low-temperature plasma (LTP) as a powerful tool for biomedical applications. LTP generates high reactivity at low temperatures and can be activated with noble gases with molecular mixtures or compressed air. LTP reactive species are quickly produced, and are a remarkably good source of reactive oxygen and nitrogen species including singlet oxygen (O2), ozone (O3), hydroxyl radicals (OH), nitrous oxide (NO), and nitrogen dioxide (NO2). Its low gas temperature and highly reactive non-equilibrium chemistry make it appropriate for the alteration of inorganic surfaces and delicate biological systems. Treatment of oral biofilm-related infections, treatment of wounds and skin diseases, assistance in cancer treatment, treatment of viruses' infections (e.g. herpes simplex), and optimization of implants surfaces are included among the extensive plasma medicine applications. Each of these applications will be discussed in this review article.
Collapse
|
16
|
Ao XG, Chen WC. [Research progress on the osseointegration of titanium implants promoted by cold atmospheric plasma]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2020; 38:566-570. [PMID: 33085243 DOI: 10.7518/hxkq.2020.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The application of cold atmospheric plasma to titanium surface modification has recently become a research focus in the area of material modification. Previous studies found that cold atmospheric plasma can affect the colonization of bacteria and biological behaviors of osteoblasts by changing the surface characteristics of titanium in vitro. In vivo studies reveal that cold atmospheric plasma can promote the process of osseointegration of titanium implants. This review focuses on research on the effects of the surface modification of titanium implants with cold atmospheric plasma on osseointegration.
Collapse
Affiliation(s)
- Xiao-Gang Ao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wen-Chuan Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
17
|
The Emerging Role of Cold Atmospheric Plasma in Implantology: A Review of the Literature. NANOMATERIALS 2020; 10:nano10081505. [PMID: 32751895 PMCID: PMC7466481 DOI: 10.3390/nano10081505] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022]
Abstract
In recent years, cold atmospheric plasma (CAP) technologies have received increasing attention in the field of biomedical applications. The aim of this article is to review the currently available literature to provide an overview of the scientific principles of CAP application, its features, functions, and its applications in systemic and oral diseases, with a specific focus on its potential in implantology. In this narrative review, PubMed, Medline, and Scopus databases were searched using key words like “cold atmospheric plasma”, “argon plasma”, “helium plasma”, “air plasma”, “dental implants”, “implantology”, “peri-implantitis”, “decontamination”. In vitro studies demonstrated CAP’s potential to enhance surface colonization and osteoblast activity and to accelerate mineralization, as well as to determine a clean surface with cell growth comparable to the sterile control on both titanium and zirconia surfaces. The effect of CAP on biofilm removal was revealed in comparative studies to the currently available decontamination modalities (laser, air abrasion, and chlorhexidine). The combination of mechanical treatments and CAP resulted in synergistic antimicrobial effects and surface improvement, indicating that it may play a central role in surface “rejuvenation” and offer a novel approach for the treatment of peri-implantitis. It is noteworthy that the CAP conditioning of implant surfaces leads to an improvement in osseointegration in in vivo animal studies. To the best of our knowledge, this is the first review of the literature providing a summary of the current state of the art of this emerging field in implantology and it could represent a point of reference for basic researchers and clinicians interested in approaching and testing new technologies.
Collapse
|
18
|
Zheng Z, Ao X, Xie P, Wu J, Dong Y, Yu D, Wang J, Zhu Z, Xu HHK, Chen W. Effects of novel non-thermal atmospheric plasma treatment of titanium on physical and biological improvements and in vivo osseointegration in rats. Sci Rep 2020; 10:10637. [PMID: 32606349 PMCID: PMC7327023 DOI: 10.1038/s41598-020-67678-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 06/04/2020] [Indexed: 02/05/2023] Open
Abstract
Titanium (Ti) has achieved extensive applications due to its excellent biocompatibility and mechanical properties. Plasma can enhance surface hydrophilia of Ti with decreased carbon contamination. The traditional conditions using a single gas plasma was for longer treatment time and more prone to being contaminated. We designed and developed novel and universal apparatus and methods with a special clamping device of non-thermal atmospheric plasma (NTAP) treatment using mixed gas for Ti surface activation. We systematically and quantitatively investigated the effective effects of NTAP-Ti. The surface water contact angle decreased by 100%, the carbon content decreased by 80% and oxygen content increased by 50% in the novel NTAP-Ti surfaces. NTAP treatment accelerated the attachment, spread, proliferation, osteogenic differentiation and mineralization of MC3T3-E1 mouse preosteoblasts in vitro. The percentage of bone-to-implant contact increased by 25–40%, and the osteoclasts and bone resorption were suppressed by 50% in NTAP-Ti in vivo. In conclusion, NTAP-Ti substantially enhanced the physical and biological effects and integration with bone. The novel and universal apparatus and methods with a special clamping device using gas mixtures are promising for implant activation by swiftly and effectively changing the Ti surface to a hydrophilic one to enhance dental and orthopedic applications.
Collapse
Affiliation(s)
- Zheng Zheng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xiaogang Ao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Peng Xie
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jie Wu
- School of Mechanical Engineering, Sichuan University, Chengdu, China
| | - Yuqing Dong
- School of Mechanical Engineering, Sichuan University, Chengdu, China
| | - Deping Yu
- School of Mechanical Engineering, Sichuan University, Chengdu, China
| | - Jian Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zhimin Zhu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Hockin H K Xu
- Biomaterials and Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD, 21201, USA.,Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,University of Maryland Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Wenchuan Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China. .,Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
19
|
Henningsen A, Smeets R, Heuberger R, Jung OT, Hanken H, Heiland M, Cacaci C, Precht C. Changes in surface characteristics of titanium and zirconia after surface treatment with ultraviolet light or non-thermal plasma. Eur J Oral Sci 2018; 126:126-134. [PMID: 29336070 DOI: 10.1111/eos.12400] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Positive effects of irradiation with ultraviolet (UV) light or treatment with non-thermal plasma on titanium and zirconia surfaces have been described in various studies. The aim of this study was to assess and compare the changes in the physicochemical surface conditions of titanium and zirconia surfaces after a short treatment with UV light or with non-thermal plasmas of argon or oxygen. Titanium and zirconia samples with moderately rough surfaces were treated for 12 min either in a UV-light oven or in a non-thermal plasma reactor that generates non-thermal plasmas of oxygen or argon. Changes in surface conditions were assessed by confocal microscopy, dynamic contact angle measurement, and X-ray photoelectron spectroscopy (XPS). No changes in roughness occurred. Ultraviolet irradiation and non-thermal plasma significantly increased the wettability of the titanium and zirconia surfaces. X-ray photoelectron spectroscopy showed an increase of oxygen and a significant decrease of carbon after treatment with either method. Thus, ultraviolet light and non-thermal plasma were found to be able to improve the chemical surface conditions of titanium and zirconia following a short exposure time. However, further in vitro and in vivo studies are needed to determine the relevance of the results.
Collapse
Affiliation(s)
- Anders Henningsen
- Department of Oral and Maxillofacial Surgery, University Hospital Hamburg-Eppendorf, Hamburg, Germany.,Department of Oral and Maxillofacial Surgery, German Armed Forces Hospital, Hamburg, Germany
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | | | - Ole T Jung
- Department of Oral and Maxillofacial Surgery, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Henning Hanken
- Department of Oral and Maxillofacial Surgery, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Max Heiland
- Department of Oral and Maxillofacial Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | | | - Clarissa Precht
- Department of Oral and Maxillofacial Surgery, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
20
|
Henningsen A, Smeets R, Hartjen P, Heinrich O, Heuberger R, Heiland M, Precht C, Cacaci C. Photofunctionalization and non-thermal plasma activation of titanium surfaces. Clin Oral Investig 2017; 22:1045-1054. [PMID: 28730456 DOI: 10.1007/s00784-017-2186-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/12/2017] [Indexed: 10/19/2022]
Abstract
OBJECTIVE The aim of this study was to compare UV light and non-thermal plasma (NTP) treatment regarding the improvement of physical material characteristics and cell reaction on titanium surfaces in vitro after short-term functionalization. MATERIALS AND METHODS Moderately rough (Ra 1.8-2.0 μm) sandblasted and acid-etched titanium disks were treated by UV light (0.05 mW/cm2 at λ = 360 nm and 2 mW/cm2 at λ = 250 nm) or by NTP (24 W, -0.5 mbar) of argon or oxygen for 12 min each. Surface structure was investigated by scanning electron microscopy, confocal microscopy and X-ray photoelectron spectroscopy (XPS). Hydrophilicity was assessed by dynamic contact angle measurement. Cell attachment, viability, cell proliferation and cytotoxicity were assessed in vitro using murine osteoblast-like cells. RESULTS UV irradiation or NTP treatment of titanium surfaces did not alter the surface structure. XPS analysis revealed a significantly increased oxidation of the surface and a decrease of carbon after the use of either method. NTP and UV light led to a significant better cell attachment of murine osteoblasts; significantly more osteoblasts grew on the treated surfaces at each time point (p < 0.001). CONCLUSIONS UV light as well as NTP modified the surface of titanium and significantly improved the conditions for murine osteoblast cells in vitro. However, results indicate a slight advantage for NTP of argon and oxygen in a short time interval of surface functionalization compared to UV. CLINICAL RELEVANCE UV light and NTP are able to improve surface conditions of dental implants made of titanium.
Collapse
Affiliation(s)
- Anders Henningsen
- Department of Oral and Maxillofacial Surgery, University Hospital Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
- Department of Oral and Maxillofacial Surgery, German Armed Forces Hospital, Lesserstrasse 180, 22049, Hamburg, Germany.
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, University Hospital Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Philip Hartjen
- Department of Oral and Maxillofacial Surgery, University Hospital Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Oliver Heinrich
- Department of Oral and Maxillofacial Surgery, University Hospital Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Roman Heuberger
- RMS Foundation, Bischmattstraße 12, 2544, Bettlach, Switzerland
| | - Max Heiland
- Department of Oral and Maxillofacial Surgery, Charité University Hospital, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Clarissa Precht
- Department of Oral and Maxillofacial Surgery, University Hospital Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Claudio Cacaci
- Implant Competence Centrum, Weinstr. 4, 80333, Munich, Germany
| |
Collapse
|