1
|
Chen K, Li Q, Li Y, Jiang D, Chen L, Jiang J, Li S, Zhang C. Tetraspanins in digestive‑system cancers: Expression, function and therapeutic potential (Review). Mol Med Rep 2024; 30:200. [PMID: 39239742 PMCID: PMC11411235 DOI: 10.3892/mmr.2024.13324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/06/2024] [Indexed: 09/07/2024] Open
Abstract
The tetraspanin family of membrane proteins is essential for controlling different biological processes such as cell migration, penetration, adhesion, growth, apoptosis, angiogenesis and metastasis. The present review summarized the current knowledge regarding the expression and roles of tetraspanins in different types of cancer of the digestive system, including gastric, liver, colorectal, pancreatic, esophageal and oral cancer. Depending on the type and context of cancer, tetraspanins can act as either tumor promoters or suppressors. In the present review, the importance of tetraspanins in serving as biomarkers and targets for different types of digestive system‑related cancer was emphasized. Additionally, the molecular mechanisms underlying the involvement of tetraspanins in cancer progression and metastasis were explored. Furthermore, the current challenges are addressed and future research directions for advancing investigations related to tetraspanins in the context of digestive system malignancies are proposed.
Collapse
Affiliation(s)
- Kexin Chen
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Qiuhong Li
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yangyi Li
- Department of Medical Imaging, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Donghui Jiang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Ligang Chen
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Jun Jiang
- Department of General Surgery (Thyroid Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Shengbiao Li
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Chunxiang Zhang
- Department of Cardiology, Institute of Cardiovascular Research, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
2
|
Bell CF, Baylis RA, Lopez NG, Ma WF, Gao H, Wang F, Bamezai S, Fu C, Kojima Y, Adkar SS, Luo L, Miller CL, Leeper NJ. BST2 induces vascular smooth muscle cell plasticity and phenotype switching during cancer progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.10.612298. [PMID: 39314286 PMCID: PMC11418980 DOI: 10.1101/2024.09.10.612298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Background Smooth muscle cell (SMC) plasticity and phenotypic switching play prominent roles in the pathogenesis of multiple diseases, but their role in tumorigenesis is unknown. We investigated whether and how SMC diversity and plasticity plays a role in tumor angiogenesis and the tumor microenvironment. Methods and Results We use SMC-specific lineage-tracing mouse models and single cell RNA sequencing to observe the phenotypic diversity of SMCs participating in tumor vascularization. We find that a significant proportion of SMCs adopt a phenotype traditionally associated with macrophage-like cells. These cells are transcriptionally similar to 'resolution phase' M2b macrophages, which have been described to have a role in inflammation resolution. Computationally predicted by the ligand-receptor algorithm CellChat, signaling from BST2 on the surface of tumor cells to PIRA2 on SMCs promote this phenotypic transition; in vitro SMC assays demonstrate upregulation of macrophage transcriptional programs, and increased proliferation, migration, and phagocytic ability when exposed to BST2. Knockdown of BST2 in the tumor significantly decreases the transition towards a macrophage-like phenotype, and cells that do transition have a comparatively higher inflammatory signal typically associated with anti-tumor effect. Conclusion As BST2 is known to be a poor prognostic marker in multiple cancers where it is associated with an M2 macrophage-skewed TME, these studies suggest that phenotypically switched SMCs may have a previously unidentified role in this immunosuppressive milieu. Further translational work is needed to understand how this phenotypic switch could influence the response to anti-cancer agents and if targeted inhibition of SMC plasticity would be therapeutically beneficial.
Collapse
|
3
|
Li Y, Chen W, Zhu X, Mei H, Steinhoff M, Buddenkotte J, Wang J, Zhang W, Li Z, Dai X, Shan C, Wang J, Meng J. Neuronal BST2: A Pruritic Mediator alongside Protease-Activated Receptor 2 in the IL-27-Driven Itch Pathway. J Invest Dermatol 2024; 144:1829-1842.e4. [PMID: 38360199 DOI: 10.1016/j.jid.2024.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/11/2024] [Accepted: 01/27/2024] [Indexed: 02/17/2024]
Abstract
Chronic itch is a common and complex symptom often associated with skin diseases such as atopic dermatitis (AD). Although IL-27 is linked to AD, its role and clinical significance in itch remain undefined. We sought to investigate IL-27 function in itch using tissue-specific transgenic mice, various itch models, behavior scoring, RNA sequencing, and cytokine/kinase array. Our findings show that IL-27 receptors were overexpressed in human AD skin. Intradermal IL-27 injection failed to directly induce itch in mice but upregulated skin protease-activated receptor 2 (PAR2) transcripts, a key factor in itch and AD. IL-27 activated human keratinocytes, increasing PAR2 transcription and activity. Coinjection of SLIGRL (PAR2 agonist) and IL-27 in mice heightened PAR2-mediated itch. In addition, IL-27 boosted BST2 transcription in sensory neurons and keratinocytes. BST2 was upregulated in AD skin, and its injection in mice induced itch-like response. BST2 colocalized with sensory nerve branches in AD skin from both human and murine models. Sensory neurons released BST2, and mice with sensory neuron-specific BST2 knockout displayed reduced itch responses. Overall, this study provides evidence that skin IL-27/PAR2 and neuronal IL-27/BST2 axes are implicated in cutaneous inflammation and pruritus. The discovery of neuronal BST2 in pruritus shed light on BST2 in the itch cascade.
Collapse
Affiliation(s)
- Yanqing Li
- School of Life Sciences, Henan University, Henan, China
| | - Weiwei Chen
- School of Life Sciences, Henan University, Henan, China
| | - Xingyun Zhu
- School of Life Sciences, Henan University, Henan, China
| | - Huiyuan Mei
- School of Life Sciences, Henan University, Henan, China
| | - Martin Steinhoff
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Department of Dermatology, Weill Cornell Medicine-Qatar, Doha, Qatar; College of Medicine, Qatar University, Doha, Qatar; Israel Englander Department of Dermatology, Weill Cornell Medicine, New York, New York, USA
| | - Joerg Buddenkotte
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Jinhai Wang
- School of Life Sciences, Henan University, Henan, China
| | - Wenhao Zhang
- School of Life Sciences, Henan University, Henan, China
| | - Zhenghui Li
- Department of Neurosurgery, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaolong Dai
- School of Life Sciences, Henan University, Henan, China
| | - Chunxu Shan
- School of Biotechnology, Faculty of Science and Health, Dublin City University, Dublin, Ireland
| | - Jiafu Wang
- School of Biotechnology, Faculty of Science and Health, Dublin City University, Dublin, Ireland
| | - Jianghui Meng
- School of Biotechnology, Faculty of Science and Health, Dublin City University, Dublin, Ireland.
| |
Collapse
|
4
|
Yu H, Bian Q, Wang X, Wang X, Lai L, Wu Z, Zhao Z, Ban B. Bone marrow stromal cell antigen 2: Tumor biology, signaling pathway and therapeutic targeting (Review). Oncol Rep 2024; 51:45. [PMID: 38240088 PMCID: PMC10828922 DOI: 10.3892/or.2024.8704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Bone marrow stromal cell antigen 2 (BST2) is a type II transmembrane protein that serves critical roles in antiretroviral defense in the innate immune response. In addition, it has been suggested that BST2 is highly expressed in various types of human cancer and high BST2 expression is related to different clinicopathological parameters in cancer. The molecular mechanism underlying BST2 as a potential tumor biomarker in human solid tumors has been reported on; however, to the best of our knowledge, there has been no review published on the molecular mechanism of BST2 in human solid tumors. The present review focuses on human BST2 expression, structure and functions; the molecular mechanisms of BST2 in breast cancer, hepatocellular carcinoma, gastrointestinal tumor and other solid tumors; the therapeutic potential of BST2; and the possibility of BST2 as a potential marker. BST2 is involved in cell membrane integrity and lipid raft formation, which can activate epidermal growth factor receptor signaling pathways, providing a potential mechanistic link between BST2 and tumorigenesis. Notably, BST2 may be considered a universal tumor biomarker and a potential therapeutical target.
Collapse
Affiliation(s)
- Honglian Yu
- Department of Endocrinology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, P.R. China
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
- Collaborative Innovation Center, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Qiang Bian
- Collaborative Innovation Center, Jining Medical University, Jining, Shandong 272067, P.R. China
- Department of Pathophysiology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Xin Wang
- Department of Urology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, P.R. China
| | - Xinzhe Wang
- Department of Urology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, P.R. China
| | - Luhao Lai
- Collaborative Innovation Center, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Zhichun Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Zhankui Zhao
- Department of Urology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, P.R. China
| | - Bo Ban
- Department of Endocrinology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, P.R. China
| |
Collapse
|
5
|
Zhu LH, Yang J, Zhang YF, Yan L, Lin WR, Liu WQ. Identification and validation of a pyroptosis-related prognostic model for colorectal cancer based on bulk and single-cell RNA sequencing data. World J Clin Oncol 2024; 15:329-355. [PMID: 38455135 PMCID: PMC10915942 DOI: 10.5306/wjco.v15.i2.329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/24/2023] [Accepted: 01/15/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND Pyroptosis impacts the development of malignant tumors, yet its role in colorectal cancer (CRC) prognosis remains uncertain. AIM To assess the prognostic significance of pyroptosis-related genes and their association with CRC immune infiltration. METHODS Gene expression data were obtained from The Cancer Genome Atlas (TCGA) and single-cell RNA sequencing dataset GSE178341 from the Gene Expression Omnibus (GEO). Pyroptosis-related gene expression in cell clusters was analyzed, and enrichment analysis was conducted. A pyroptosis-related risk model was developed using the LASSO regression algorithm, with prediction accuracy assessed through K-M and receiver operating characteristic analyses. A nomogram predicting survival was created, and the correlation between the risk model and immune infiltration was analyzed using CIBERSORTx calculations. Finally, the differential expression of the 8 prognostic genes between CRC and normal samples was verified by analyzing TCGA-COADREAD data from the UCSC database. RESULTS An effective pyroptosis-related risk model was constructed using 8 genes-CHMP2B, SDHB, BST2, UBE2D2, GJA1, AIM2, PDCD6IP, and SEZ6L2 (P < 0.05). Seven of these genes exhibited differential expression between CRC and normal samples based on TCGA database analysis (P < 0.05). Patients with higher risk scores demonstrated increased death risk and reduced overall survival (P < 0.05). Significant differences in immune infiltration were observed between low- and high-risk groups, correlating with pyroptosis-related gene expression. CONCLUSION We developed a pyroptosis-related prognostic model for CRC, affirming its correlation with immune infiltration. This model may prove useful for CRC prognostic evaluation.
Collapse
Affiliation(s)
- Li-Hua Zhu
- Department of Surgical Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan Province, China
| | - Jun Yang
- Department of Surgical Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan Province, China
| | - Yun-Fei Zhang
- Department of Surgical Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan Province, China
| | - Li Yan
- Department of Internal Medicine-Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan Province, China
| | - Wan-Rong Lin
- Department of Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan Province, China
| | - Wei-Qing Liu
- Department of Internal Medicine-Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan Province, China
| |
Collapse
|
6
|
He X, Chen H, Zhong X, Wang Y, Hu Z, Huang H, Zhao S, Wei P, Shi D, Li D. BST2 induced macrophage M2 polarization to promote the progression of colorectal cancer. Int J Biol Sci 2023; 19:331-345. [PMID: 36594082 PMCID: PMC9760448 DOI: 10.7150/ijbs.72538] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 10/20/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Tumor-associated macrophages (TAMs) are one of the most prominent tumor-infiltrating immune cells in the tumor microenvironment (TME) of CRC and play a vital role in the progression of CRC. BST2 was predicted to be associated with the infiltration of TAMs. However, its potential function by which CRC cells and TAMs interact with each other still needs further investigation. Methods: The target genes in CRC were selected by bioinformatics screening. The level of bone marrow stromal cell antigen 2 (BST2) in CRC cells and tissues was determined by qRT‒PCR, Western blotting, and immunohistochemistry staining. In vitro and in vivo assays were applied to clarify the function of BST2. Results: In this study, according to bioinformatics analysis, a nomogram based on the risk score (constructed by BST2 and CAV1 (caveolin-1)) and clinical features was built and displayed satisfactory prognostic value. Upregulated BST2 was significantly related to Braf mutation, dMMR/MSI-H, CMS1 subtype, and immune response and was a potential biomarker for predicting immune checkpoint blockade therapy. Silencing BST2 in CRC obviously restrained CRC progression and M2 TAM polarization. The infiltration of TAMs was positively correlated with the high expression of BST2, and depletion of TAMs alleviated the protumoural effect of BST2 in CRC in vivo. In vitro experiments revealed that a reduction in BST2 in CRC inhibited CRC proliferation and migration and also M2 polarization. Conclusion: These findings indicated that BST2 played a vital role in CRC progression and might be a predictable marker for immunotherapy.
Collapse
Affiliation(s)
- Xuefeng He
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College Fudan University, Shanghai, China
| | - Huaijun Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyang Zhong
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College Fudan University, Shanghai, China
| | - Yaxian Wang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College Fudan University, Shanghai, China
| | - Zijuan Hu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China,Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China,Institute of Pathology, Fudan University, Shanghai, China,Department of Oncology, Shanghai Medical College Fudan University, Shanghai, China
| | - Huixia Huang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China,Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China,Institute of Pathology, Fudan University, Shanghai, China,Department of Oncology, Shanghai Medical College Fudan University, Shanghai, China
| | - Senlin Zhao
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College Fudan University, Shanghai, China
| | - Ping Wei
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China,Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China,Institute of Pathology, Fudan University, Shanghai, China,Department of Oncology, Shanghai Medical College Fudan University, Shanghai, China,✉ Corresponding authors: Dawei Li, Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China. . Debing Shi, Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China. . Ping Wei, Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
| | - Debing Shi
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College Fudan University, Shanghai, China,✉ Corresponding authors: Dawei Li, Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China. . Debing Shi, Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China. . Ping Wei, Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
| | - Dawei Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College Fudan University, Shanghai, China,✉ Corresponding authors: Dawei Li, Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China. . Debing Shi, Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China. . Ping Wei, Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
| |
Collapse
|
7
|
Doneti R, Pasha A, Botlagunta M, Heena SK, Mutyala VVVP, Pawar SC. Molecular docking, synthesis, and biological evaluation of 7-azaindole-derivative (7AID) as novel anti-cancer agent and potent DDX3 inhibitor:-an in silico and in vitro approach. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:179. [PMID: 36048256 DOI: 10.1007/s12032-022-01826-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022]
Abstract
The DEAD-box helicase family member DDX3 is involved in many diseases, such as viral infection, inflammation, and cancer. Many studies in the last decade have revealed the role of DDX3 in tumorigenesis and metastasis. DDX3 has both tumour suppressor and oncogenic effect, in the present study we have evaluated the expression levels of DDX3 in cervical squamous cell carcinoma at mRNA level via real-time PCR and protein level via Immunohistochemistry. DDX3 has become a molecule of interest in cancer biology that promotes drug resistance by adaptive response inevitably leading to treatment failure. One approach to avoid the development of resistant to disease is to create novel drugs that target the overexpressed proteins, we designed and synthesized a novel 7-azaindole derivative (7-AID) compound, {5-[1H-pyrrolo (2, 3-b) pyridin-5-yl] pyridin-2-ol]} that could lodge within the adenosine-binding pocket of the DDX3 (PDB ID: 2I4I). The binding efficacy of 7-AID compound with DDX3 was analysed by molecular docking studies. 7-AID was found to interact with the key residues Tyr200 and Arg202 from the Q-motif rendered by π-interactions and hydrogen bonds within the binding pocket with good docking score - 7.99 kcal/mol. The cytotoxicity effect of 7-AID compound was evaluated using MTT assay on human cervical carcinoma cells (HeLa) and breast cancer cells (MCF-7 and MDA MB-231) and the compound shown effective inhibitory concentration (IC50) on Hela cells 16.96 µM/ml and 14.12 and 12.69 µM/ml on MCF-7 and MDA MB-231, respectively. Further, the in-vitro, in-vivo anti-cancer and anti-angiogenic assessment of 7-AID compound was evaluated on Hela cells using scratch wound-healing assay, DAPI staining, cell cycle analysis, immunoblotting, and chorioallontoic membrane assay. Furthermore, the inhibitory effect of derivative compound on DDX3 was investigated in HeLa, MCF-7, and MDA MB-231 cells at the mRNA and protein levels. The results showed that the 7-AID compound effectively inhibited DDX3 in a dose-dependent manner, and the findings suggest that the compound could be used as a potential DDX3 inhibitor.
Collapse
Affiliation(s)
- Ravinder Doneti
- Department of Genetics & Biotechnology, Osmania University, Hyderabad, Telangana, 500 007, India
| | - Akbar Pasha
- Department of Genetics & Biotechnology, Osmania University, Hyderabad, Telangana, 500 007, India
| | - Mahendran Botlagunta
- School of Biosciences Engineering and Technology, VIT Bhopal University, Bhopal, Madhya Pradesh, 466114, India
| | - S K Heena
- Department of Pathology, Osmania Medical College, Hyderabad, Telangana, 500095, India
| | | | - Smita C Pawar
- Department of Genetics & Biotechnology, Osmania University, Hyderabad, Telangana, 500 007, India.
| |
Collapse
|
8
|
Rodriguez A, Corchete LA, Alcazar JA, Montero JC, Rodriguez M, Chinchilla-Tábora LM, Vidal Tocino R, Moyano C, Muñoz-Bravo S, Sayagués JM, Abad M. Dysregulated Expression of Three Genes in Colorectal Cancer Stratifies Patients into Three Risk Groups. Cancers (Basel) 2022; 14:cancers14174076. [PMID: 36077612 PMCID: PMC9454483 DOI: 10.3390/cancers14174076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Despite advances in recent years in the study of the molecular profile of sporadic colorectal cancer (sCRC), the specific genetic events that lead to increased aggressiveness or the development of the metastatic process of tumours are not yet clear. In previous studies of the gene expression profile (GEP) using a high-density array (50,000 genes and 6000 miRNAs in a single assay) in sCRC tumours, we identified a 28-gene signature that was found to be associated with an adverse prognostic value for predicting patient survival. Here, we analyse the differential expression of these 28 genes for their possible association with tumour local aggressiveness and metastatic processes in 66 consecutive sCRC patients, followed for >5 years, using the NanoString nCounter platform. The global transcription profile (expression levels of the 28 genes studied simultaneously) allowed us to discriminate between sCRC tumours and nontumoral colonic tissues. Analysis of the biological and functional significance of the dysregulated GEPs observed in our sCRC tumours revealed 31 significantly altered canonical pathways. Among the most commonly altered pathways, we observed the increased expression of genes involved in signalling pathways and cellular processes, such as the PI3K-Akt pathway, the interaction with the extracellular matrix (ECM), and other functions related to cell signalling processes (SRPX2). From a prognostic viewpoint, the altered expression of BST2 and SRPX2 genes were the only independent variables predicting for disease-free survival (DFS). In addition to the pT stage at diagnosis, dysregulated transcripts of ADH1B, BST2, and FER1L4 genes showed a prognostic impact on OS in the multivariate analysis. Based on the altered expression of these three genes, a scoring system was built to stratify patients into low-, intermediate-, and high-risk groups with significantly different 5-year OS rates: 91%, 83%, and 52%, respectively. The prognostic impact was validated in two independent series of sCRC patients from the public GEO database (n = 562 patients). In summary, we show a strong association between the altered expression of three genes and the clinical outcome of sCRC patients, making them potential markers of suitability for adjuvant therapy after complete tumour resection. Additional prospective studies in larger series of patients are required to confirm the clinical utility of the newly identified biomarkers because the number of patients analysed remains small.
Collapse
Affiliation(s)
- Alba Rodriguez
- Department of Pathology and IBSAL, University Hospital of Salamanca, 37007 Salamanca, Spain
| | - Luís Antonio Corchete
- Cancer Research Center and Hematology Service, University Hospital of Salamanca, 37007 Salamanca, Spain
| | - José Antonio Alcazar
- General and Gastrointestinal Surgery Service, University Hospital of Salamanca, 37007 Salamanca, Spain
| | - Juan Carlos Montero
- Department of Pathology and IBSAL, University Hospital of Salamanca, 37007 Salamanca, Spain
| | - Marta Rodriguez
- Department of Pathology and IBSAL, University Hospital of Salamanca, 37007 Salamanca, Spain
| | | | - Rosario Vidal Tocino
- Medical Oncology Service and IBSAL, University Hospital of Salamanca, 37007 Salamanca, Spain
| | - Carlos Moyano
- Clinical Biochemistry Service, University Hospital of Salamanca, 37007 Salamanca, Spain
| | - Saray Muñoz-Bravo
- Department of Pathology and IBSAL, University Hospital of Salamanca, 37007 Salamanca, Spain
| | - José María Sayagués
- Department of Pathology and IBSAL, University Hospital of Salamanca, 37007 Salamanca, Spain
- Correspondence: (J.M.S.); (M.A.)
| | - Mar Abad
- Department of Pathology and IBSAL, University Hospital of Salamanca, 37007 Salamanca, Spain
- Correspondence: (J.M.S.); (M.A.)
| |
Collapse
|
9
|
Shen C, Luo C, Xu Z, Liang Q, Cai Y, Peng B, Yan Y, Xia F. Molecular Patterns Based on Immunogenomic Signatures Stratify the Prognosis of Colon Cancer. Front Bioeng Biotechnol 2022; 10:820092. [PMID: 35237578 PMCID: PMC8884696 DOI: 10.3389/fbioe.2022.820092] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/11/2022] [Indexed: 02/05/2023] Open
Abstract
Background: Colon cancer is an aggressive and heterogeneous disease associated with high morbidity and mortality. The immune system is intimately involved in tumorigenesis and can influence malignant properties at the protein, epigenetic, and even genomic levels by shaping the tumor immune microenvironment (TIM). However, immune-related molecules that can effectively predict the prognosis of colon cancer remain under exploration. Methods: A total of 606 patients from TCGA and GEO databases were employed in our study, in which 429 cases were set as the training cohort and 177 were defined as the validation cohort. The immune infiltration was evaluated by ESTIMATE, TIMER, and CIBERSORT algorithms. The risk signature was constructed by LASSO Cox regression analysis. A nomogram model was generated subsequent to the multivariate Cox proportional hazards analysis to predict 1-, 3-, and 5-year survival of patients with colon cancer. Results: Infiltrating immune cell profiling identified two colon cancer clusters (Immunity_L group and Immunity_H group). The abundances of immune cells were higher in the Immunity_H group, which indicated a better prognosis. Through further statistical analysis, we identified four genes which were highly correlated with prognosis and representative of this gene set, namely ARL4C, SERPINE1, BST2, and AXIN2. When the patients were divided into low- and high-risk groups based on their risk scores, we found that patients in the high-risk group had shorter overall survival time. Moreover, a nomogram including clinicopathologic features and the established risk signature could robustly predict 1-, 3-, and 5-year survival in patients with colon cancer. Conclusion: We identified two distinct immune patterns by analyzing clinical and transcriptomic information from colon cancer patients. A subsequently constructed immune-related gene-based prognostic model as well as a nomogram model can be used to predict the prognosis of colon cancer, thereby guiding risk stratification and treatment regimen development for colon patients.
Collapse
Affiliation(s)
- Cong Shen
- Department of Thyroid Surgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Cong Luo
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhijie Xu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiuju Liang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Yuan Cai
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Bi Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yuanliang Yan, ; Fada Xia,
| | - Fada Xia
- Department of Thyroid Surgery, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yuanliang Yan, ; Fada Xia,
| |
Collapse
|
10
|
Cen S, Liu K, Zheng Y, Shan J, Jing C, Gao J, Pan H, Bai Z, Liu Z. BRAF Mutation as a Potential Therapeutic Target for Checkpoint Inhibitors: A Comprehensive Analysis of Immune Microenvironment in BRAF Mutated Colon Cancer. Front Cell Dev Biol 2021; 9:705060. [PMID: 34381786 PMCID: PMC8350390 DOI: 10.3389/fcell.2021.705060] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/30/2021] [Indexed: 12/11/2022] Open
Abstract
BRAF mutated colon cancer presents with poor survival, and the treatment strategies are controversial. The tumor microenvironment, which plays a key role in tumorigenesis as well as responses to treatments, of this subtype is largely unknown. In the present study, we analyzed the differences of immune microenvironments between BRAF mutated and BRAF wild-type colon cancer utilizing datasets from The Cancer Genome Atlas and Gene Expression Omnibus and confirmed the findings by tissue specimens of patients. We found that BRAF mutated colon cancer had more stromal cells, more immune cell infiltration, and lower tumor purity. Many immunotherapeutic targets, including PD-1, PD-L1, CTLA-4, LAG-3, and TIM-3, were highly expressed in BRAF mutated patients. BRAF mutation was also correlated with higher proportions of neutrophils and macrophages M1, and lower proportions of plasma cells, dendritic cells resting, and T cells CD4 naïve. In conclusion, our study demonstrates a different pattern of the immune microenvironment in BRAF mutated colon cancer and provides insights into the future use of checkpoint inhibitors in this subgroup of patients.
Collapse
Affiliation(s)
- Shuyi Cen
- Department of Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kun Liu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Clinical Center for Colorectal Cancerm, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing, China.,National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Yu Zheng
- Department of Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianzhen Shan
- Department of Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chao Jing
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Clinical Center for Colorectal Cancerm, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing, China.,National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Jiale Gao
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Clinical Center for Colorectal Cancerm, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing, China.,National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Hongming Pan
- Department of Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhigang Bai
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Clinical Center for Colorectal Cancerm, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing, China.,National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Zhen Liu
- Department of Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
11
|
Zhang H, Sun X, Lu Y, Wu J, Feng J. DNA-methylated gene markers for colorectal cancer in TCGA database. Exp Ther Med 2020; 19:3042-3050. [PMID: 32256791 PMCID: PMC7086203 DOI: 10.3892/etm.2020.8565] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/21/2019] [Indexed: 12/21/2022] Open
Abstract
Colorectal cancer (CRC) is characterized by the accumulation of genetic and epigenetic alterations in neoplastic processes. DNA methylation, as an important epigenetic process, contributes to the development of CRC. In the present study, the epigenetic landscape of genes in CRC was characterized by analyzing the dataset from The Cancer Genome Atlas database and 177 DNA-methylated genes were screened based on the criterion of the Pearson correlation (R) between expression and methylation levels being >0.4. Pathway enrichment analysis revealed prominent pathways, including transcription and metabolism, further implying their significant role in tumorigenesis. Among the methylated genes, only zinc finger protein (ZNF)726 with aberrant expression was determined to affect overall survival (OS) as well as disease-free survival of patients with CRC. In addition, ZNF726 was identified as an independent prognostic risk factor for OS in patients with CRC. The methylation-based regulation of ZNF726 expression in CRC cells was further assessed using the Cancer Cell Line Encyclopedia database. Finally, the CpG island methylation of the ZNF726 promoter was evaluated to further elucidate its role in the development of CRC. In conclusion, the epigenetic landscape of genes in terms of promoter methylation in CRC was characterized, revealing that aberrant expression of ZNF726 may be an independent prognostic risk factor for OS in patients with CRC.
Collapse
Affiliation(s)
- Hui Zhang
- Research Center for Clinical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu 210000, P.R. China
| | - Xun Sun
- Research Center for Clinical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu 210000, P.R. China
| | - Ya Lu
- Research Center for Clinical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu 210000, P.R. China
| | - Jianzhong Wu
- Research Center for Clinical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu 210000, P.R. China
| | - Jifeng Feng
- Research Center for Clinical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu 210000, P.R. China
| |
Collapse
|
12
|
Plasma Metabolic Signature and Abnormalities in HIV-Infected Individuals on Long-Term Successful Antiretroviral Therapy. Metabolites 2019; 9:metabo9100210. [PMID: 31574898 PMCID: PMC6835959 DOI: 10.3390/metabo9100210] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/06/2019] [Accepted: 09/18/2019] [Indexed: 12/14/2022] Open
Abstract
Targeted metabolomics studies reported metabolic abnormalities in both treated and untreated people living with human immunodeficiency virus (HIV) (PLHIV). The present study aimed to understand the plasma metabolomic changes and predicted the risk of accelerated aging in PLHIV on long-term suppressive antiretroviral therapy (ART) in a case-control study setting and its association with the plasma proteomics biomarkers of inflammation and neurological defects. Plasma samples were obtained from PLHIV on successful long-term ART for more than five years (n = 22) and matched HIV-negative healthy individuals (n = 22, HC herein). Untargeted metabolite profiling was carried out using ultra-high-performance liquid chromatography/mass spectrometry/mass spectrometry (UHPLC/MS/MS). Plasma proteomics profiling was performed using proximity extension assay targeting 184 plasma proteins. A total of 250 metabolites differed significantly (p < 0.05, q < 0.1) between PLHIV and HC. Plasma levels of several essential amino acids except for histidine, branched-chain amino acids, and aromatic amino acids (phenylalanine, tyrosine, tryptophan) were significantly lower in PLHIV compared to HC. Machine-learning prediction of metabolite changes indicated a higher risk of inflammatory and neurological diseases in PLHIV. Metabolic abnormalities were observed in amino-acid levels, energetics, and phospholipids and complex lipids, which may reflect known differences in lipoprotein levels in PLHIV that can resemble metabolic syndrome (MetS).
Collapse
|
13
|
Canto LMD, Cury SS, Barros-Filho MC, Kupper BEC, Begnami MDFDS, Scapulatempo-Neto C, Carvalho RF, Marchi FA, Olsen DA, Madsen JS, Havelund BM, Aguiar S, Rogatto SR. Locally advanced rectal cancer transcriptomic-based secretome analysis reveals novel biomarkers useful to identify patients according to neoadjuvant chemoradiotherapy response. Sci Rep 2019; 9:8702. [PMID: 31213644 PMCID: PMC6582145 DOI: 10.1038/s41598-019-45151-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/31/2019] [Indexed: 12/24/2022] Open
Abstract
Most patients with locally advanced rectal cancer (LARC) present incomplete pathological response (pIR) to neoadjuvant chemoradiotherapy (nCRT). Despite the efforts to predict treatment response using tumor-molecular features, as differentially expressed genes, no molecule has proved to be a strong biomarker. The tumor secretome analysis is a promising strategy for biomarkers identification, which can be assessed using transcriptomic data. We performed transcriptomic-based secretome analysis to select potentially secreted proteins using an in silico approach. The tumor expression profile of 28 LARC biopsies collected before nCRT was compared with normal rectal tissues (NT). The expression profile showed no significant differences between complete (pCR) and incomplete responders to nCRT. Genes with increased expression (pCR = 106 and pIR = 357) were used for secretome analysis based on public databases (Vesiclepedia, Human Cancer Secretome, and Plasma Proteome). Seventeen potentially secreted candidates (pCR = 1, pIR = 13 and 3 in both groups) were further investigated in two independent datasets (TCGA and GSE68204) confirming their over-expression in LARC and association with nCRT response (GSE68204). The expression of circulating amphiregulin and cMET proteins was confirmed in serum from 14 LARC patients. Future studies in liquid biopsies could confirm the utility of these proteins for personalized treatment in LARC patients.
Collapse
Affiliation(s)
- Luisa Matos do Canto
- International Research Center - CIPE, A.C.Camargo Cancer Center, Sao Paulo, 04002-010, Brazil.,Department of Clinical Genetics, University Hospital of Southern Denmark, Vejle, 7100, Denmark
| | - Sarah Santiloni Cury
- Department of Morphology - Institute of Bioscience, São Paulo State University (UNESP), Botucatu, 18618689, Brazil
| | | | | | | | | | - Robson Francisco Carvalho
- Department of Morphology - Institute of Bioscience, São Paulo State University (UNESP), Botucatu, 18618689, Brazil
| | | | - Dorte Aalund Olsen
- Department of Biochemistry and Immunology, University Hospital of Southern Denmark, Vejle, 7100, Denmark
| | - Jonna Skov Madsen
- Department of Biochemistry and Immunology, University Hospital of Southern Denmark, Vejle, 7100, Denmark.,Danish Colorectal Cancer Center South, Vejle, 7100, Denmark.,Institute of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Vejle, 7100, Denmark
| | - Birgitte Mayland Havelund
- Danish Colorectal Cancer Center South, Vejle, 7100, Denmark.,Department of Oncology, University Hospital of Southern Denmark, 7100, Vejle, Denmark
| | - Samuel Aguiar
- Department of Pelvic Surgery, A.C.Camargo Cancer Center, Sao Paulo, 04002-010, Brazil
| | - Silvia Regina Rogatto
- Department of Clinical Genetics, University Hospital of Southern Denmark, Vejle, 7100, Denmark. .,Danish Colorectal Cancer Center South, Vejle, 7100, Denmark. .,Institute of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Vejle, 7100, Denmark.
| |
Collapse
|
14
|
Zhang G, Li X, Chen Q, Li J, Ruan Q, Chen YH, Yang X, Wan X. CD317 Activates EGFR by Regulating Its Association with Lipid Rafts. Cancer Res 2019; 79:2220-2231. [PMID: 30890618 DOI: 10.1158/0008-5472.can-18-2603] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/24/2019] [Accepted: 03/14/2019] [Indexed: 12/21/2022]
Abstract
EGFR regulates various fundamental cellular processes, and its constitutive activation is a common driver for cancer. Anti-EGFR therapies have shown benefit in cancer patients, yet drug resistance almost inevitably develops, emphasizing the need for a better understanding of the mechanisms that govern EGFR activation. Here we report that CD317, a surface molecule with a unique topology, activated EGFR in hepatocellular carcinoma (HCC) cells by regulating its localization on the plasma membrane. CD317 was upregulated in HCC cells, promoting cell-cycle progression and enhancing tumorigenic potential in a manner dependent on EGFR. Mechanistically, CD317 associated with lipid rafts and released EGFR from these ordered membrane domains, facilitating the activation of EGFR and the initiation of downstream signaling pathways, including the Ras-Raf-MEK-ERK and JAK-STAT pathways. Moreover, in HCC mouse models and patient samples, upregulation of CD317 correlated with EGFR activation. These results reveal a previously unrecognized mode of regulation for EGFR and suggest CD317 as an alternative target for treating EGFR-driven malignancies. SIGNIFICANCE: Activation of EGFR by CD317 in hepatocellular carcinoma cells suggests CD317 as an alternative target for treating EGFR-dependent tumors.
Collapse
Affiliation(s)
- Guizhong Zhang
- Shenzhen Laboratory of Fully Human Antibody Engineering, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | - Xin Li
- Shenzhen Laboratory of Fully Human Antibody Engineering, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | - Qian Chen
- Shenzhen Laboratory of Fully Human Antibody Engineering, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | - Junxin Li
- Shenzhen Laboratory of Fully Human Antibody Engineering, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | - Qingguo Ruan
- Shenzhen Laboratory of Fully Human Antibody Engineering, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | - Youhai H Chen
- Department of Pathology and Laboratory of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Xiaolu Yang
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Xiaochun Wan
- Shenzhen Laboratory of Fully Human Antibody Engineering, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China.
| |
Collapse
|
15
|
Gu QZ, Nijiati A, Gao X, Tao KL, Li CD, Fan XP, Tian Z. TROP2 promotes cell proliferation and migration in osteosarcoma through PI3K/AKT signaling. Mol Med Rep 2018; 18:1782-1788. [PMID: 29845216 DOI: 10.3892/mmr.2018.9083] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/15/2018] [Indexed: 11/06/2022] Open
Abstract
Human trophoblast cell surface antigen 2 (TROP2) has been noted to serve an important role in the proliferation and migration of various types of human cancers. However, the potential role and the molecular mechanisms of TROP2 in osteosarcoma (OS) remain largely unclear. In the present study, high expression of TROP2 in human OS tissues and cell lines was observed. Overexpression of TROP2 promoted the proliferation and migration of OS cell lines, while TROP2 knockdown markedly decreased cell growth and migration. Furthermore, it was revealed that TROP2 overexpression significantly activated the phosphoinositide 3‑kinase/protein kinase B (PI3K/AKT) signaling pathway. Collectively, these results suggested that TROP2 may promote OS cell proliferation and migration via PI3K/AKT signaling and may serve as a novel treatment target for OS.
Collapse
Affiliation(s)
- Qing-Zhi Gu
- Department of Bone Tumor, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Abulimiti Nijiati
- Department of Bone Tumor, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Xing Gao
- Department of Bone Tumor, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Kai-Liang Tao
- Department of Bone Tumor, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Cheng-Duo Li
- Department of Bone Tumor, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Xue-Peng Fan
- Department of Bone Tumor, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Zheng Tian
- Department of Bone Tumor, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| |
Collapse
|
16
|
Shao Q, Lin Z, Wu X, Tang J, Lu S, Feng D, Cheng C, Qing L, Yao K, Chen Y. Transcriptome sequencing of neurologic diseases associated genes in HHV-6A infected human astrocyte. Oncotarget 2018; 7:48070-48080. [PMID: 27344170 PMCID: PMC5217001 DOI: 10.18632/oncotarget.10127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 06/01/2016] [Indexed: 01/21/2023] Open
Abstract
Human Herpesvirus 6 (HHV-6) has been involved in the development of several central nervous system (CNS) diseases, such as Alzheimer's disease, multiple sclerosis and glioma. In order to identify the pathogenic mechanism of HHV-6A infection, we carried out mRNA-seq study of human astrocyte HA1800 cell with HHV-6A GS infection. Using mRNA-seq analysis of HA1800-control cells with HA1800-HHV-6A GS cells, we identified 249 differentially expressed genes. After investigating these candidate genes, we found seven genes associated with two or more CNS diseases: CTSS, PTX3, CHI3L1, Mx1, CXCL16, BIRC3, and BST2. This is the first transcriptome sequencing study which showed the significant association of these genes between HHV-6A infection and neurologic diseases. We believe that our findings can provide a new perspective to understand the pathogenic mechanism of HHV-6A infection and neurologic diseases.
Collapse
Affiliation(s)
- Qing Shao
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China.,Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Zhe Lin
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Xiaohui Wu
- Genetic Data Analysis Group, Shanghai Biotechnology Corporation, Shanghai, People's Republic of China
| | - Junwei Tang
- Liver Transplantation Center of The First Affiliated Hospital and Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Shuai Lu
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Dongju Feng
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Ci Cheng
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Lanqun Qing
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Kun Yao
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Yun Chen
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| |
Collapse
|
17
|
Bhardwaj M, Erben V, Schrotz-King P, Brenner H. Cell Line Secretome and Tumor Tissue Proteome Markers for Early Detection of Colorectal Cancer: A Systematic Review. Cancers (Basel) 2017; 9:cancers9110156. [PMID: 29144439 PMCID: PMC5704174 DOI: 10.3390/cancers9110156] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/06/2017] [Accepted: 11/08/2017] [Indexed: 12/12/2022] Open
Abstract
Objective: In order to find low abundant proteins secretome and tumor tissue proteome data have been explored in the last few years for the diagnosis of colorectal cancer (CRC). In this review we aim to summarize the results of studies evaluating markers derived from the secretome and tumor proteome for blood based detection of colorectal cancer. Methods: Observing the preferred reporting items for systematic reviews and meta-analysis (PRISMA) guidelines PubMed and Web of Science databases were searched systematically for relevant studies published up to 18 July 2017. After screening for predefined eligibility criteria a total of 47 studies were identified. Information on diagnostic performance indicators, methodological procedures and validation was extracted. Functions of proteins were identified from the UniProt database and the the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool was used to assess study quality. Results: Forty seven studies meeting inclusion criteria were identified. Overall, 83 different proteins were identified, with carcinoembryonic Antigen (CEA) being by far the most commonly reported (reported in 24 studies). Evaluation of the markers or marker combinations in blood samples from CRC cases and controls yielded apparently very promising diagnostic performances, with area under the curve >0.9 in several cases, but lack of internal or external validation, overoptimism due to overfitting and spectrum bias due to evaluation in clinical setting rather than screening settings are major concerns. Conclusions: Secretome and tumor proteome-based biomarkers when validated in blood yield promising candidates. However, for discovered protein markers to be clinically applicable as screening tool they have to be specific for early stages and need to be validated externally in larger studies with participants recruited in true screening setting.
Collapse
Affiliation(s)
- Megha Bhardwaj
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg 69120, Germany.
| | - Vanessa Erben
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg 69120, Germany.
| | - Petra Schrotz-King
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg 69120, Germany.
| | - Hermann Brenner
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg 69120, Germany.
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany.
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany.
| |
Collapse
|
18
|
BST2 confers cisplatin resistance via NF-κB signaling in nasopharyngeal cancer. Cell Death Dis 2017; 8:e2874. [PMID: 28617432 PMCID: PMC5520926 DOI: 10.1038/cddis.2017.271] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 04/28/2017] [Accepted: 05/09/2017] [Indexed: 11/26/2022]
Abstract
Concurrent/adjuvant cisplatin-based chemoradiotherapy is regarded as the standard of treatment for locoregionally advanced nasopharyngeal carcinoma (NPC). However, patients who do not respond to cisplatin suffer, rather than benefit, from chemotherapy treatment. The goal of this study was to identify molecules involved in cisplatin resistance and to clarify their molecular mechanisms, which would help in the discovery of potential therapeutic targets and in developing a personalized and precise treatment approach for NPC patients. We previously generated a cisplatin-sensitive NPC cell line, S16, from CNE2 cells and found that eIF3a, ASNS and MMP19 are upregulated in S16 cells, which contributes to their cisplatin sensitivity. In this study, we found that BST2 is downregulated in cisplatin-sensitive S16 cells compared with CNE2 cells. Knockdown of BST2 in NPC cells sensitized their response to cisplatin and promoted cisplatin-induced apoptosis, whereas exogenous overexpression of BST2 increased their cisplatin resistance and inhibited cisplatin-induced apoptosis. Further investigation demonstrated that BST2-mediated cisplatin resistance depended on the activation of the NF-κB signaling pathway and consequent upregulation of anti-apoptotic genes, such as Bcl-XL and livin. Moreover, an analysis of clinical data revealed that a high BST2 level might serve as an independent indicator of poor prognosis in patients with locally advanced NPC treated with platinum-based chemoradiotherapy. These findings suggest that BST2 likely mediates platinum resistance in NPC, offering guidance for personalized and precise treatment strategies for patients with NPC.
Collapse
|