1
|
Hilgers G, Schwarze M, Rabus H. Nanodosimetric investigation of the track structure of therapeutic carbon ion radiation part 1: measurement of ionization cluster size distributions. Biomed Phys Eng Express 2024; 10:065030. [PMID: 39288784 DOI: 10.1088/2057-1976/ad7bc1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/17/2024] [Indexed: 09/19/2024]
Abstract
At the Heidelberg Ion-Beam Therapy Center, the track structure of carbon ions of therapeutic energy after penetrating layers of simulated tissue was investigated for the first time. Measurements were conducted with carbon ion beams of different energies and polymethyl methacrylate (PMMA) absorbers of different thicknesses to realize different depths in the phantom along the pristine Bragg peak. Ionization cluster size (ICS) distributions resulting from the mixed radiation field behind the PMMA absorbers were measured using an ion-counting nanodosimeter. Two different measurements were carried out: (i) variation of the PMMA absorber thickness with constant carbon ion beam energy and (ii) combined variation of PMMA absorber thickness and carbon ion beam energy such that the kinetic energy of the carbon ions in the target volume is constant. The data analysis revealed unexpectedly high mean ICS values compared to stopping power calculations and the data measured at lower energies in earlier work. This suggests that in the measurements the carbon ion kinetic energies behind the PMMA absorber may have deviated considerably from the expected values obtained by the calculations. In addition, the results indicate the presence of a marked contribution of nuclear fragments to the measured ICS distributions, especially if the carbon ion does not cross the target volume.
Collapse
Affiliation(s)
- Gerhard Hilgers
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany
| | - Miriam Schwarze
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany
| | - Hans Rabus
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany
| |
Collapse
|
2
|
Ortiz R, Faddegon B. Creating uniform cluster dose spread-out Bragg peaks for proton and carbon beams. Med Phys 2024; 51:4482-4488. [PMID: 38376446 PMCID: PMC467039 DOI: 10.1002/mp.16991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/29/2024] [Accepted: 02/06/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Preliminary data have shown a close association of the generalized ionization cluster size dose (in short, cluster dose) with cell survival, independent of particle type, and energy, when cluster dose is derived from an ionization detail parameter preferred for its association with cell survival. Such results suggest cluster dose has the potential to replace RBE-weighted dose in proton and ion beam radiotherapy treatment plan optimization, should a uniform cluster dose lead to comparable biological effects. However, further preclinical investigations are warranted to confirm this premise. PURPOSE To present an analytical approach to create uniform cluster dose spread-out Bragg peaks (SOBP) for evaluation of the potential of cluster dose to result in uniform biological effect. METHODS We modified the coefficients of the Bortfeld and Schlegel weight formula, an analytical method typically used for the creation of radiation dose SOBP in particle therapy, to produce uniform cluster dose SOBP of different widths (1-5 cm) at relevant clinical proton and carbon beam energies. Optimum parameters were found by minimization of the ratio between the maximum and minimum cluster dose in the SOBP region using the Nelder-Mead method. RESULTS The coefficients of the Bortfeld and Schlegel weight formula leading to uniform cluster dose SOBPs were determined for each combination of beam energy and SOBP width studied. The uniformity of the resulting cluster dose SOBPs, calculated as the relative difference between the maximum and minimum cluster dose within the SOBP, was within 0.3%-3.5% for the evaluated proton beams and 1.3%-3.4% for the evaluated carbon beams. CONCLUSIONS The modifications to the analytical approach to create radiation dose SOBPs resulted in uniform cluster dose proton and carbon SOBPs over a wide range of beam energies and SOBP widths. Such SOBPs should prove valuable in preclinical investigations for the selection of nanodosimetric quantities to be used in proton and ion therapy treatment planning.
Collapse
Affiliation(s)
- Ramon Ortiz
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, 94115, USA
| | - Bruce Faddegon
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, 94115, USA
| |
Collapse
|
3
|
Yang J, Liu X, Zhang H, Dai Z, He P, Ma Y, Shen G, Chen W, Li Q. Nanodosimetric quantity-weighted dose optimization for carbon-ion treatment planning. Phys Eng Sci Med 2024; 47:703-715. [PMID: 38416372 DOI: 10.1007/s13246-024-01399-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/04/2024] [Indexed: 02/29/2024]
Abstract
Dose verification of treatment plans is an essential step in radiotherapy workflows. In this work, we propose a novel method of treatment planning based on nanodosimetric quantity-weighted dose (NQWD), which could realize biological representation using pure physical quantities for biological-oriented carbon ion-beam treatment plans and their direct verification. The relationship between nanodosimetric quantities and relative biological effectiveness (RBE) was studied with the linear least-squares method for carbon-ion radiation fields. Next, under the framework of the matRad treatment planning platform, NQWD was optimized using the existing RBE-weighted dose (RWD) optimization algorithm. The schemes of NQWD-based treatment planning were compared with the RWD treatment plans in term of the microdosimetric kinetic model (MKM). The results showed that the nanodosimetric quantity F3 - 10 had a good correlation with the radiobiological effect reflected by the relationship between RBE and F3 - 10. Moreover, the NQWD-based treatment plans reproduced the RWD plans generally. Therefore, F3 - 10 could be adopted as a radiation quality descriptor for carbon-ion treatment planning. The novel method proposed herein not only might be helpful for rapid physical verification of biological-oriented ion-beam treatment plans with the development of experimental nanodosimetry, but also makes the direct comparison of ion-beam treatment plans in different institutions possible. Thus, our proposed method might be potentially developed to be a new strategy for carbon-ion treatment planning and improve patient safety for carbon-ion radiotherapy.
Collapse
Affiliation(s)
- Jingfen Yang
- Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Science, 730000, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, 730000, Lanzhou, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xinguo Liu
- Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Science, 730000, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, 730000, Lanzhou, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Hui Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Science, 730000, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, 730000, Lanzhou, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zhongying Dai
- Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Science, 730000, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, 730000, Lanzhou, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Pengbo He
- Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Science, 730000, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, 730000, Lanzhou, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yuanyuan Ma
- Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Science, 730000, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, 730000, Lanzhou, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Guosheng Shen
- Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Science, 730000, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, 730000, Lanzhou, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Weiqiang Chen
- Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Science, 730000, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, 730000, Lanzhou, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Science, 730000, Lanzhou, China.
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, 730000, Lanzhou, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
4
|
Faddegon B, Blakely EA, Burigo L, Censor Y, Dokic I, Kondo ND, Ortiz R, Méndez JR, Rucinski A, Schubert K, Wahl N, Schulte R. Ionization detail parameters and cluster dose: a mathematical model for selection of nanodosimetric quantities for use in treatment planning in charged particle radiotherapy. Phys Med Biol 2023; 68:10.1088/1361-6560/acea16. [PMID: 37489619 PMCID: PMC10565507 DOI: 10.1088/1361-6560/acea16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/24/2023] [Indexed: 07/26/2023]
Abstract
Objective. To propose a mathematical model for applying ionization detail (ID), the detailed spatial distribution of ionization along a particle track, to proton and ion beam radiotherapy treatment planning (RTP).Approach. Our model provides for selection of preferred ID parameters (Ip) for RTP, that associate closest to biological effects. Cluster dose is proposed to bridge the large gap between nanoscopicIpand macroscopic RTP. Selection ofIpis demonstrated using published cell survival measurements for protons through argon, comparing results for nineteenIp:Nk,k= 2, 3, …, 10, the number of ionizations in clusters ofkor more per particle, andFk,k= 1, 2, …, 10, the number of clusters ofkor more per particle. We then describe application of the model to ID-based RTP and propose a path to clinical translation.Main results. The preferredIpwereN4andF5for aerobic cells,N5andF7for hypoxic cells. Significant differences were found in cell survival for beams having the same LET or the preferredNk. Conversely, there was no significant difference forF5for aerobic cells andF7for hypoxic cells, regardless of ion beam atomic number or energy. Further, cells irradiated with the same cluster dose for theseIphad the same cell survival. Based on these preliminary results and other compelling results in nanodosimetry, it is reasonable to assert thatIpexist that are more closely associated with biological effects than current LET-based approaches and microdosimetric RBE-based models used in particle RTP. However, more biological variables such as cell line and cycle phase, as well as ion beam pulse structure and rate still need investigation.Significance. Our model provides a practical means to select preferredIpfrom radiobiological data, and to convertIpto the macroscopic cluster dose for particle RTP.
Collapse
Affiliation(s)
- Bruce Faddegon
- University of California San Francisco, Department of Radiation Oncology 1600 Divisadero Street, San Francisco, CA 94143 United States of America
| | - Eleanor A. Blakely
- Loma Linda University School of Medicine, 11175 Campus St, Loma Linda,CA92350, United States of America
| | - Lucas Burigo
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Yair Censor
- Department of Mathematics, University of Haifa, 199 Aba Khoushy Ave. Mount Carmel, Haifa, 3498838, Israel
| | - Ivana Dokic
- Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University Hospital and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Naoki Domínguez Kondo
- University of California San Francisco, Department of Radiation Oncology 1600 Divisadero Street, San Francisco, CA 94143 United States of America
| | - Ramon Ortiz
- University of California San Francisco, Department of Radiation Oncology 1600 Divisadero Street, San Francisco, CA 94143 United States of America
| | - José Ramos Méndez
- University of California San Francisco, Department of Radiation Oncology 1600 Divisadero Street, San Francisco, CA 94143 United States of America
| | - Antoni Rucinski
- Institute of Nuclear Physics Polish Academy of Sciences, Radzikowskiego 152, 31-342 Kraków, Poland
| | - Keith Schubert
- Baylor University, 1311 S 5th St, Waco, TX 76706, United States of America
| | - Niklas Wahl
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Reinhard Schulte
- Loma Linda University School of Medicine, 11085 Campus St, Loma Linda, CA92350, United States of America
| |
Collapse
|
5
|
Rucinski A, Biernacka A, Schulte R. Applications of nanodosimetry in particle therapy planning and beyond. Phys Med Biol 2021; 66. [PMID: 34731854 DOI: 10.1088/1361-6560/ac35f1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/03/2021] [Indexed: 12/28/2022]
Abstract
This topical review summarizes underlying concepts of nanodosimetry. It describes the development and current status of nanodosimetric detector technology. It also gives an overview of Monte Carlo track structure simulations that can provide nanodosimetric parameters for treatment planning of proton and ion therapy. Classical and modern radiobiological assays that can be used to demonstrate the relationship between the frequency and complexity of DNA lesion clusters and nanodosimetric parameters are reviewed. At the end of the review, existing approaches of treatment planning based on relative biological effectiveness (RBE) models or dose-averaged linear energy transfer are contrasted with an RBE-independent approach based on nandosimetric parameters. Beyond treatment planning, nanodosimetry is also expected to have applications and give new insights into radiation protection dosimetry.
Collapse
Affiliation(s)
| | - Anna Biernacka
- University of Gdansk, Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdansk, 80-307 Gdansk, Poland
| | | |
Collapse
|
6
|
Pietrzak M, Mietelska M, Bancer A, Rucinski A, Brzozowska B. Geant4-DNA modeling of nanodosimetric quantities in the Jet Counter for alpha particles. Phys Med Biol 2021; 66. [PMID: 34706345 DOI: 10.1088/1361-6560/ac33eb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/27/2021] [Indexed: 11/11/2022]
Abstract
The purpose of this work was to validate the calculation accuracy of nanodosimetric quantities in Geant4-DNA track structure simulation code. We implemented the Jet Counter (JC) nanodosimeter geometry in the simulation platform and quantified the impact of the Geant4-DNA physics models and JC detector performance on the ionization cluster size distributions (ICSD). ICSD parameters characterize the quality of radiation field and are supposed to be correlated to the complexity of the initial DNA damage in nanoscale and eventually the response of biological systems to radiation. We compared Monte Carlo simulations of ICSD in JC geometry performed using Geant4-DNA and PTra codes with experimental data collected for alpha particles at 3.8 MeV. We investigated the impact of simulation and experimental settings, i.e., three Geant4-DNA physics models, three sizes of a nanometer sensitive volume, gas to water density scaling procedure, JC ion extraction efficiency and the presence of passive components of the detector on the ICSD and their parameters. We found that ICSD in JC geometry obtained from Geant4-DNA simulations in water correspond well to ICSD measurements in nitrogen gas for all investigated settings, while the best agreement is for Geant4-DNA physics option 4. This work also discusses the accuracy and robustness of ICSD parameters in the context of the application of track structure simulation methods for treatment planning in particle therapy.
Collapse
Affiliation(s)
| | - Monika Mietelska
- National Centre for Nuclear Research, Świerk, Poland.,Biomedical Physics Division, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | | | | | - Beata Brzozowska
- Biomedical Physics Division, Faculty of Physics, University of Warsaw, Warsaw, Poland
| |
Collapse
|
7
|
Vasi F, Schneider U. First measurements of ionization cluster-size distributions with a compact nanodosimeter. Med Phys 2021; 48:2566-2571. [PMID: 33506490 DOI: 10.1002/mp.14738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 11/24/2020] [Accepted: 01/11/2021] [Indexed: 12/27/2022] Open
Abstract
PURPOSE A nanodosimeter is a type of detector which measures single ionizations in a small gaseous volume in order to obtain ionization cluster size probability distributions for characterization of radiation types. Working nanodosimeter detectors are usually bulky machines which require a lot of space. In this work, the authors present a compact ceramic nanodosimeter detector and report on first measurements of cluster size distributions of 5 MeV alpha particles. METHODS Single ionization measurements are achieved by applying a weak electric field to collect positive ions in a hole in a ceramic plate. Inside the ceramic plate, due to a strong electric field, the ions are accelerated and produce impact-ionizations. The resulting electron avalanche is detected in a read-out electrode. A Bayesian unfolding algorithm is then applied to the experimentally obtained cluster size distributions to reconstruct the true cluster size distributions. RESULTS Experimentally obtained cluster size distributions by the compact nanodosimeter detector are presented. The reconstructed cluster size distributions agreed well with Monte Carlo simulated cluster size distributions for small volumes (diameter = 2.5 nm). For larger volumes, discrepancies between the reconstructed cluster size distributions and cluster size distributions from Monte Carlo simulations were observed. CONCLUSIONS For the first time, ionization cluster size probability distributions could be obtained by a small and compact nanodosimeter detector. This signifies the achievement of a critical step toward the wide application of nanodosimetric characterization of radiation types including in clinical environments.
Collapse
Affiliation(s)
- Fabiano Vasi
- Radiotherapy Hirslanden, Zurich, Switzerland.,Department of Physics, University of Zurich, Zurich, Switzerland
| | - Uwe Schneider
- Radiotherapy Hirslanden, Zurich, Switzerland.,Department of Physics, University of Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Kirkby KJ, Kirkby NF, Burnet NG, Owen H, Mackay RI, Crellin A, Green S. Heavy charged particle beam therapy and related new radiotherapy technologies: The clinical potential, physics and technical developments required to deliver benefit for patients with cancer. Br J Radiol 2020; 93:20200247. [PMID: 33021102 PMCID: PMC7715999 DOI: 10.1259/bjr.20200247] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 08/26/2020] [Accepted: 09/02/2020] [Indexed: 11/05/2022] Open
Abstract
In the UK, one in two people will develop cancer during their lifetimes and radiotherapy (RT) plays a key role in effective treatment. High energy proton beam therapy commenced in the UK National Health Service in 2018. Heavier charged particles have potential advantages over protons by delivering more dose in the Bragg peak, with a sharper penumbra, lower oxygen dependence and increased biological effectiveness. However, they also require more costly equipment including larger gantries to deliver the treatment. There are significant uncertainties in the modelling of relative biological effectiveness and the effects of the fragmentation tail which can deliver dose beyond the Bragg peak. These effects need to be carefully considered especially in relation to long-term outcomes.In 2019, a group of clinicians, clinical scientists, engineers, physical and life scientists from academia and industry, together with funding agency stakeholders, met to consider how the UK should address new technologies for RT, especially the use of heavier charged particles such as helium and carbon and new modes of delivery such as FLASH and spatially fractionated radiotherapy (SFRT).There was unanimous agreement that the UK should develop a facility for heavier charged particle therapy, perhaps constituting a new National Ion Research Centre to enable research using protons and heavier charged particles. Discussion followed on the scale and features, including which ions should be included, from protons through helium, boron, and lithium to carbon, and even oxygen. The consensus view was that any facility intended to treat patients must be located in a hospital setting while providing dedicated research space for physics, preclinical biology and clinical research with beam lines designed for both in vitro and in vivo research. The facility should to be able to investigate and deliver both ultra-high dose rate FLASH RT and SFRT (GRID, minibeams etc.). Discussion included a number of accelerator design options and whether gantries were required. Other potential collaborations might be exploited, including with space agencies, electronics and global communications industries and the nuclear industry.In preparation for clinical delivery, there may be opportunities to send patients overseas (for 12C or 4He ion therapy) using the model of the National Health Service (NHS) Proton Overseas Programme and to look at potential national clinical trials which include heavier ions, FLASH or SFRT. This could be accomplished under the auspices of NCRI CTRad (National Cancer Research Institute, Clinical and Translational Radiotherapy Research Working Group).The initiative should be a community approach, involving all interested parties with a vision that combines discovery science, a translational research capability and a clinical treatment facility. Barriers to the project and ways to overcome them were discussed. Finally, a set of different scenarios of features with different costs and timelines was constructed, with consideration given to the funding environment (prer-Covid-19) and need for cross-funder collaboration.
Collapse
Affiliation(s)
| | | | | | - Hywel Owen
- University of Manchester/Cockcroft Institute, Manchester, United Kingdom
| | | | | | - Stuart Green
- Department of Medical Physics, University Hospital Birmingham, Birmingham, Edgbaston, UK
| |
Collapse
|
9
|
|
10
|
Vasi F, Schmidli K, Hälg RA, Schneider U. Feasibility study of macroscopic simulations of nanodosimetric parameters for proton therapy. Med Phys 2020; 47:5872-5881. [DOI: 10.1002/mp.14178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 11/10/2022] Open
Affiliation(s)
- Fabiano Vasi
- Radiotherapy Hirslanden Witellikerstrasse 40 8032Zurich Switzerland
- Department of Physic University of Zurich Winterthurerstrasse 190 8032Zurich Switzerland
| | - Kevin Schmidli
- Department of Physic University of Zurich Winterthurerstrasse 190 8032Zurich Switzerland
| | - Roger A. Hälg
- Radiotherapy Hirslanden Witellikerstrasse 40 8032Zurich Switzerland
- Department of Physic University of Zurich Winterthurerstrasse 190 8032Zurich Switzerland
| | - Uwe Schneider
- Radiotherapy Hirslanden Witellikerstrasse 40 8032Zurich Switzerland
- Department of Physic University of Zurich Winterthurerstrasse 190 8032Zurich Switzerland
| |
Collapse
|
11
|
|
12
|
Rabus H, Ngcezu SA, Braunroth T, Nettelbeck H. “Broadscale” nanodosimetry: Nanodosimetric track structure quantities increase at distal edge of spread-out proton Bragg peaks. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2019.108515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
13
|
Burigo LN, Ramos-Méndez J, Bangert M, Schulte RW, Faddegon B. Simultaneous optimization of RBE-weighted dose and nanometric ionization distributions in treatment planning with carbon ions. Phys Med Biol 2019; 64:015015. [PMID: 30523890 DOI: 10.1088/1361-6560/aaf400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Inverse treatment planning in intensity modulated particle therapy (IMPT) with scanned carbon-ion beams is currently based on the optimization of RBE-weighted dose to satisfy requirements of target coverage and limited toxicity to organs-at-risk (OARs) and healthy tissues. There are many feasible IMPT plans that meet these requirements, which allows the introduction of further criteria to narrow the selection of a biologically optimal treatment plan. We propose a novel treatment planning strategy based on the simultaneous optimization of RBE-weighted dose and nanometric ionization details (ID) as a new physical characteristic of the delivered plan beyond LET. In particular, we focus on the distribution of large ionization clusters (more than 3 ionizations) to enhance the biological effect across the target volume while minimizing biological effect in normal tissues. Carbon-ion treatment plans for different patient geometries and beam configurations generated with the simultaneous optimization strategy were compared against reference plans obtained with RBE-weighted dose optimization alone. Quality indicators, inhomogeneity index and planning volume histograms of RBE-weighted dose and large ionization clusters were used to evaluate the treatment plans. We show that with simultaneous optimization, ID distributions can be optimized in carbon-ion radiotherapy without compromising the RBE-weighted dose distributions. This strategy can potentially be used to account for optimization of endpoints closely related to radiation quality to achieve better tumor control and reduce risks of complications.
Collapse
Affiliation(s)
- Lucas N Burigo
- German Cancer Research Center-DKFZ, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany. National Center for Radiation Research in Oncology - NCRO, Heidelberg Institute for Radiation Oncology - HIRO Heidelberg, Germany. Author to whom any correspondence should be addressed
| | | | | | | | | |
Collapse
|
14
|
Henthorn NT, Warmenhoven JW, Sotiropoulos M, Aitkenhead AH, Smith EAK, Ingram SP, Kirkby NF, Chadwick A, Burnet NG, Mackay RI, Kirkby KJ, Merchant MJ. Clinically relevant nanodosimetric simulation of DNA damage complexity from photons and protons. RSC Adv 2019; 9:6845-6858. [PMID: 35518487 PMCID: PMC9061037 DOI: 10.1039/c8ra10168j] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/21/2019] [Indexed: 12/16/2022] Open
Abstract
Relative Biological Effectiveness (RBE), the ratio of doses between radiation modalities to produce the same biological endpoint, is a controversial and important topic in proton therapy. A number of phenomenological models incorporate variable RBE as a function of Linear Energy Transfer (LET), though a lack of mechanistic description limits their applicability. In this work we take a different approach, using a track structure model employing fundamental physics and chemistry to make predictions of proton and photon induced DNA damage, the first step in the mechanism of radiation-induced cell death. We apply this model to a proton therapy clinical case showing, for the first time, predictions of DNA damage on a patient treatment plan. Our model predictions are for an idealised cell and are applied to an ependymoma case, at this stage without any cell specific parameters. By comparing to similar predictions for photons, we present a voxel-wise RBE of DNA damage complexity. This RBE of damage complexity shows similar trends to the expected RBE for cell kill, implying that damage complexity is an important factor in DNA repair and therefore biological effect. Relative Biological Effectiveness (RBE) is a controversial and important topic in proton therapy. This work uses Monte Carlo simulations of DNA damage for protons and photons to probe this phenomenon, providing a plausible mechanistic understanding.![]()
Collapse
Affiliation(s)
- N. T. Henthorn
- Division of Cancer Sciences
- School of Medical Sciences
- Faculty of Biology, Medicine and Health
- The University of Manchester
- UK
| | - J. W. Warmenhoven
- Division of Cancer Sciences
- School of Medical Sciences
- Faculty of Biology, Medicine and Health
- The University of Manchester
- UK
| | - M. Sotiropoulos
- Division of Cancer Sciences
- School of Medical Sciences
- Faculty of Biology, Medicine and Health
- The University of Manchester
- UK
| | - A. H. Aitkenhead
- Division of Cancer Sciences
- School of Medical Sciences
- Faculty of Biology, Medicine and Health
- The University of Manchester
- UK
| | - E. A. K. Smith
- Division of Cancer Sciences
- School of Medical Sciences
- Faculty of Biology, Medicine and Health
- The University of Manchester
- UK
| | - S. P. Ingram
- Division of Cancer Sciences
- School of Medical Sciences
- Faculty of Biology, Medicine and Health
- The University of Manchester
- UK
| | - N. F. Kirkby
- Division of Cancer Sciences
- School of Medical Sciences
- Faculty of Biology, Medicine and Health
- The University of Manchester
- UK
| | - A. L. Chadwick
- Division of Cancer Sciences
- School of Medical Sciences
- Faculty of Biology, Medicine and Health
- The University of Manchester
- UK
| | - N. G. Burnet
- Division of Cancer Sciences
- School of Medical Sciences
- Faculty of Biology, Medicine and Health
- The University of Manchester
- UK
| | - R. I. Mackay
- Division of Cancer Sciences
- School of Medical Sciences
- Faculty of Biology, Medicine and Health
- The University of Manchester
- UK
| | - K. J. Kirkby
- Division of Cancer Sciences
- School of Medical Sciences
- Faculty of Biology, Medicine and Health
- The University of Manchester
- UK
| | - M. J. Merchant
- Division of Cancer Sciences
- School of Medical Sciences
- Faculty of Biology, Medicine and Health
- The University of Manchester
- UK
| |
Collapse
|
15
|
Ramos-Méndez J, Burigo LN, Schulte R, Chuang C, Faddegon B. Fast calculation of nanodosimetric quantities in treatment planning of proton and ion therapy. ACTA ACUST UNITED AC 2018; 63:235015. [DOI: 10.1088/1361-6560/aaeeee] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
16
|
Review of Geant4-DNA applications for micro and nanoscale simulations. Phys Med 2016; 32:1187-1200. [PMID: 27659007 DOI: 10.1016/j.ejmp.2016.09.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/01/2016] [Accepted: 09/09/2016] [Indexed: 11/24/2022] Open
Abstract
Emerging radiotherapy treatments including targeted particle therapy, hadron therapy or radiosensitisation of cells by high-Z nanoparticles demand the theoretical determination of radiation track structure at the nanoscale. This is essential in order to evaluate radiation damage at the cellular and DNA level. Since 2007, Geant4 offers physics models to describe particle interactions in liquid water at the nanometre level through the Geant4-DNA Package. This package currently provides a complete set of models describing the event-by-event electromagnetic interactions of particles with liquid water, as well as developments for the modelling of water radiolysis. Since its release, Geant4-DNA has been adopted as an investigational tool in kV and MV external beam radiotherapy, hadron therapies using protons and heavy ions, targeted therapies and radiobiology studies. It has been benchmarked with respect to other track structure Monte Carlo codes and, where available, against reference experimental measurements. While Geant4-DNA physics models and radiolysis modelling functionalities have already been described in detail in the literature, this review paper summarises and discusses a selection of representative papers with the aim of providing an overview of a) geometrical descriptions of biological targets down to the DNA size, and b) the full spectrum of current micro- and nano-scale applications of Geant4-DNA.
Collapse
|