1
|
Ahn H, Ahn H, Goo BS, Kwon Y, Kim Y, Wi DH, Hong JW, Lee S, Lee YW, Han SW. Freestanding Penta-Twinned Palladium Nanosheets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401230. [PMID: 38698589 DOI: 10.1002/smll.202401230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/12/2024] [Indexed: 05/05/2024]
Abstract
Control over the morphology of nanomaterials to have a 2D structure and manipulating the surface strain of nanostructures through defect control have proved to be promising for developing efficient catalysts for sustainable chemical and energy conversion. Here a one-pot aqueous synthesis route of freestanding Pd nanosheets with a penta-twinned structure (PdPT NSs) is presented. The generation of the penta-twinned nanosheet structure can be succeeded by directing the anisotropic growth of Pd under the controlled reduction kinetics of Pd precursors. Experimental and computational investigations showed that the surface atoms of the PdPT NSs are effectively under a compressive environment due to the strain imposed by their twin boundary defects. Due to the twin boundary-induced surface strain as well as the 2D structure of the PdPT NSs, they exhibited highly enhanced electrocatalytic activity for oxygen reduction reaction compared to Pd nanosheets without a twin boundary, 3D Pd nanocrystals, and commercial Pd/C and Pt/C catalysts.
Collapse
Affiliation(s)
- Hojin Ahn
- Department of Chemistry and KI for the NanoCentury, KAIST, Daejeon, 34141, South Korea
| | - Hochan Ahn
- Department of Chemistry and KI for the NanoCentury, KAIST, Daejeon, 34141, South Korea
| | - Bon Seung Goo
- Department of Chemistry and KI for the NanoCentury, KAIST, Daejeon, 34141, South Korea
| | - Yongmin Kwon
- Department of Chemistry and KI for the NanoCentury, KAIST, Daejeon, 34141, South Korea
| | - Yonghyeon Kim
- Department of Chemistry and KI for the NanoCentury, KAIST, Daejeon, 34141, South Korea
| | - Dae Han Wi
- Department of Chemistry and KI for the NanoCentury, KAIST, Daejeon, 34141, South Korea
| | - Jong Wook Hong
- Department of Chemistry, University of Ulsan, Ulsan, 44610, South Korea
| | - Seunghoon Lee
- Department of Chemistry (BK21 FOUR Graduate Program), Dong-A University, Busan, 49315, South Korea
| | - Young Wook Lee
- Department of Chemistry Education and Research Institute of Natural Science, Gyeongsang National University, Jinju, 52828, South Korea
| | - Sang Woo Han
- Department of Chemistry and KI for the NanoCentury, KAIST, Daejeon, 34141, South Korea
| |
Collapse
|
2
|
Zhang YP, Su ZX, Wei HH, Wang ZQ, Gong XQ. Strategies to Improve the Oxygen Reduction Reaction Activity on Pt-Bi Bimetallic Catalysts: A Density Functional Theory Study. J Phys Chem Lett 2023; 14:1990-1998. [PMID: 36815311 DOI: 10.1021/acs.jpclett.2c03465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Decreasing the level of use of Pt in proton exchange membrane fuel cells is of great research interest both academically and industrially. In this work, we systematically studied the oxygen reduction reaction (ORR) following the four-electron association mechanism at various Pt-Bi surfaces with density functional theory calculations. The results showed that the introduction of Bi changes the potential-determining step of ORR. Moreover, the hydroxy adsorption free energy (GOH*) can be used as a descriptor of ORR activity, and 0.74 eV is the ideal GOH* for it to reach its maximum. Notably, we also found that the tensile strain introduced by Bi and electron transfer between Pt and Bi synergize to modulate the d-band of Pt to contract, shift downward, and break the 5d96s1 valence electron configuration of Pt, and accordingly, PtBi(100), with the lowest d-band center, gives the best ORR activity, which is even slightly higher than that of Pt(111).
Collapse
Affiliation(s)
- Yan-Ping Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai200237, China
| | - Zi-Xiang Su
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai200237, China
| | - He-He Wei
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai200237, China
| | - Zhi-Qiang Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai200237, China
| | - Xue-Qing Gong
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai200237, China
| |
Collapse
|
3
|
Ravichandran S, Bhuvanendran N, Selva Kumar R, Balla P, Lee SY, Xu Q, Su H. Polyhedron shaped palladium nanostructures embedded on MoO 2/PANI-g-C 3N 4 as high performance and durable electrocatalyst for oxygen reduction reaction. J Colloid Interface Sci 2023; 629:357-369. [PMID: 36162393 DOI: 10.1016/j.jcis.2022.09.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 10/14/2022]
Abstract
A hybrid catalyst support anchoring a noble metal catalyst could be a promising material for building interfacial bonding between metallic nanostructures and polymer functionalized carbon supports to improve the kinetics of oxygen reduction reaction (ORR). This study successfully prepared a polyhedron nanostructured Pd and MoO2-embedded polyaniline-functionalized graphitized carbon nitride (PANI-g-C3N4) surface using a chemical reduction method. The Pd-Mo/PANI-g-C3N4 achieved an ORR activity of 0.27 mA µg-1 and 1.14 mA cm-2 at 0.85 V, which were 4.5 times higher than those of commercial 20% Pt/C catalyst (0.06 mA µg-1 and 0.14 mA cm-2). In addition, the Pd-Mo/PANI-g-C3N4 retained ∼ 77.5% of its initial mass activity after 10,000 cycles, with only 30 mV half-wave potential reduction. Further, the engineered potential active sites in the catalyst material verified the significant improvement in the ORR activity of the catalyst with increased life-time, and theoretical calculations revealed that the synergistic effect of the catalytic components enhanced the ORR kinetics of the active sites.
Collapse
Affiliation(s)
- Sabarinathan Ravichandran
- Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; School of Material Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | | | - R Selva Kumar
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 602105, Tamil Nadu, India
| | - Putrakumar Balla
- Engineering Research Centre for Hydrogen Energy and New Materials, College of Rare Earths (CoRE), Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Sae Youn Lee
- Department of Energy & Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Qian Xu
- Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Huaneng Su
- Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| |
Collapse
|
4
|
Wang H, Ren H, Liu S, Deng K, Yu H, Wang X, Xu Y, Wang Z, Wang L. Rare earth Y doping induced lattice strain of mesoporous PtPd nanospheres for alkaline oxygen reduction electrocatalysis. NANOTECHNOLOGY 2022; 34:055401. [PMID: 36240698 DOI: 10.1088/1361-6528/ac9a53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
The synthesis of catalysts with controllable morphology and composition is important to enhance the catalytic performance for oxygen reduction reaction (ORR). Herein, trimetallic PtPdY mesoporous nanospheres (PtPdY MNs) are produced via a one-step chemical reduction method applying F127 as soft temple under acidic condition. The mesoporous structure provides a large contact area and also stimulates the diffusion and mass transfer of reactants and products. Besides, synergistic effect among Pt, Pd and Y elements effectively alters their electronic structure, enhancing the catalytic activity. Therefore, the PtPdY MNs show excellent ORR permanence to Pt/C under the alkaline solution. This study offers an effective channel for the preparation of mesoporous metals with rare earth metal doping towards promising electrocatalytic applications.
Collapse
Affiliation(s)
- Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Hang Ren
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Songliang Liu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Kai Deng
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Hongjie Yu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Xin Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - You Xu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Ziqiang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| |
Collapse
|
5
|
Oxygen reduction reaction on PdM/C (M = Pb, Sn, Bi) alloy nanocatalysts. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Herrera E, Riva J, Aprea S, Silva OF, Bercoff PG, Granados AM. FePd nanowires modified with cyclodextrin as improved catalysts: effect of the alloy composition on colloidal stability and catalytic capacity. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02219a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
FePd nanowires of different compositions are thoroughly characterized and assessed as catalysts for the reduction reaction of 4-nitrophenol to 4-aminophenol.
Collapse
Affiliation(s)
- Elisa Herrera
- Universidad Nacional de Córdoba Facultad de Ciencias Químicas, Departamento de Química Orgánica, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Instituto Nacional del Agua, Subgerencia Centro de la Región Semiárida (INA-SCIRSA), Córdoba, Argentina
| | - Julieta Riva
- Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, Argentina
| | - Soledad Aprea
- Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, Argentina
- Instituto de Física Enrique Gaviola, IFEG, Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Córdoba, Argentina
| | - O. Fernando Silva
- Universidad Nacional de Córdoba Facultad de Ciencias Químicas, Departamento de Química Orgánica, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Instituto de Investigaciones en Fisicoquímica de Córdoba, INFIQC, Córdoba, Argentina
| | - Paula G. Bercoff
- Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, Argentina
- Instituto de Física Enrique Gaviola, IFEG, Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Córdoba, Argentina
| | - Alejandro M. Granados
- Universidad Nacional de Córdoba Facultad de Ciencias Químicas, Departamento de Química Orgánica, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Instituto de Investigaciones en Fisicoquímica de Córdoba, INFIQC, Córdoba, Argentina
| |
Collapse
|
7
|
Ding Y, Shi Y, Xiong W, Sun JH, Li C, Zhang YQ, Guo J. Insights into N-Coordinated Bimetallic Site Synergy during NO Selective Catalytic Reduction by CO. ACS APPLIED MATERIALS & INTERFACES 2021; 13:57182-57192. [PMID: 34807572 DOI: 10.1021/acsami.1c17352] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The nature of the synergistic effect in bimetallic catalysts remains a challenging issue, due to the difficulty in understanding the adjacent interaction between dual metals at the atomic level. Herein, a CuFe-N/C catalyst featuring diatomic metal-nitrogen sites was prepared through a sequential ion exchange strategy and applied for NO selective catalytic reduction by CO (CO-SCR). The bimetallic CuFe-N/C catalyst exhibits high N2 selectivity with a NO conversion efficiency of nearly 100% over a wide temperature range from 225 to 400 °C, significantly higher than that of its single-component counterparts. The synergistic effect of bimetallic Cu-Fe sites is well revealed using the combined in situ FTIR technique and DFT calculations. Bifunctional Cu-Fe sites are demonstrated not only to provide two different preferential adsorption centers for the CO molecule and ONNO intermediate but also to achieve a complete electron cycle for efficient interfacial electron transfer upon ONNO uptake. The unique electron transfer mechanism stemmed from 4s-3d-type electron coupling, and different 3d shell fillings of Cu (3d10) and Fe (3d6) atoms are presented. These fundamental insights pave the way for the understanding of N-coordinated bimetallic site synergy and rational design of highly active atomic-scale metal catalysts for SCR applications.
Collapse
Affiliation(s)
- Yue Ding
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yong Shi
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Wei Xiong
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jian Heng Sun
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Cheng Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Ya Qi Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jing Guo
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
8
|
Li H, Dai S, Bhalothia D, Chou JP, Hu A, Chen TY. Collaboration between a Pt-dimer and neighboring Co-Pd atoms triggers efficient pathways for oxygen reduction reaction. Phys Chem Chem Phys 2021; 23:1822-1834. [PMID: 33393548 DOI: 10.1039/d0cp05205a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The development of electrocatalysts with reconcilable balance between the cost and performance in oxygen reduction reaction (ORR) is an imperative task for the widespread adoption of fuel cell technology. In this study, we proposed a unique model of diatomic Pt-cluster (Pt-dimer) in the topmost layer of the Co/Pd bimetallic slab (Co@Pd-Pt2) for mimicking the Cocore@Pdshell nanocatalysts (NCs) surface and systematically investigating its local-regional collaboration pathways in ORR by density functional theory (DFT). The results demonstrate that the Pt-dimer produces local differentiation from both ligand and geometric effects on the Co@Pd surface, which forms adsorption energy (Eads) gradients for relocating the ORR-adsorbates. Our calculations for Eads-variations of ORR-species, reaction coordinates, and intraparticle charge injection propose and confirm a novel local synergetic collaboration around the Pt-dimer in the Co@Pd-Pt2 system with the best-performing ORR behavior compared with all reference models. With proper selection of the composition in intraparticle components, the proposed DFT assessments could be adopted for developing economical and high-performance catalysts in various heterogeneous reactions.
Collapse
Affiliation(s)
- Haolin Li
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China.
| | | | | | | | | | | |
Collapse
|
9
|
Das SK, Mohanty B, Sahu SC, J ST, Chakraborty B, Basu S, Jena BK. The experimental and theoretical insights on the interaction of AuPd bimetallic nanoentities on graphene: A study on electrocatalytic activity towards oxygen reduction reaction. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Haile AS, Yohannes W, Mekonnen YS. Oxygen reduction reaction on Pt-skin Pt 3V(111) fuel cell cathode: a density functional theory study. RSC Adv 2020; 10:27346-27356. [PMID: 35516936 PMCID: PMC9055573 DOI: 10.1039/d0ra02972f] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/02/2020] [Indexed: 11/21/2022] Open
Abstract
Pt-non-precious transition metals (Pt-NPTMs) alloy electrocatalysts have gained considerable attention to develop cheaper and efficient electrocatalysts for oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs). In this report, density functional theory (DFT) has been applied to study the catalytic activity of Pt-skin Pt3V(111) electrocatalyst for ORR in PEMFCs. The results revealed that the ORR intermediates (O, OH and OOH) have lower binding energies on Pt-skin Pt3V(111) compared to pure Pt(111) surface. The ORR on Pt-skin Pt3V(111) surface proceed via OOH dissociation with an activation energy of 0.33 eV. The formation of OH is found to be the rate determining step with an activation energy of 0.64 eV, which is even lower than in pure Pt(111) surface (0.72 eV). This indicates a better performance of Pt-skin Pt3V(111) for ORR compared to pure Pt(111) surface. Moreover, the DFT results revealed that the negative formation energy of the Pt3V alloy and the positive dissolution potential shift of the surface Pt atoms revealed the better stability of Pt-skin Pt3V(111) surface over pristine Pt(111) surface. Due to the improved activity and better stability, the new Pt3V alloy electrocatalyst is very promising for the development of low-cost and efficient PEMFCs.
Collapse
Affiliation(s)
- Asnake Sahele Haile
- Center for Environmental Science, College of Natural and Computational Sciences, Addis Ababa University P.O. Box 1176 Addis Ababa Ethiopia
| | - Weldegebriel Yohannes
- Chemistry Department, College of Natural and Computational Sciences, Addis Ababa University P.O. Box 1176 Addis Ababa Ethiopia
| | - Yedilfana Setarge Mekonnen
- Center for Environmental Science, College of Natural and Computational Sciences, Addis Ababa University P.O. Box 1176 Addis Ababa Ethiopia
| |
Collapse
|
11
|
Chatterjee S, Griego C, Hart JL, Li Y, Taheri ML, Keith J, Snyder JD. Free Standing Nanoporous Palladium Alloys as CO Poisoning Tolerant Electrocatalysts for the Electrochemical Reduction of CO2 to Formate. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00330] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Swarnendu Chatterjee
- Department of Chemical and Biological Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Charles Griego
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, 3700 O’Hara Street, Pittsburgh, Pennsylvania 15261, United States
| | - James L. Hart
- Department of Materials Science and Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Yawei Li
- Department of Chemical and Biological Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Mitra L. Taheri
- Department of Materials Science and Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| | - John Keith
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, 3700 O’Hara Street, Pittsburgh, Pennsylvania 15261, United States
| | - Joshua D. Snyder
- Department of Chemical and Biological Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
12
|
Electrocatalytic Activities towards the Electrochemical Oxidation of Formic Acid and Oxygen Reduction Reactions over Bimetallic, Trimetallic and Core–Shell-Structured Pd-Based Materials. INORGANICS 2019. [DOI: 10.3390/inorganics7030036] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The structural design of nanosized electrocatalysts is extremely important for cathodic oxygen reduction reactions (ORR) and anodic oxidation reactions in small organic compounds in direct fuel cells. While Pt is still the most commonly used electrode material for ORR, the Pd electrocatalyst is a promising alternative to Pt, because it exhibits much higher electrocatalytic activity towards formic acid electrooxidation, and the electrocatalytic activity of ORR on the Pd electrode is the higher than that of all other precious metals, except for Pt. In addition, the mass activity of Pt in a core–shell structure for ORR can be improved significantly by using Pd and Pd-based materials as core materials. Herein, we review various nanoscale Pd-based bimetallic, trimetallic and core–shell electrocatalysts for formic acid oxidation and ORR of polymer electrolyte fuel cells (PEFCs). This review paper is separated into two major topics: the electrocatalytic activity towards formic acid oxidation over various Pd-based electrocatalysts, and the activity of ORR on Pd-based materials and Pd core–Pt shell structures.
Collapse
|
13
|
Kulkarni A, Siahrostami S, Patel A, Nørskov JK. Understanding Catalytic Activity Trends in the Oxygen Reduction Reaction. Chem Rev 2018; 118:2302-2312. [DOI: 10.1021/acs.chemrev.7b00488] [Citation(s) in RCA: 1065] [Impact Index Per Article: 177.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Ambarish Kulkarni
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, 450 Serra Mall, Stanford, California 94305, United States
| | - Samira Siahrostami
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, 450 Serra Mall, Stanford, California 94305, United States
| | - Anjli Patel
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, 450 Serra Mall, Stanford, California 94305, United States
| | - Jens K. Nørskov
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, 450 Serra Mall, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|
14
|
Minenkov Y, Chermak E, Cavallo L. Troubles in the Systematic Prediction of Transition Metal Thermochemistry with Contemporary Out-of-the-Box Methods. J Chem Theory Comput 2016; 12:1542-60. [DOI: 10.1021/acs.jctc.5b01163] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yury Minenkov
- King Abdullah University of Science and Technology (KAUST), Physical
Science and Engineering Division (PSE), KAUST Catalysis Center (KCC), Thuwal 23955-6900, Saudi Arabia
| | - Edrisse Chermak
- King Abdullah University of Science and Technology (KAUST), Physical
Science and Engineering Division (PSE), KAUST Catalysis Center (KCC), Thuwal 23955-6900, Saudi Arabia
| | - Luigi Cavallo
- King Abdullah University of Science and Technology (KAUST), Physical
Science and Engineering Division (PSE), KAUST Catalysis Center (KCC), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|