1
|
Sauerer T, Albrecht L, Sievers NM, Gerer KF, Hoyer S, Dörrie J, Schaft N. Electroporation of mRNA as a Universal Technology Platform to Transfect a Variety of Primary Cells with Antigens and Functional Proteins. Methods Mol Biol 2024; 2786:219-235. [PMID: 38814397 DOI: 10.1007/978-1-0716-3770-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Electroporation (EP) of mRNA into human cells is a broadly applicable method to transiently express proteins of choice in a variety of different cell types. We have spent more than two decades to optimize and adapt this method, first for antigen-loading of dendritic cells (DCs) and subsequently for T cells, B cells, bulk PBMCs, and several cell lines. In this regard, antigens were introduced, processed, and presented in context of MHC class I and II. Next to that, functional proteins like adhesion receptors, T-cell receptors (TCRs), chimeric antigen receptors (CARs), constitutively active signal transducers (i.e. caIKK), and others were successfully expressed. We have also established this protocol under full GMP compliance as part of a manufacturing license to produce mRNA-electroporated DCs and mRNA-electroporated T cells for therapeutic applications in clinical trials. Therefore, we here want to share our universal mRNA electroporation protocol and the experience we have gathered with this method. The advantages of the transfection method presented here are: (1) easy adaptation to different cell types; (2) scalability from 106 to approximately 108 cells per shot; (3) high transfection efficiency (80-99%); (4) homogenous protein expression; (5) GMP compliance if the EP is performed in a class A clean room; and (6) no transgene integration into the genome. The provided protocol involves: OptiMEM® as EP medium, a square-wave pulse with 500 V, and 4 mm cuvettes. To adapt the protocol to differently sized cells, simply the pulse time has to be altered. Thus, we share an overview of proven electroporation settings (including recovery media), which we have established for various cell types. Next to the basic protocol, we also provide an extensive list of hints and tricks, which, in our opinion, are of great value for everyone who intends to use this transfection technique.
Collapse
Affiliation(s)
- Tatjana Sauerer
- RNA-based Immunotherapy, Department of Dermatology, Universitätsklinikum Erlangen (UKER), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Leoni Albrecht
- RNA-based Immunotherapy, Department of Dermatology, Universitätsklinikum Erlangen (UKER), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Nico M Sievers
- RNA-based Immunotherapy, Department of Dermatology, Universitätsklinikum Erlangen (UKER), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Kerstin F Gerer
- RNA-based Immunotherapy, Department of Dermatology, Universitätsklinikum Erlangen (UKER), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
- Novartis Pharma GmbH, Nuremberg, Germany
| | - Stefanie Hoyer
- RNA-based Immunotherapy, Department of Dermatology, Universitätsklinikum Erlangen (UKER), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
- Department of Palliative Medicine, Universitätsklinikum Erlangen, Comprehensive Cancer Center CCC Erlangen-EMN, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Jan Dörrie
- RNA-based Immunotherapy, Department of Dermatology, Universitätsklinikum Erlangen (UKER), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Niels Schaft
- RNA-based Immunotherapy, Department of Dermatology, Universitätsklinikum Erlangen (UKER), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany.
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany.
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany.
| |
Collapse
|
2
|
Lai X, Dreyer FS, Cantone M, Eberhardt M, Gerer KF, Jaitly T, Uebe S, Lischer C, Ekici A, Wittmann J, Jäck HM, Schaft N, Dörrie J, Vera J. Network- and systems-based re-engineering of dendritic cells with non-coding RNAs for cancer immunotherapy. Theranostics 2021; 11:1412-1428. [PMID: 33391542 PMCID: PMC7738891 DOI: 10.7150/thno.53092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells that induce and regulate adaptive immunity by presenting antigens to T cells. Due to their coordinative role in adaptive immune responses, DCs have been used as cell-based therapeutic vaccination against cancer. The capacity of DCs to induce a therapeutic immune response can be enhanced by re-wiring of cellular signalling pathways with microRNAs (miRNAs). Methods: Since the activation and maturation of DCs is controlled by an interconnected signalling network, we deploy an approach that combines RNA sequencing data and systems biology methods to delineate miRNA-based strategies that enhance DC-elicited immune responses. Results: Through RNA sequencing of IKKβ-matured DCs that are currently being tested in a clinical trial on therapeutic anti-cancer vaccination, we identified 44 differentially expressed miRNAs. According to a network analysis, most of these miRNAs regulate targets that are linked to immune pathways, such as cytokine and interleukin signalling. We employed a network topology-oriented scoring model to rank the miRNAs, analysed their impact on immunogenic potency of DCs, and identified dozens of promising miRNA candidates, with miR-15a and miR-16 as the top ones. The results of our analysis are presented in a database that constitutes a tool to identify DC-relevant miRNA-gene interactions with therapeutic potential (https://www.synmirapy.net/dc-optimization). Conclusions: Our approach enables the systematic analysis and identification of functional miRNA-gene interactions that can be experimentally tested for improving DC immunogenic potency.
Collapse
Affiliation(s)
- Xin Lai
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
- Comprehensive Cancer Center (CCC) Erlangen, Erlangen, Germany
| | - Florian S. Dreyer
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
- Comprehensive Cancer Center (CCC) Erlangen, Erlangen, Germany
| | - Martina Cantone
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
- Comprehensive Cancer Center (CCC) Erlangen, Erlangen, Germany
| | - Martin Eberhardt
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
- Comprehensive Cancer Center (CCC) Erlangen, Erlangen, Germany
| | - Kerstin F. Gerer
- RNA Group, Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
- Comprehensive Cancer Center (CCC) Erlangen, Erlangen, Germany
| | - Tanushree Jaitly
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
- Comprehensive Cancer Center (CCC) Erlangen, Erlangen, Germany
| | - Steffen Uebe
- Department of Human Genetics, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christopher Lischer
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
- Comprehensive Cancer Center (CCC) Erlangen, Erlangen, Germany
| | - Arif Ekici
- Department of Human Genetics, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jürgen Wittmann
- Division of Molecular Immunology, Department of Medicine 3, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Department of Medicine 3, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Niels Schaft
- RNA Group, Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
- Comprehensive Cancer Center (CCC) Erlangen, Erlangen, Germany
| | - Jan Dörrie
- RNA Group, Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
- Comprehensive Cancer Center (CCC) Erlangen, Erlangen, Germany
| | - Julio Vera
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
- Comprehensive Cancer Center (CCC) Erlangen, Erlangen, Germany
| |
Collapse
|
3
|
Erdmann M, Uslu U, Wiesinger M, Brüning M, Altmann T, Strasser E, Schuler G, Schuler-Thurner B. Automated closed-system manufacturing of human monocyte-derived dendritic cells for cancer immunotherapy. J Immunol Methods 2018; 463:89-96. [PMID: 30266448 DOI: 10.1016/j.jim.2018.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/21/2018] [Accepted: 09/24/2018] [Indexed: 12/30/2022]
Abstract
Dendritic cell (DC)-based vaccines have been successfully used for immunotherapy of cancer and infections. A major obstacle is the need for high-level class A cleanroom cGMP facilities for DC generation. The CliniMACS Prodigy® (Prodigy) represents a new platform integrating all GMP-compliant manufacturing steps in a closed system for automated production of various cellular products, notably T cells, NK cells and CD34+ cells. We now systematically tested its suitability for producing human mature monocyte-derived DCs (Mo-DCs), and optimized it by directly comparing the Prodigy approach to our established standard production of Mo-DCs from elutriated monocytes in dishes or bags. Upon step-by-step identification of an optimal cell concentration for the Prodigy's CentriCult culture chamber, the total yield (% of input CD14+ monocytes), phenotype, and functionality of mature Mo-DCs were equivalent to those generated by the standard protocol. Technician's labor time was comparable for both methods, but the Prodigy approach significantly reduced hands-on time and high-level clean room resources. In summary, using our optimized conditions for the CliniMACS Prodigy, human Mo-DCs for clinical application can be generated almost automatically in a fully closed system. A significant drawback of the Prodigy approach was, however, that due to the limited size of the CentriCult culture chamber, in contrast to our standard semi-closed elutriation approach, only one fourth of an apheresis could be processed at once.
Collapse
Affiliation(s)
- Michael Erdmann
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Department of Dermatology, Germany.
| | - Ugur Uslu
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Department of Dermatology, Germany
| | - Manuel Wiesinger
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Department of Dermatology, Germany
| | | | | | - Erwin Strasser
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Department of Transfusion Medicine and Haemostaseology, Erlangen, Germany
| | - Gerold Schuler
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Department of Dermatology, Germany
| | - Beatrice Schuler-Thurner
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Department of Dermatology, Germany
| |
Collapse
|
4
|
Bryant CE, Sutherland S, Kong B, Papadimitrious MS, Fromm PD, Hart DNJ. Dendritic cells as cancer therapeutics. Semin Cell Dev Biol 2018; 86:77-88. [PMID: 29454038 DOI: 10.1016/j.semcdb.2018.02.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/14/2017] [Accepted: 02/10/2018] [Indexed: 02/06/2023]
Abstract
The ability of immune therapies to control cancer has recently generated intense interest. This therapeutic outcome is reliant on T cell recognition of tumour cells. The natural function of dendritic cells (DC) is to generate adaptive responses, by presenting antigen to T cells, hence they are a logical target to generate specific anti-tumour immunity. Our understanding of the biology of DC is expanding, and they are now known to be a family of related subsets with variable features and function. Most clinical experience to date with DC vaccination has been using monocyte-derived DC vaccines. There is now growing experience with alternative blood-derived DC derived vaccines, as well as with multiple forms of tumour antigen and its loading, a wide range of adjuvants and different modes of vaccine delivery. Key insights from pre-clinical studies, and lessons learned from early clinical testing drive progress towards improved vaccines. The potential to fortify responses with other modalities of immunotherapy makes clinically effective "second generation" DC vaccination strategies a priority for cancer immune therapists.
Collapse
Affiliation(s)
- Christian E Bryant
- Institute of Haematology, Royal Prince Alfred Hospital, Camperdown, NSW Australia; Dendritic Cell Research, ANZAC Research Institute, Concord, NSW Australia.
| | - Sarah Sutherland
- Dendritic Cell Research, ANZAC Research Institute, Concord, NSW Australia; Sydney Medical School, The University of Sydney, Sydney, NSW Australia
| | - Benjamin Kong
- Dendritic Cell Research, ANZAC Research Institute, Concord, NSW Australia; Sydney Medical School, The University of Sydney, Sydney, NSW Australia
| | - Michael S Papadimitrious
- Dendritic Cell Research, ANZAC Research Institute, Concord, NSW Australia; Sydney Medical School, The University of Sydney, Sydney, NSW Australia
| | - Phillip D Fromm
- Dendritic Cell Research, ANZAC Research Institute, Concord, NSW Australia; Sydney Medical School, The University of Sydney, Sydney, NSW Australia
| | - Derek N J Hart
- Institute of Haematology, Royal Prince Alfred Hospital, Camperdown, NSW Australia; Dendritic Cell Research, ANZAC Research Institute, Concord, NSW Australia; Sydney Medical School, The University of Sydney, Sydney, NSW Australia.
| |
Collapse
|
5
|
De Laere M, Derdelinckx J, Hassi M, Kerosalo M, Oravamäki H, Van den Bergh J, Berneman Z, Cools N. Shuttling Tolerogenic Dendritic Cells across the Blood-Brain Barrier In Vitro via the Introduction of De Novo C-C Chemokine Receptor 5 Expression Using Messenger RNA Electroporation. Front Immunol 2018; 8:1964. [PMID: 29403473 PMCID: PMC5778265 DOI: 10.3389/fimmu.2017.01964] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 12/19/2017] [Indexed: 01/06/2023] Open
Abstract
The use of tolerance-inducing dendritic cells (tolDCs) has been proven to be safe and well tolerated in the treatment of autoimmune diseases. Nevertheless, several challenges remain, including finding ways to facilitate the migration of cell therapeutic products to lymph nodes, and the site of inflammation. In the treatment of neuroinflammatory diseases, such as multiple sclerosis (MS), the blood-brain barrier (BBB) represents a major obstacle to the delivery of therapeutic agents to the inflamed central nervous system (CNS). As it was previously demonstrated that C-C chemokine receptor 5 (CCR5) may be involved in inflammatory migration of DCs, the aim of this study was to investigate CCR5-driven migration of tolDCs. Only a minority of in vitro generated vitamin D3 (vitD3)-treated tolDCs expressed the inflammatory chemokine receptor CCR5. Thus, messenger RNA (mRNA) encoding CCR5 was introduced by means of electroporation (EP). After mRNA EP, tolDCs transiently displayed increased levels of CCR5 protein expression. Accordingly, the capacity of mRNA electroporated tolDCs to transmigrate toward a chemokine gradient in an in vitro model of the BBB improved significantly. Neither the tolerogenic phenotype nor the T cell-stimulatory function of tolDCs was affected by mRNA EP. EP of tolDCs with mRNA encoding CCR5 enabled these cells to migrate to inflammatory sites. The approach used herein has important implications for the treatment of MS. Using this approach, tolDCs actively shuttle across the BBB, allowing in situ down-modulation of autoimmune responses in the CNS.
Collapse
Affiliation(s)
- Maxime De Laere
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Wilrijk, Belgium
| | - Judith Derdelinckx
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Wilrijk, Belgium.,Department of Neurology, Antwerp University Hospital, Edegem, Belgium
| | - Mari Hassi
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Wilrijk, Belgium
| | - Mari Kerosalo
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Wilrijk, Belgium
| | - Heidi Oravamäki
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Wilrijk, Belgium
| | - Johan Van den Bergh
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Wilrijk, Belgium
| | - Zwi Berneman
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Wilrijk, Belgium.,Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Nathalie Cools
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
6
|
Nitschke NJ, Bjoern J, Met O, Svane IM, Andersen MH. Therapeutic Vaccination against A Modified Minimal Survivin Epitope Induces Functional CD4 T Cells That Recognize Survivin-Expressing Cells. Scand J Immunol 2017; 84:191-3. [PMID: 27354164 DOI: 10.1111/sji.12456] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- N J Nitschke
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, Denmark
| | - J Bjoern
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, Denmark.,Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - O Met
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, Denmark.,Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - I M Svane
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, Denmark.,Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - M H Andersen
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, Denmark.,Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Gerer KF, Hoyer S, Dörrie J, Schaft N. Electroporation of mRNA as Universal Technology Platform to Transfect a Variety of Primary Cells with Antigens and Functional Proteins. Methods Mol Biol 2017; 1499:165-178. [PMID: 27987149 DOI: 10.1007/978-1-4939-6481-9_10] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Electroporation (EP) of mRNA into human cells is a broadly applicable method to transiently express proteins of choice in a variety of different cell types. We have spent more than a decade to optimize and adapt this method, first for antigen-loading of dendritic cells (DCs), and subsequently for T cells, B cells, bulk PBMCs, and several cell lines. In this regard, antigens were introduced, processed, and presented in context of MHC class I and II. Next to that, functional proteins like adhesion receptors, T-cell receptors (TCRs), chimeric antigen receptors (CARs), constitutively active signal transducers, and others were successfully expressed. We have also established this protocol under full GMP compliance as part of a manufacturing license to produce mRNA-electroporated DCs for therapeutic vaccination in clinical trials. Therefore, we here want to share our universal mRNA electroporation protocol and the experience we have gathered with this method. The advantages of the transfection method presented here are: (1) easy adaptation to different cell types, (2) scalability from 106 to approximately 108 cells per shot, (3) high transfection efficiency (80-99 %), (4) homogenous protein expression, (5) GMP compliance if the EP is performed in a class A clean room, and (6) no transgene integration into the genome. The provided protocol involves: Opti-MEM® as EP medium, a square-wave pulse with 500 V, and 4 mm cuvettes. To adapt the protocol to differently sized cells, simply the pulse time is altered. Next to the basic protocol, we also provide an extensive list of hints and tricks, which in our opinion are of great value for everyone who intends to use this transfection technique.
Collapse
Affiliation(s)
- Kerstin F Gerer
- Department of Dermatology, Universitätsklinikum Erlangen, Research campus, Hartmannstraße 14, 91052, Erlangen, Germany
| | - Stefanie Hoyer
- Department of Dermatology, Universitätsklinikum Erlangen, Research campus, Hartmannstraße 14, 91052, Erlangen, Germany
| | - Jan Dörrie
- Department of Dermatology, Universitätsklinikum Erlangen, Research campus, Hartmannstraße 14, 91052, Erlangen, Germany
| | - Niels Schaft
- Department of Dermatology, Universitätsklinikum Erlangen, Research campus, Hartmannstraße 14, 91052, Erlangen, Germany.
| |
Collapse
|