1
|
Chen Y, Chen L, Zhang JY, Chen ZY, Liu TT, Zhang YY, Fu LY, Fan SQ, Zhang MQ, Gan SQ, Zhang NL, Shen XC. Oxymatrine reverses epithelial-mesenchymal transition in breast cancer cells by depressing α Ⅴβ 3 integrin/FAK/PI3K/Akt signaling activation. Onco Targets Ther 2019; 12:6253-6265. [PMID: 31496729 PMCID: PMC6691185 DOI: 10.2147/ott.s209056] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 07/17/2019] [Indexed: 12/12/2022] Open
Abstract
Purpose Oxymatrine, an alkaloid extracted from the Chinese herb Sophora flavescens Aiton, possesses anti-inflammatory, anti-immune, anti-hepatic fibrosis, and anti-cancer properties. However, the effects of oxymatrine on epithelial-mesenchymal transition (EMT) of breast cancer cells are still unclear. Aim The present study was performed to investigate whether oxymatrine reverses EMT in breast cancer cells and to explore the underlying molecular mechanisms. Materials and methods MTT assay was performed to evaluate cell viability. Wound-healing assay and transwell chamber assay were used to assess cell migration and invasion, respectively. Immunofluorescence and Western blot were used to study the expression of EMT-related molecules and αⅤβ3 integrin/focal adhesion kinase (FAK)/phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling transduction. Fibronectin, a physiologic ligand of αⅤβ3 integrin, was used to stimulate αⅤβ3 integrin signaling. Results Our results demonstrated that oxymatrine effectively suppressed the viability of MDA-MB-231 and 4T1 breast cancer cells, and oxymatrine showed less cytotoxicity on normal breast mammary epithelial MCF-10A cells. In addition, oxymatrine reversed EMT in the MDA-MB-231 and 4T1 cells at nontoxic concentrations. Oxymatrine significantly inhibited cell migration and invasion, downregulated the expression of N-cadherin, vimentin, and Snail in MDA-MB-231 and 4T1 cells, but upregulated the expression of E-cadherin in 4T1 cells. The mechanism revealed that oxymatrine decreased the expression of αⅤ and β3 integrin and their co-localization. It also inhibited αⅤβ3 integrin downstream activation by suppressing the phosphorylation of FAK, PI3K, and Akt. Furthermore, oxymatrine prevented fibronectin-induced EMT and αⅤβ3 integrin/FAK/PI3K/Akt signaling activation. Conclusion Our results revealed that oxymatrine effectively reversed EMT in breast cancer cells by depressing αⅤβ3 integrin/FAK/PI3K/Akt signaling. Thus, oxymatrine could be a potential therapeutic candidate with anti-metastatic potential for the treatment of breast cancer.
Collapse
Affiliation(s)
- Yan Chen
- The Department of Pharmacology of Materia Medica (The State Key Laboratory of Functions and Applications of Medicinal Plants, The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, People's Republic of China.,The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, People's Republic of China.,The Union Key Laboratory of Guiyang City-Guizhou Medical University, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, People's Republic of China.,The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, People's Republic of China
| | - Lin Chen
- The Department of Pharmacology of Materia Medica (The State Key Laboratory of Functions and Applications of Medicinal Plants, The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, People's Republic of China.,Department of Pharmacology, Qiannan Medical College For Nationalities, Duyun, Guizhou, People's Republic of China
| | - Jing-Yu Zhang
- The Department of Pharmacology of Materia Medica (The State Key Laboratory of Functions and Applications of Medicinal Plants, The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, People's Republic of China
| | - Zong-Yue Chen
- The Department of Pharmacology of Materia Medica (The State Key Laboratory of Functions and Applications of Medicinal Plants, The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, People's Republic of China
| | - Ting-Ting Liu
- The Department of Pharmacology of Materia Medica (The State Key Laboratory of Functions and Applications of Medicinal Plants, The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, People's Republic of China
| | - Yan-Yan Zhang
- The Department of Pharmacology of Materia Medica (The State Key Laboratory of Functions and Applications of Medicinal Plants, The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, People's Republic of China.,The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, People's Republic of China.,The Union Key Laboratory of Guiyang City-Guizhou Medical University, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, People's Republic of China
| | - Ling-Yun Fu
- The Department of Pharmacology of Materia Medica (The State Key Laboratory of Functions and Applications of Medicinal Plants, The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, People's Republic of China.,The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, People's Republic of China.,The Union Key Laboratory of Guiyang City-Guizhou Medical University, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, People's Republic of China.,The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, People's Republic of China
| | - Shuang-Qin Fan
- The Department of Pharmacology of Materia Medica (The State Key Laboratory of Functions and Applications of Medicinal Plants, The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, People's Republic of China
| | - Min-Qin Zhang
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, People's Republic of China.,The Union Key Laboratory of Guiyang City-Guizhou Medical University, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, People's Republic of China.,The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, People's Republic of China
| | - Shi-Quan Gan
- The Department of Pharmacology of Materia Medica (The State Key Laboratory of Functions and Applications of Medicinal Plants, The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, People's Republic of China.,The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, People's Republic of China.,The Union Key Laboratory of Guiyang City-Guizhou Medical University, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, People's Republic of China.,The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, People's Republic of China
| | - Nen-Ling Zhang
- The Department of Pharmacology of Materia Medica (The State Key Laboratory of Functions and Applications of Medicinal Plants, The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, People's Republic of China.,The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, People's Republic of China.,The Union Key Laboratory of Guiyang City-Guizhou Medical University, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, People's Republic of China.,The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, People's Republic of China
| | - Xiang-Chun Shen
- The Department of Pharmacology of Materia Medica (The State Key Laboratory of Functions and Applications of Medicinal Plants, The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, People's Republic of China.,The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, People's Republic of China.,The Union Key Laboratory of Guiyang City-Guizhou Medical University, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, People's Republic of China.,The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, People's Republic of China
| |
Collapse
|
2
|
Song LY, Ma YT, Fang WJ, He Y, Wu JL, Zuo SR, Deng ZZ, Wang SF, Liu SK. Inhibitory effects of oxymatrine on hepatic stellate cells activation through TGF-β/miR-195/Smad signaling pathway. Altern Ther Health Med 2019; 19:138. [PMID: 31221141 PMCID: PMC6585021 DOI: 10.1186/s12906-019-2560-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 06/11/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Oxymatrine (OM), a quinolizidine alkaloid extracted from a herb Sophorae Flavescentis Radix, has been used to treat liver fibrotic diseases. However, the mechanism of its anti-fibrosis effects is still unclear. TGF-β/Smad signaling and miR-195 have been proved to paly an important role in hepatic stellate cells (HSCs) activation and liver fibrosis. In this study, we investigated whether OM could inhibit HSCs activation through TGF-β1/miR-195/Smads signaling or not. METHODS First, the effects of OM on HSC-T6 in different concentrations and time points were tested by MTT assay. We choose three appropriate concentrations of OM as treatment concentrations in following experiment. By Quantitative Real-time PCR and Western Blot, then we investigated the effect of OM on miR-195, Smad7 and α-SMA's expressions to prove the correlation between OM and the TGF-β1/miR-195/Smads signaling. Last, miR-195 mimic and INF-γ were used to investigate the relation between miR-195 and OM in HSC activation. RESULTS Our results showed that the proliferation of HSC was significantly inhibited when OM concentration was higher than 200 μg/mL after 24 h, 100 μg/mL after 48 h and 10 μg/mL after 72 h. The IC50 of OM after 24, 48 and 72 h were 539, 454, 387 μg/mL respectively. OM could down-regulate miR-195 and α-SMA (P < 0.01), while up-regulate Smad7 (P < 0.05). In HSC-T6 cells transfected with miR-195 mimic and pretreated with OM, miR-195 and α-SMA were up-regulated (P < 0.05), and Smad7 was down-regulated (P < 0.05) . CONCLUSIONS Given these results, OM could inhibit TGF-β1 induced activation of HSC-T6 proliferation in a dose-dependent and time-dependent manner to some extent. We proved that OM inhibited HSC activation through down-regulating the expression of miR-195 and up-regulating Smad7.
Collapse
|
3
|
Wang D, Lou XQ, Jiang XM, Yang C, Liu XL, Zhang N. Oxymatrine protects against the effects of cardiopulmonary resuscitation via modulation of the TGF-β1/Smad3 signaling pathway. Mol Med Rep 2018; 17:4747-4752. [PMID: 29328383 DOI: 10.3892/mmr.2018.8373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 01/20/2017] [Indexed: 11/06/2022] Open
Abstract
Previous studies have demonstrated that oxymatrine may inhibit ventricular remodeling and serves an important role in the treatment of cardiovascular disease. The present study investigated whether oxymatrine treatment protects against the effects of cardiopulmonary resuscitation (CPR) via regulation of the transforming growth factor‑β1 (TGF‑β1)/mothers against decapentaplegic (Smad) signaling pathway. A CPR model was established in Sprague‑Dawley (SD) rats by asphyxiation, and rats were subsequently anaesthetized by intraperitoneal injection of chloral hydrate. SD rats were then administered 25 or 50 mg/kg oxymatrine once a day for 4 weeks. Oxymatrine treatment significantly improved troponin I levels, the ejection fraction, hydroxyproline content and the myocardial performance index in model rats. However, treatment with oxymatrine significantly reduced arterial oxygen tension, arterial lactate levels and oxygen extraction. Treatment with oxymatrine following CPR significantly inhibited the protein expression levels of TGF‑β1, TGF‑β1 receptor type 1 and Smad homolog 3 (Smad3) in model rats. The results of this research indicated that oxymatrine treatment may protect against the effects of CPR via regulation of the TGF‑β1/Smad3 signaling pathway and may be a novel drug for CPR in a clinical setting.
Collapse
Affiliation(s)
- Dawei Wang
- Department of Emergency, The First Hospital of Jilin University, Chaoyang, Changchun, Jilin 130000, P.R. China
| | - Xiao Qian Lou
- Department of Endocrinology, Second Department, The First Hospital of Jilin University, Chaoyang, Changchun, Jilin 130000, P.R. China
| | - Xiao-Ming Jiang
- Department of Emergency, The First Hospital of Jilin University, Chaoyang, Changchun, Jilin 130000, P.R. China
| | - Chenxi Yang
- Centre for Heart and Lung Innovation University of British Columbia, Vancouver, BC V6P 2G9, Canada
| | - Xiao-Liang Liu
- Department of Emergency, The First Hospital of Jilin University, Chaoyang, Changchun, Jilin 130000, P.R. China
| | - Nan Zhang
- Department of Emergency, The First Hospital of Jilin University, Chaoyang, Changchun, Jilin 130000, P.R. China
| |
Collapse
|
4
|
Trigo C, do Brasil PEAA, Costa MJM, de Castro L. Occult hepatitis B virus infection: clinical implications in tuberculosis treatment. J Viral Hepat 2016; 23:1027-1035. [PMID: 27624908 DOI: 10.1111/jvh.12583] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 06/16/2016] [Indexed: 02/06/2023]
Abstract
Occult hepatitis B virus infection (OBI) is characterized by the absence of HBsAg and persistence of the virus genome (HBV-DNA) in liver tissue and/or blood. OBI has been reported in several clinical contexts. However, the clinical significance of OBI in tuberculosis (TB) treatment is unknown. We investigated the OBI prevalence and its impact on the risk of drug-induced liver injury (DILI) during TB treatment. This was a prospective cohort study with one hundred patients who were treated for TB from 2008 to 2015. Laboratory, clinical and demographic data of TB patients were extracted from medical records. Based on HBV-DNA testing of serum samples, an OBI prevalence of 12% was established; almost half of these patients had both anti-HBc and anti-HBs serological markers. Low CD4+ cell counts have been shown to be a risk factor for OBI among TB patients co-infected with HIV (P=.036). High DILI incidence was observed in this study. A multivariable Cox proportional hazard model was conducted and identified OBI (HR 2.98, 95% CI 1.30-6.86) as the strongest predictor for DILI when adjusted to CD4+ cell count (HR 0.38, 95% CI 0.17-0.90), ALT before TB treatment (HR 1.37, 95% CI 0.81-2.32) and TB extrapulmonary clinical form (HR 2.91, 95% CI 1.75-7.21). The main aim of this study was to highlight DILI as a clinical outcome during treatment of TB patients with OBI. Therefore, HBV-DNA testing should be considered routinely in monitoring DILI, and also in other clinical implications associated with OBI, reduce morbidity and mortality.
Collapse
Affiliation(s)
- C Trigo
- Pharmacogenetics Research Laboratory, Evandro Chagas National Institute of Infectious Diseases (INI), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - P E A A do Brasil
- Intensive Care Clinical Research Laboratory, Evandro Chagas National Institute of Infectious Diseases (INI), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - M J M Costa
- Tuberculosis and Mycobacteria Clinical Research Laboratory, Evandro Chagas National Institute of Infections Diseases (INI), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - L de Castro
- Pharmacogenetics Research Laboratory, Evandro Chagas National Institute of Infectious Diseases (INI), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| |
Collapse
|