1
|
Vecchiotti D, Di Vito Nolfi M, Veglianti F, Dall’Aglio F, Khan HN, Flati I, Verzella D, Capece D, Alesse E, Angelucci A, Zazzeroni F. A 3D Bioprinting Approach to Studying Retinal Müller Cells. Genes (Basel) 2024; 15:1414. [PMID: 39596614 PMCID: PMC11593586 DOI: 10.3390/genes15111414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Bioprinting is an innovative technology in tissue engineering, enabling the creation of complex biological structures. This study aims to develop a three-dimensional (3D) bioprinted model of Müller cells (MCs) to enhance our understanding of their physiological and pathological roles in the retina. Methods: We investigated two different hydrogels for their ability to support the viability and differentiation of rMC-1 cells, an immortalized retinal cell line. Using 3D bioprinting technology, we assessed cell viability, differentiation, and functional characteristics through various assays, including live/dead assays and western blot analysis. Results: The collagen-based hydrogel significantly improved the viability of rMC-1 cells and facilitated the formation of spheroid aggregates, more accurately mimicking in vivo conditions compared to traditional two-dimensional (2D) culture systems. Moreover, 3D bioprinted MCs exhibited reduced markers of gliosis and oxidative stress compared to 2D cultures. Molecular analysis revealed decreased expression of GFAP and phosphorylated ERK in the 3D setting, indicating a less stressed cellular phenotype. Conclusions: Our findings demonstrate that 3D bioprinting technologies provide a more predictive platform for studying the biology of retinal MCs, which can help in the development of targeted therapeutic strategies for retinal diseases.
Collapse
Affiliation(s)
- Davide Vecchiotti
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy
| | - Mauro Di Vito Nolfi
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy
| | - Francesca Veglianti
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy
| | - Francesca Dall’Aglio
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy
| | - Hafiz Nadeem Khan
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy
| | - Irene Flati
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Daniela Verzella
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy
| | - Daria Capece
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy
| | - Edoardo Alesse
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy
| | - Adriano Angelucci
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy
| |
Collapse
|
2
|
Lin J, Deng W, Liao J, Ke D, Cui L, Zhong H, Huang K, Jiang L, Chen Q, Xu F, Tang F. BAFF deficiency aggravated optic nerve crush-induced retinal ganglion cells damage by regulating apoptosis and neuroinflammation via NF-κB-IκBα signaling. Int Immunopharmacol 2024; 126:111287. [PMID: 38041956 DOI: 10.1016/j.intimp.2023.111287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/28/2023] [Accepted: 11/22/2023] [Indexed: 12/04/2023]
Abstract
Loss of retinal ganglion cells (RGCs) is a primary cause of visual impairment in glaucoma, the pathological process is closely related to neuroinflammation and apoptosis. B-cell activating factor (BAFF) is a fundamental survival factor mainly expressed in the B cell lineage. Evidence suggests its neuroprotective effect, but the expression and role in the retina have not yet been investigated. In this study, we adopt optic nerve crush (ONC) as an in vivo model and oxygen-glucose deprivation/reoxygenation (OGD/R) of RGCs as an in vitro model to investigate the expression and function of BAFF. We found that BAFF and its receptors were abundantly expressed in the retina and BAFF inhibition exacerbated the caspase 3-mediated RGCs apoptosis, glial cell activation and pro-inflammatory cytokines expression, which may be caused by the activation of the NF-κB pathway in vivo. In addition, we found that BAFF treatment could alleviate RGCs apoptosis, pro-inflammatory cytokines expression and NF-κB pathway activation, which could be reversed the effect by blockade of the NF-κB pathway in vitro. Meanwhile, we found that microglia induced to overexpress BAFF in the inflammatory microenvironment in a time-dependent manner. Taken together, our results indicated that BAFF deficiency promoted RGCs apoptosis and neuroinflammation through activation of NF-κB pathway in ONC retinas, suggesting that BAFF may serve as a promising therapeutic target for the treatment of glaucoma.
Collapse
Affiliation(s)
- Jiali Lin
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology & Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, 534000, 0771-2186574 Nanning, Guangxi, China
| | - Wen Deng
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology & Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, 534000, 0771-2186574 Nanning, Guangxi, China
| | - Jing Liao
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology & Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, 534000, 0771-2186574 Nanning, Guangxi, China
| | - Diyang Ke
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology & Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, 534000, 0771-2186574 Nanning, Guangxi, China
| | - Ling Cui
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology & Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, 534000, 0771-2186574 Nanning, Guangxi, China
| | - Haibin Zhong
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology & Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, 534000, 0771-2186574 Nanning, Guangxi, China
| | - Kongqian Huang
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology & Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, 534000, 0771-2186574 Nanning, Guangxi, China
| | - Li Jiang
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology & Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, 534000, 0771-2186574 Nanning, Guangxi, China
| | - Qi Chen
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology & Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, 534000, 0771-2186574 Nanning, Guangxi, China.
| | - Fan Xu
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology & Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, 534000, 0771-2186574 Nanning, Guangxi, China.
| | - Fen Tang
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology & Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, 534000, 0771-2186574 Nanning, Guangxi, China.
| |
Collapse
|
3
|
Kolko M, Mouhammad ZA, Cvenkel B. Is fat the future for saving sight? Bioactive lipids and their impact on glaucoma. Pharmacol Ther 2023; 245:108412. [PMID: 37037408 DOI: 10.1016/j.pharmthera.2023.108412] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/12/2023]
Abstract
Glaucoma is characterized by a continuous loss of retinal ganglion cells. The cause of glaucoma is associated with an increase in intraocular pressure (IOP), but the underlying pathophysiology is diverse and, in most cases, unknown. There is an indisputable unmet need to identify new pathways involved in glaucoma pathogenesis. Increasing evidence suggests that bioactive lipids may be critical in the development and progression of glaucoma. Preclinical and clinical bioactive lipid targets exist and are being developed. In this review, we aim to shed light on the potential of bioactive lipids for the prevention, diagnosis, prognosis, and treatment of glaucoma by asking the question "is fat the future for saving sight".
Collapse
Affiliation(s)
- Miriam Kolko
- Department of Drug Design and Pharmacology, University of Copenhagen, Denmark; Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark.
| | | | - Barbara Cvenkel
- Department of Ophthalmology, University Medical Centre Ljubljana, Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
4
|
Protocol and Methods Applicable to Retinal Vascular Diseases. Methods Mol Biol 2023; 2625:71-78. [PMID: 36653633 DOI: 10.1007/978-1-0716-2966-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Lipidomics is a branch of omics biology that enables the characterization and determination of different lipid classes. Mass spectrometry is a widely used tool to identify and obtain qualitative and quantitative measurements of the range of lipid species in various cell/tissue types. Human retina is highly rich in different classes of lipids that are liable to undergo modification such as oxidation, isomerization, peroxidation, and hydroxylation due to continuous metabolic activity in response to light photons. Alterations in lipid metabolism are associated with retinal diseases such as age-related macular degeneration, diabetic retinopathy, and retinopathy of prematurity. However, a clear understanding on the type of lipids/alterations involved in these diseases is not established yet. The unavailability of suitable biological retinal tissue need for this research has prompted us to explore vitreous humor and tear film for studying lipidomic alterations in different ocular diseases. Subjecting the lipid extract to tandem mass spectrometry further gives qualitative and quantitative lipidome of the diseased tissue. While the mass spectrometry approaches for lipid profiling have been adequately described, the present chapter focusses on a simplified protocol for extracting sufficient lipids/metabolites from vitreous humor and tear samples obtained from patients and their subsequent mass spectrometry analysis.
Collapse
|
5
|
Jung SS, Son J, Yi SJ, Kim K, Park HS, Kang HW, Kim HK. Development of Müller cell-based 3D biomimetic model using bioprinting technology. Biomed Mater 2022; 18. [PMID: 36343367 DOI: 10.1088/1748-605x/aca0d5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022]
Abstract
Müller cells are the principal glial cells for the maintenance of structural stability and metabolic homeostasis in the human retina. Although variousin vitroexperiments using two-dimensional (2D) monolayer cell cultures have been performed, the results provided only limited results because of the lack of 3D structural environment and different cellular morphology. We studied a Müller cell-based 3D biomimetic model for use in experiments on thein vivo-like functions of Müller cells within the sensory retina. Isolated primary Müller cells were bioprinted and a 3D-aligned architecture was induced, which aligned Müller cell structure in retinal tissue. The stereographic and functional characteristics of the biomimetic model were investigated and compared to those of the conventional 2D cultured group. The results showed the potential to generate Müller cell-based biomimetic models with characteristic morphological features such as endfeet, soma, and microvilli. Especially, the 3D Müller cell model under hyperglycemic conditions showed similar responses as observed in thein vivodiabetic model with retinal changes, whereas the conventional 2D cultured group showed different cytokine and growth factor secretions. These results show that our study is a first step toward providing advanced tools to investigate thein vivofunction of Müller cells and to develop complete 3D models of the vertebrate retina.
Collapse
Affiliation(s)
- Sung Suk Jung
- Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon City, Gyeongsangbuk-do 39660, Republic of Korea
| | - Jeonghyun Son
- Ulsan National Institute of Science and Technology, 50, UNIST-gil, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Soo Jin Yi
- Department of Ophthalmology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea.,Bio-Medical Institute, Kyungpook National University Hospital, 130 Dongdeok-ro, Jung-gu, Daegu 41944, Republic of Korea.,Department of Biomedical Science, The Graduate School, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
| | - Kyungha Kim
- Ulsan National Institute of Science and Technology, 50, UNIST-gil, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Han Sang Park
- Department of Ophthalmology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
| | - Hyun-Wook Kang
- Ulsan National Institute of Science and Technology, 50, UNIST-gil, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Hong Kyun Kim
- Department of Ophthalmology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea.,Bio-Medical Institute, Kyungpook National University Hospital, 130 Dongdeok-ro, Jung-gu, Daegu 41944, Republic of Korea.,Department of Biomedical Science, The Graduate School, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
| |
Collapse
|
6
|
Peña JS, Vazquez M. Harnessing the Neuroprotective Behaviors of Müller Glia for Retinal Repair. FRONT BIOSCI-LANDMRK 2022; 27:169. [PMID: 35748245 PMCID: PMC9639582 DOI: 10.31083/j.fbl2706169] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/18/2022] [Accepted: 05/05/2022] [Indexed: 11/29/2022]
Abstract
Progressive and irreversible vision loss in mature and aging adults creates a health and economic burden, worldwide. Despite the advancements of many contemporary therapies to restore vision, few approaches have considered the innate benefits of gliosis, the endogenous processes of retinal repair that precede vision loss. Retinal gliosis is fundamentally driven by Müller glia (MG) and is characterized by three primary cellular mechanisms: hypertrophy, proliferation, and migration. In early stages of gliosis, these processes have neuroprotective potential to halt the progression of disease and encourage synaptic activity among neurons. Later stages, however, can lead to glial scarring, which is a hallmark of disease progression and blindness. As a result, the neuroprotective abilities of MG have remained incompletely explored and poorly integrated into current treatment regimens. Bioengineering studies of the intrinsic behaviors of MG hold promise to exploit glial reparative ability, while repressing neuro-disruptive MG responses. In particular, recent in vitro systems have become primary models to analyze individual gliotic processes and provide a stepping stone for in vivo strategies. This review highlights recent studies of MG gliosis seeking to harness MG neuroprotective ability for regeneration using contemporary biotechnologies. We emphasize the importance of studying gliosis as a reparative mechanism, rather than disregarding it as an unfortunate clinical prognosis in diseased retina.
Collapse
Affiliation(s)
- Juan S. Peña
- Department of Biomedical Engineering, Rutgers, The State
University of New Jersey, Piscataway (08854), New Jersey, USA
| | - Maribel Vazquez
- Department of Biomedical Engineering, Rutgers, The State
University of New Jersey, Piscataway (08854), New Jersey, USA
| |
Collapse
|
7
|
Qiu AW, Huang DR, Li B, Fang Y, Zhang WW, Liu QH. IL-17A injury to retinal ganglion cells is mediated by retinal Müller cells in diabetic retinopathy. Cell Death Dis 2021; 12:1057. [PMID: 34750361 PMCID: PMC8575984 DOI: 10.1038/s41419-021-04350-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/07/2021] [Accepted: 10/19/2021] [Indexed: 01/13/2023]
Abstract
Diabetic retinopathy (DR), the most common and serious ocular complication, recently has been perceived as a neurovascular inflammatory disease. However, role of adaptive immune inflammation driven by T lymphocytes in DR is not yet well elucidated. Therefore, this study aimed to clarify the role of interleukin (IL)-17A, a proinflammatory cytokine mainly produced by T lymphocytes, in retinal pathophysiology particularly in retinal neuronal death during DR process. Ins2Akita (Akita) diabetic mice 12 weeks after the onset of diabetes were used as a DR model. IL-17A-deficient diabetic mice were obtained by hybridization of IL-17A-knockout (IL-17A-KO) mouse with Akita mouse. Primarily cultured retinal Müller cells (RMCs) and retinal ganglion cells (RGCs) were treated with IL-17A in high-glucose (HG) condition. A transwell coculture of RGCs and RMCs whose IL-17 receptor A (IL-17RA) gene had been silenced with IL-17RA-shRNA was exposed to IL-17A in HG condition and the cocultured RGCs were assessed on their survival. Diabetic mice manifested increased retinal microvascular lesions, RMC activation and dysfunction, as well as RGC apoptosis. IL-17A-KO diabetic mice showed reduced retinal microvascular impairments, RMC abnormalities, and RGC apoptosis compared with diabetic mice. RMCs expressed IL-17RA. IL-17A exacerbated HG-induced RMC activation and dysfunction in vitro and silencing IL-17RA gene in RMCs abolished the IL-17A deleterious effects. In contrast, RGCs did not express IL-17RA and IL-17A did not further alter HG-induced RGC death. Notably, IL-17A aggravated HG-induced RGC death in the presence of intact RMCs but not in the presence of RMCs in which IL-17RA gene had been knocked down. These findings establish that IL-17A is actively involved in DR pathophysiology and particularly by RMC mediation it promotes RGC death. Collectively, we propose that antagonizing IL-17RA on RMCs may prevent retinal neuronal death and thereby slow down DR progression.
Collapse
Affiliation(s)
- Ao-Wang Qiu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, China
| | - Da-Rui Huang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, China
| | - Bin Li
- Women & Children Central Laboratory, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, China
| | - Yuan Fang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, China
| | - Wei-Wei Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, China.
| | - Qing-Huai Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, China.
| |
Collapse
|
8
|
Yang TT, Li H, Dong LJ. Role of glycolysis in retinal vascular endothelium, glia, pigment epithelium, and photoreceptor cells and as therapeutic targets for related retinal diseases. Int J Ophthalmol 2021; 14:1302-1309. [PMID: 34540603 DOI: 10.18240/ijo.2021.09.02] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/16/2021] [Indexed: 02/08/2023] Open
Abstract
Glycolysis produces large amounts of adenosine triphosphate (ATP) in a short time. The retinal vascular endothelium feeds itself primarily through aerobic glycolysis with less ATP. But when it generates new vessels, aerobic glycolysis provides rapid and abundant ATP support for angiogenesis, and thus inhibition of glycolysis in endothelial cells can be a target for the treatment of neovascularization. Aerobic glycolysis has a protective effect on Müller cells, and it can provide with a target for visual protection and maintenance of the blood-retinal barrier. Under physiological conditions, the mitochondria of RPE can use lactic acid produced by photoreceptor cells as an energy source to provide ATP for survival. In pathological conditions, because RPE cells avoid their oxidative damage by increasing glycolysis, a large number of glycolysis products accumulate, which in turn has a toxic effect on photoreceptor cells. This shows that stabilizing the function of RPE mitochondria may become a target for the treatment of diseases such as retinal degeneration. The decrease of aerobic glycolysis leads to the decline of photoreceptor cell function and impaired vision; therefore, aerobic glycolysis of stable photoreceptor cells provides a reliable target for delaying vision loss. It is of great significance to study the role of glycolysis in various retinal cells for the targeted treatment of ocular fundus diseases.
Collapse
Affiliation(s)
- Ting-Ting Yang
- Editorial Department of Chinese Journal of Ocular Fundus Diseases, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Hui Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Li-Jie Dong
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| |
Collapse
|
9
|
Tribble JR, Otmani A, Sun S, Ellis SA, Cimaglia G, Vohra R, Jöe M, Lardner E, Venkataraman AP, Domínguez-Vicent A, Kokkali E, Rho S, Jóhannesson G, Burgess RW, Fuerst PG, Brautaset R, Kolko M, Morgan JE, Crowston JG, Votruba M, Williams PA. Nicotinamide provides neuroprotection in glaucoma by protecting against mitochondrial and metabolic dysfunction. Redox Biol 2021; 43:101988. [PMID: 33932867 PMCID: PMC8103000 DOI: 10.1016/j.redox.2021.101988] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/06/2021] [Accepted: 04/20/2021] [Indexed: 12/16/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) is a REDOX cofactor and metabolite essential for neuronal survival. Glaucoma is a common neurodegenerative disease in which neuronal levels of NAD decline. We assess the effects of nicotinamide (a precursor to NAD) on retinal ganglion cells (the affected neuron in glaucoma) in normal physiological conditions and across a range of glaucoma relevant insults including mitochondrial stress and axon degenerative insults. We demonstrate retinal ganglion cell somal, axonal, and dendritic neuroprotection by nicotinamide in rodent models which represent isolated ocular hypertensive, axon degenerative, and mitochondrial degenerative insults. We performed metabolomics enriched for small molecular weight metabolites for the retina, optic nerve, and superior colliculus which demonstrates that ocular hypertension induces widespread metabolic disruption, including consistent changes to α-ketoglutaric acid, creatine/creatinine, homocysteine, and glycerophosphocholine. This metabolic disruption is prevented by nicotinamide. Nicotinamide provides further neuroprotective effects by increasing oxidative phosphorylation, buffering and preventing metabolic stress, and increasing mitochondrial size and motility whilst simultaneously dampening action potential firing frequency. These data support continued determination of the utility of long-term nicotinamide treatment as a neuroprotective therapy for human glaucoma. Nicotinamide is neuroprotective in cell and animal models that recapitulate isolated features of glaucoma. Systemic nicotinamide administration has limited molecular side-effects on visual system tissue under basal conditions. Nicotinamide provides a robust reversal in the disease metabolic profile of glaucomatous animals. Nicotinamide increases oxidative phosphorylation, buffers and prevents metabolic stress, and increases mitochondrial size.
Collapse
Affiliation(s)
- James R Tribble
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden.
| | - Amin Otmani
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden.
| | - Shanshan Sun
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK.
| | - Sevannah A Ellis
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia.
| | - Gloria Cimaglia
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden; School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK.
| | - Rupali Vohra
- Department of Veterinary and Animal Sciences, Pathobiological Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Department of Drug Design and Pharmacology, Eye Translational Research Unit, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| | - Melissa Jöe
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden.
| | - Emma Lardner
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden.
| | - Abinaya P Venkataraman
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden.
| | - Alberto Domínguez-Vicent
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden.
| | - Eirini Kokkali
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK.
| | - Seungsoo Rho
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK; Department of Ophthalmology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea.
| | - Gauti Jóhannesson
- Department of Clinical Sciences, Ophthalmology, Umeå University, Umeå, Sweden; Wallenberg Centre of Molecular Medicine, Umeå University, Umeå, Sweden.
| | | | - Peter G Fuerst
- WWAMI Medical Education Program, University of Idaho, Moscow, ID, USA.
| | - Rune Brautaset
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden.
| | - Miriam Kolko
- Department of Drug Design and Pharmacology, Eye Translational Research Unit, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet-Glostrup, Glostrup, Denmark.
| | - James E Morgan
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK; Cardiff Eye Unit, University Hospital Wales, Cardiff, UK; School of Medicine, Cardiff University, Cardiff, UK.
| | - Jonathan G Crowston
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore; Centre for Vision Research, Neuroscience and Behavioural Disorders, Duke-NUS, Singapore, Singapore.
| | - Marcela Votruba
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK; Cardiff Eye Unit, University Hospital Wales, Cardiff, UK.
| | - Pete A Williams
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
10
|
Coussa RG, Sohn EH, Han IC, Parikh S, Traboulsi EI. Mitochondrial DNA A3243G variant-associated retinopathy: a meta-analysis of the clinical course of visual acuity and correlation with systemic manifestations. Ophthalmic Genet 2021; 42:420-430. [PMID: 33827363 DOI: 10.1080/13816810.2021.1907598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE The mitochondrial DNA A3243G (m.3243A>G) variant causes a wide spectrum of phenotypes, with pigmentary retinopathy as the most common ocular finding. We undertook this meta-analysis to investigate the clinical course of visual acuity (VA) in patients with m.3243A>G variant and provide key clinical correlations with systemic manifestations. METHODS A PubMed literature search was performed and studies were selected after satisfying pre-set inclusion criteria. Demographic and clinical data, including retinal findings and systemic manifestations were recorded. Cross-sectional and linear regression analyses were used to investigate the relationship between VA and age, as well as between the age at diagnosis of retinopathy and the mean ages at diagnosis of sensorineural hearing loss or diabetes. The age and prevalence of systemic manifestations among patients with and without retinopathy were studied using t-tests and Mann-Whitney U-tests (performed on binarized data). Likelihood ratios were computed. RESULTS The mean VA (average of both eyes) of 90 patients (72.2% female; 65/90) were collected from 18 studies published between 1990 and 2018. The baseline mean age was 45.2 years (range 17 to 92). The mean logMAR VA was 0.10 (- 0.12 to 1.39). There was a statistically significant linear correlation between the logMAR VA and age (p = .008). The VA of patients less than or equal to 50 years of age was significantly better than that of patients older than 50 years (0.06 vs.0.18 logMAR, p = .002). 67 patients (74.4%) showed a characteristic pigmentary retinopathy with a mean age at diagnosis of 47.9 years (17 to 92) and VA of 0.14 logMAR (- 0.12 to 1.24). Age at diagnosis of retinopathy was linearly correlated with age at diagnosis of hearing loss or diabetes (p < .001). Patients with retinopathy were more likely to have hearing loss (83.6% vs. 56.5%, p = .03) or diabetes (56.7% vs. 17.4%, p = .001) than those without retinopathy. Those with both hearing loss and diabetes had an earlier onset of retinopathy than those without (46.4 vs. 60.4 years, p = .01). Patients without both hearing loss and diabetes were 5.3-fold less likely to develop a retinopathy. CONCLUSIONS Patients with m.3243A>G variant pigmentary retinopathy maintain highly functional VA until around the fifth decade of life, after which significant visual decline ensues. Patients without hearing loss and diabetes have a lower likelihood of exhibiting a retinopathy, which tends to appear about one decade after hearing loss and diabetes are diagnosed.
Collapse
Affiliation(s)
- Razek Georges Coussa
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Elliott H Sohn
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Ian C Han
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Sumit Parikh
- Cleveland Clinic, Mitochondrial Medicine Center, Cleveland, Ohio, USA
| | - Elias I Traboulsi
- Cleveland Clinic, Cole Eye Institute, Center for Genetic Eye Diseases, Cleveland, Ohio, USA
| |
Collapse
|
11
|
García-Bermúdez MY, Freude KK, Mouhammad ZA, van Wijngaarden P, Martin KK, Kolko M. Glial Cells in Glaucoma: Friends, Foes, and Potential Therapeutic Targets. Front Neurol 2021; 12:624983. [PMID: 33796062 PMCID: PMC8007906 DOI: 10.3389/fneur.2021.624983] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/26/2021] [Indexed: 12/15/2022] Open
Abstract
Glaucoma is the second leading cause of blindness worldwide, affecting ~80 million people by 2020 (1, 2). The condition is characterized by a progressive loss of retinal ganglion cells (RGCs) and their axons accompanied by visual field loss. The underlying pathophysiology of glaucoma remains elusive. Glaucoma is recognized as a multifactorial disease, and lowering intraocular pressure (IOP) is the only treatment that has been shown to slow the progression of the condition. However, a significant number of glaucoma patients continue to go blind despite intraocular pressure-lowering treatment (2). Thus, the need for alternative treatment strategies is indisputable. Accumulating evidence suggests that glial cells play a significant role in supporting RGC function and that glial dysfunction may contribute to optic nerve disease. Here, we review recent advances in understanding the role of glial cells in the pathophysiology of glaucoma. A particular focus is on the dynamic and essential interactions between glial cells and RGCs and potential therapeutic approaches to glaucoma by targeting glial cells.
Collapse
Affiliation(s)
| | - Kristine K Freude
- Department for Veterinary and Animal Science, University of Copenhagen, Copenhagen, Denmark
| | - Zaynab A Mouhammad
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Peter van Wijngaarden
- Center for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| | - Keith K Martin
- Center for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| | - Miriam Kolko
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.,Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet-Glostrup, Glostrup, Denmark
| |
Collapse
|
12
|
Mitochondrial DNA A3243G variant-associated retinopathy: Current perspectives and clinical implications. Surv Ophthalmol 2021; 66:838-855. [PMID: 33610586 DOI: 10.1016/j.survophthal.2021.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/12/2022]
Abstract
Cellular function and survival are critically dependent on the proper functionality of the mitochondrion. Neurodegenerative cellular processes including cellular adenosine triphosphate production, intermediary metabolism control, and apoptosis regulation are all mitochondrially mediated. The A to G transition at position 3243 in the mitochondrial MTTL1 gene that encodes for the leucine transfer RNA (m.3243A>G) causes a variety of diseases, including maternally inherited loss of hearing and diabetes syndrome (MIDD), mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes syndrome (MELAS). Ophthalmological findings-including posterior sub-capsular cataract, ptosis, external ophthalmoplegia, and pigmentary retinopathy- have all been associated with the m.3243A>G variant. Pigmentary retinopathy is, however, the most common ocular finding, occurring in 38% to 86% of cases. To date, little is known about the pathogenesis, natural history, and heteroplasmic and phenotypic correlations of m.3243A>G-associated pigmentary retinopathy. We summarize the current understanding of mitochondrial genetics and pathogenesis of some associated diseases. We then review the pathophysiology, histology, clinical features, treatment, and important ocular and systemic phenotypic manifestations of m.3243A>G variant associated retinopathy. Mitochondrial diseases require a multidisciplinary team approach to ensure effective treatment, regular follow-up, and accurate genetic counseling.
Collapse
|
13
|
Ahmad A, Nawaz MI, Siddiquei MM, Abu El-Asrar AM. Apocynin ameliorates NADPH oxidase 4 (NOX4) induced oxidative damage in the hypoxic human retinal Müller cells and diabetic rat retina. Mol Cell Biochem 2021; 476:2099-2109. [PMID: 33515385 DOI: 10.1007/s11010-021-04071-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/12/2021] [Indexed: 12/12/2022]
Abstract
NADPH oxidase (NOX) is a main producers of reactive oxygen species (ROS) that may contribute to the early pathogenesis of diabetic retinopathy (DR). ROS has harmful effects on endogenous neuro-survival factors brain-derived neurotrophic factor (BDNF) and sirtuin 1 (SIRT1) are necessary for the growth and survival of the retina. The role of NOX isoforms NOX4 in triggering ROS in DR is not clear. Here we determine the protective effects of a plant-derived NOX inhibitor apocynin (APO) on NOX4-induced ROS production which may contribute to the depletion of survival factors BDNF/SIRT1 or cell death in the diabetic retinas. Human retinal Müller glial cells (MGCs) were treated with hypoxia mimetic agent cobalt chloride (CoCl2) in the absence or presence of APO. Molecular analysis demonstrates that NOX4 is upregulated in CoCl2-treated MGCs and in the diabetic retinas. Increased NOX4 was accompanied by the downregulation of BDNF/SIRT1 expression or in the activation of apoptotic marker caspase-3. Whereas, APO treatment downregulates NOX4 and subsequently upregulates BDNF/SIRT1 or alleviate caspase-3 expression. Accordingly, in the diabetic retina we found a positive correlation in NOX4 vs ROS (p = 0.025; R2 = 0.488) and caspase-3 vs ROS (p = 0.04; R2 = 0.428); whereas a negative correlation in BDNF vs ROS (p = 0.009; R2 = 0.596) and SIRT1 vs ROS (p = 0.0003; R2 = 0.817) respectively. Taken together, NOX4-derived ROS could be a main contributor in downregulating BDNF/SIRT1 expression or in the activation of caspase-3. Whereas, APO treatment may minimize the deleterious effects occurring due to hyperglycemia and/or diabetic mimic hypoxic condition in early pathogenesis of DR.
Collapse
Affiliation(s)
- Ajmal Ahmad
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| | - Mohd Imtiaz Nawaz
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | | - Ahmed M Abu El-Asrar
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
14
|
Tribble JR, Kokkali E, Otmani A, Plastino F, Lardner E, Vohra R, Kolko M, André H, Morgan JE, Williams PA. When Is a Control Not a Control? Reactive Microglia Occur Throughout the Control Contralateral Pathway of Retinal Ganglion Cell Projections in Experimental Glaucoma. Transl Vis Sci Technol 2021; 10:22. [PMID: 33510961 PMCID: PMC7804521 DOI: 10.1167/tvst.10.1.22] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 12/02/2020] [Indexed: 12/19/2022] Open
Abstract
Purpose Animal models show retinal ganglion cell (RGC) injuries that replicate features of glaucoma and the contralateral eye is commonly used as an internal control. There is significant crossover of RGC axons from the ipsilateral to the contralateral side at the level of the optic chiasm, which may confound findings when damage is restricted to one eye. The effect of unilateral glaucoma on neuroinflammatory damage to the contralateral pathway of RGC projections has largely been unexplored. Methods Ocular hypertensive glaucoma was induced unilaterally or bilaterally in the rat and RGC neurodegenerative events were assessed. Neuroinflammation was quantified in the retina, optic nerve head, optic nerve, lateral geniculate nucleus, and superior colliculus by high-resolution imaging, and in the retina by flow cytometry and protein arrays. Results After ocular hypertensive stress, peripheral monocytes enter the retina and microglia become reactive. This effect is more marked in animals with bilateral ocular hypertensive glaucoma. In rats where glaucoma was induced unilaterally, there was significant microglia activation in the contralateral (control) eye. Microglial activation extended into the optic nerve and terminal visual thalami, where it was similar across hemispheres in unilateral ocular hypertension. Conclusions These data suggest that caution is warranted when using the contralateral eye as a control and in comparing visual thalami in unilateral models of glaucoma. Translational Relevance The use of a contralateral eye as a control may confound the discovery of human-relevant mechanism and treatments in animal models. We also identify neuroinflammatory protein responses that warrant further investigation as potential disease-modifiable targets.
Collapse
Affiliation(s)
- James R. Tribble
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Eirini Kokkali
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, Wales, UK
| | - Amin Otmani
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Flavia Plastino
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Emma Lardner
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Rupali Vohra
- Department of Veterinary and Animal Sciences, Pathobiological Sciences, University of Copenhagen, Denmark
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Miriam Kolko
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Department of Ophthalmology, Rigshospitalet-Glostrup, Copenhagen, Denmark
| | - Helder André
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - James E. Morgan
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, Wales, UK
- School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Pete A. Williams
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
15
|
Microfluidic and Microscale Assays to Examine Regenerative Strategies in the Neuro Retina. MICROMACHINES 2020; 11:mi11121089. [PMID: 33316971 PMCID: PMC7763644 DOI: 10.3390/mi11121089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/03/2020] [Accepted: 12/05/2020] [Indexed: 12/15/2022]
Abstract
Bioengineering systems have transformed scientific knowledge of cellular behaviors in the nervous system (NS) and pioneered innovative, regenerative therapies to treat adult neural disorders. Microscale systems with characteristic lengths of single to hundreds of microns have examined the development and specialized behaviors of numerous neuromuscular and neurosensory components of the NS. The visual system is comprised of the eye sensory organ and its connecting pathways to the visual cortex. Significant vision loss arises from dysfunction in the retina, the photosensitive tissue at the eye posterior that achieves phototransduction of light to form images in the brain. Retinal regenerative medicine has embraced microfluidic technologies to manipulate stem-like cells for transplantation therapies, where de/differentiated cells are introduced within adult tissue to replace dysfunctional or damaged neurons. Microfluidic systems coupled with stem cell biology and biomaterials have produced exciting advances to restore vision. The current article reviews contemporary microfluidic technologies and microfluidics-enhanced bioassays, developed to interrogate cellular responses to adult retinal cues. The focus is on applications of microfluidics and microscale assays within mammalian sensory retina, or neuro retina, comprised of five types of retinal neurons (photoreceptors, horizontal, bipolar, amacrine, retinal ganglion) and one neuroglia (Müller), but excludes the non-sensory, retinal pigmented epithelium.
Collapse
|
16
|
Freude KK, Saruhanian S, McCauley A, Paterson C, Odette M, Oostenink A, Hyttel P, Gillies M, Haukedal H, Kolko M. Enrichment of retinal ganglion and Müller glia progenitors from retinal organoids derived from human induced pluripotent stem cells - possibilities and current limitations. World J Stem Cells 2020; 12:1171-1183. [PMID: 33178399 PMCID: PMC7596448 DOI: 10.4252/wjsc.v12.i10.1171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/03/2020] [Accepted: 08/16/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Retinal organoids serve as excellent human-specific disease models for conditions affecting otherwise inaccessible retinal tissue from patients. They permit the isolation of key cell types affected in various eye diseases including retinal ganglion cells (RGCs) and Müller glia.
AIM To refine human-induced pluripotent stem cells (hiPSCs) differentiated into three-dimensional (3D) retinal organoids to generate sufficient numbers of RGCs and Müller glia progenitors for downstream analyses.
METHODS In this study we described, evaluated, and refined methods with which to generate Müller glia and RGC progenitors, isolated them via magnetic-activated cell sorting, and assessed their lineage stability after prolonged 2D culture. Putative progenitor populations were characterized via quantitative PCR and immunocytochemistry, and the ultrastructural composition of retinal organoid cells was investigated.
RESULTS Our study confirms the feasibility of generating marker-characterized Müller glia and RGC progenitors within retinal organoids. Such retinal organoids can be dissociated and the Müller glia and RGC progenitor-like cells isolated via magnetic-activated cell sorting and propagated as monolayers.
CONCLUSION Enrichment of Müller glia and RGC progenitors from retinal organoids is a feasible method with which to study cell type-specific disease phenotypes and to potentially generate specific retinal populations for cell replacement therapies.
Collapse
Affiliation(s)
- Kristine Karla Freude
- Department of Veterinary and Animal Sciences, Group of Stem Cell Models for Studies of Neurodegenerative Diseases, Section for Pathobiological Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark
| | - Sarkis Saruhanian
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Alanna McCauley
- Department of Veterinary and Animal Sciences, Group of Stem Cell Models for Studies of Neurodegenerative Diseases, Section for Pathobiological Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark
| | - Colton Paterson
- Department of Veterinary and Animal Sciences, Group of Stem Cell Models for Studies of Neurodegenerative Diseases, Section for Pathobiological Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark
| | - Madeleine Odette
- Department of Veterinary and Animal Sciences, Group of Stem Cell Models for Studies of Neurodegenerative Diseases, Section for Pathobiological Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark
| | - Annika Oostenink
- Department of Veterinary and Animal Sciences, Group of Stem Cell Models for Studies of Neurodegenerative Diseases, Section for Pathobiological Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark
| | - Poul Hyttel
- Department of Veterinary and Animal Sciences, Group of Stem Cell Models for Studies of Neurodegenerative Diseases, Section for Pathobiological Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark
| | - Mark Gillies
- Save Sight Institute, South Block, Sydney Eye Hospital, Sydney 2000, Australia
| | - Henriette Haukedal
- Department of Veterinary and Animal Sciences, Group of Stem Cell Models for Studies of Neurodegenerative Diseases, Section for Pathobiological Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark
| | - Miriam Kolko
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen 2100, Denmark
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet-Glostrup, Glostrup 2600, Denmark
| |
Collapse
|
17
|
Abstract
This review focuses on recent progress in understanding the role of mitochondrial markers in the context of mitochondrial dysfunction in glaucoma and discussing new therapeutic approaches to modulate mitochondrial function and potentially lead to improved outcomes in glaucoma.
Collapse
|
18
|
Pereiro X, Miltner AM, La Torre A, Vecino E. Effects of Adult Müller Cells and Their Conditioned Media on the Survival of Stem Cell-Derived Retinal Ganglion Cells. Cells 2020; 9:E1759. [PMID: 32708020 PMCID: PMC7465792 DOI: 10.3390/cells9081759] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/16/2022] Open
Abstract
Retinal neurons, particularly retinal ganglion cells (RGCs), are susceptible to the degenerative damage caused by different inherited conditions and environmental insults, leading to irreversible vision loss and, ultimately, blindness. Numerous strategies are being tested in different models of degeneration to restore vision and, in recent years, stem cell technologies have offered novel avenues to obtain donor cells for replacement therapies. To date, stem cell-based transplantation in the retina has been attempted as treatment for photoreceptor degeneration, but the same tools could potentially be applied to other retinal cell types, including RGCs. However, RGC-like cells are not an abundant cell type in stem cell-derived cultures and, often, these cells degenerate over time in vitro. To overcome this limitation, we have taken advantage of the neuroprotective properties of Müller glia (one of the main glial cell types in the retina) and we have examined whether Müller glia and the factors they secrete could promote RGC-like cell survival in organoid cultures. Accordingly, stem cell-derived RGC-like cells were co-cultured with adult Müller cells or Müller cell-conditioned media was added to the cultures. Remarkably, RGC-like cell survival was substantially enhanced in both culture conditions, and we also observed a significant increase in their neurite length. Interestingly, Atoh7, a transcription factor required for RGC development, was up-regulated in stem cell-derived organoids exposed to conditioned media, suggesting that Müller cells may also enhance the survival of retinal progenitors and/or postmitotic precursor cells. In conclusion, Müller cells and the factors they release promote organoid-derived RGC-like cell survival, neuritogenesis, and possibly neuronal maturation.
Collapse
Affiliation(s)
- Xandra Pereiro
- Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, 48940 Vizcaya, Spain;
| | - Adam M. Miltner
- Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA 95616, USA; (A.M.M.); (A.L.T.)
| | - Anna La Torre
- Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA 95616, USA; (A.M.M.); (A.L.T.)
| | - Elena Vecino
- Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, 48940 Vizcaya, Spain;
| |
Collapse
|
19
|
Allan K, DiCicco R, Ramos M, Asosingh K, Yuan A. Preparing a Single Cell Suspension from Zebrafish Retinal Tissue for Flow Cytometric Cell Sorting of Müller Glia. Cytometry A 2020; 97:638-646. [PMID: 31769194 PMCID: PMC7246168 DOI: 10.1002/cyto.a.23936] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/30/2019] [Accepted: 11/05/2019] [Indexed: 12/23/2022]
Abstract
Preparation of a single cell suspension from solid tissue is vital for a successful flow cytometry experiment. We report a detailed and reproducible method to produce a quality cell suspension from the zebrafish retina. Zebrafish retinas, especially their Müller glia cells, are of particular interest for their inherent regenerative capacity, making them a useful model for regenerative medicine and cell therapy research. Here, we detail a papain-based dissociation that is gentle enough to keep cells intact, but strong enough to disrupt cell-cell and cell-matrix interactions to yield a cell suspension that produces clean and reliable flow cytometric cell sorting results. This procedure consistently results in over 90% viability and three populations of cells based on GFP expression. The dissociation procedure described herein has been optimized for the collection of Müller glia from Tg(apoe:gfp) zebrafish retinas; however, the overall process may be applicable to other cell types in the fish retina, additional flow cytometric techniques, or preparing cell suspensions from similar tissues. © 2019 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Kristin Allan
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
- Department of Ophthalmic Research, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio
- Cole Eye Institute, The Cleveland Clinic, Cleveland, Ohio
| | - Rose DiCicco
- Department of Ophthalmic Research, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio
- Cole Eye Institute, The Cleveland Clinic, Cleveland, Ohio
| | - Michael Ramos
- Department of Ophthalmic Research, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio
- Cole Eye Institute, The Cleveland Clinic, Cleveland, Ohio
| | - Kewal Asosingh
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio
- Flow Cytometry Core, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio
| | - Alex Yuan
- Department of Ophthalmic Research, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio
- Cole Eye Institute, The Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
20
|
Musada GR, Dvoriantchikova G, Myer C, Ivanov D, Bhattacharya SK, Hackam AS. The effect of extrinsic Wnt/β-catenin signaling in Muller glia on retinal ganglion cell neurite growth. Dev Neurobiol 2020; 80:98-110. [PMID: 32267608 DOI: 10.1002/dneu.22741] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/04/2020] [Accepted: 03/31/2020] [Indexed: 12/23/2022]
Abstract
Muller glia are the predominant glial cell type in the retina, and they structurally and metabolically support retinal neurons. Wnt/β-catenin signaling pathways play essential roles in the central nervous system, including glial and neuronal differentiation, axonal growth, and neuronal regeneration. We previously demonstrated that Wnt signaling activation in retinal ganglion cells (RGC) induces axonal regeneration after injury. However, whether Wnt signaling within the adjacent Muller glia plays an axongenic role is not known. In this study, we characterized the effect of Wnt signaling in Muller glia on RGC neurite growth. Primary Muller glia and RGC cells were grown in transwell co-cultures and adenoviral constructs driving Wnt regulatory genes were used to activate and inhibit Wnt signaling specifically in primary Muller glia. Our results demonstrated that activation of Wnt signaling in Muller glia significantly increased RGC average neurite length and branch site number. In addition, the secretome of Muller glia after induction or inhibition of Wnt signaling was characterized using protein profiling of conditioned media by Q Exactive mass spectrometry. The Muller glia secretome after activation of Wnt signaling had distinct and more numerous proteins involved in regulation of axon extension, axon projection and cell adhesion. Furthermore, we showed highly redundant expression of Wnt signaling ligands in Muller glia and Frizzled receptors in RGCs and Muller glia. Therefore, this study provides new information about potential neurite growth promoting molecules in the Muller glia secretome, and identified Wnt-dependent target proteins that may mediate the axonal growth.
Collapse
Affiliation(s)
- Ganeswara Rao Musada
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Galina Dvoriantchikova
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ciara Myer
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Dmitry Ivanov
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sanjoy K Bhattacharya
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Abigail S Hackam
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
21
|
Shahulhameed S, Swain S, Jana S, Chhablani J, Ali MJ, Pappuru RR, Tyagi M, Vishwakarma S, Sailaja N, Chakrabarti S, Giri L, Kaur I. A Robust Model System for Retinal Hypoxia: Live Imaging of Calcium Dynamics and Gene Expression Studies in Primary Human Mixed Retinal Culture. Front Neurosci 2020; 13:1445. [PMID: 32116486 PMCID: PMC7020445 DOI: 10.3389/fnins.2019.01445] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/24/2019] [Indexed: 01/24/2023] Open
Abstract
The detailed mechanisms underlying oxidative stress that leads to neuroinflammation and neurodegeneration in retinal vascular conditions, including diabetic retinopathy, retinopathy of prematurity etc., remain largely unexplored mainly due to a lack of suitable disease models that can simulate the inherent neuron-glia interactions in human retina. Specifically, establishment of a mixed retinal culture (MRC) containing both neuron and glial cell types remains a challenge due to different conditions required for their optimal growth and differentiation. Here, we establish a novel primary MRC model system containing neurons, astrocytes, Müller glia, and microglia from human donor retina that can be used to study the neuromodulatory effects of glial cells under the stress. The cell characterization based on immunostaining with individual cell type-specific markers and their presence in close vicinity to each other further underscores their utility for studying their cross talk. To the best of our knowledge, this is the first instance of an in vitro model obtained from human donor retina containing four major cell types. Next, we induce hypoxic stress to MRC to investigate if hypoxia activated neuroglia modulates altered gene expression for inflammatory, apoptotic, and angiogenic markers and Ca2+ transients by live cell imaging. Further, we performed k-means clustering of the Ca2+ responses to identify the modification of clustering pattern in stressed condition. Finally, we provide the evidence that the altered Ca2+ transient correlates to differential expression of genes shown to be involved in neuroinflammation, angiogenesis, and neurodegeneration under the hypoxic conditions as seen earlier in human cell lines and animal models of diabetic retinopathy. The major features of the hypoxic conditions in the proposed human MRC model included: increase in microglia activity, chemokine and cytokine expression, and percentage of cells having higher amplitude and frequency of Ca2+ transients. Thus, the proposed experimental system can potentially serve as an ideal in vitro model for studying the neuroinflammatory and neurodegenerative changes in the retina and identifying newer drug targets.
Collapse
Affiliation(s)
| | - Sarpras Swain
- Department of Chemical Engineering, Indian Institute of Technology, Hyderabad, India
| | - Soumya Jana
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad, India
| | - Jay Chhablani
- Medical Retina and Vitreoretinal Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Mohammad Javed Ali
- Govindram Seksaria Institute of Dacryology, LV Prasad Eye Institute, Hyderabad, India
| | - Rajeev R Pappuru
- Smt. Kanuri Santhamma Center for Vitreo Retinal Diseases, LV Prasad Eye Institute, Hyderabad, India
| | - Mudit Tyagi
- Smt. Kanuri Santhamma Center for Vitreo Retinal Diseases, LV Prasad Eye Institute, Hyderabad, India
| | - Sushma Vishwakarma
- Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, India
| | - Nanda Sailaja
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad, India
| | | | - Lopamudra Giri
- Department of Chemical Engineering, Indian Institute of Technology, Hyderabad, India
| | - Inderjeet Kaur
- Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, India
| |
Collapse
|
22
|
Vohra R, Kolko M. Lactate: More Than Merely a Metabolic Waste Product in the Inner Retina. Mol Neurobiol 2020; 57:2021-2037. [PMID: 31916030 DOI: 10.1007/s12035-019-01863-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/22/2019] [Indexed: 02/07/2023]
Abstract
The retina is an extension of the central nervous system and has been considered to be a simplified, more tractable and accessible version of the brain for a variety of neuroscience investigations. The optic nerve displays changes in response to underlying neurodegenerative diseases, such as stroke, multiple sclerosis, and Alzheimer's disease, as well as inner retinal neurodegenerative disease, e.g., glaucoma. Neurodegeneration has increasingly been linked to dysfunctional energy metabolism or conditions in which the energy supply does not meet the demand. Likewise, increasing lactate levels have been correlated with conditions consisting of unbalanced energy supply and demand, such as ischemia-associated diseases or excessive exercise. Lactate has thus been acknowledged as a metabolic waste product in organs with high energy metabolism. However, in the past decade, numerous beneficial roles of lactate have been revealed in the central nervous system. In this context, lactate has been identified as a valuable energy substrate, protecting against glutamate excitotoxicity and ischemia, as well as having signaling properties which regulate cellular functions. The present review aims to summarize and discuss protective roles of lactate in various model systems (in vitro, ex vivo, and in vivo) reflecting the inner retina focusing on lactate metabolism and signaling in inner retinal homeostasis and disease.
Collapse
Affiliation(s)
- Rupali Vohra
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.,Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Miriam Kolko
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark. .,Department of Ophthalmology, Rigshospitalet-Glostrup, University of Copenhagen, Glostrup, Denmark.
| |
Collapse
|
23
|
Vohra R, Dalgaard LM, Vibæk J, Langbøl MA, Bergersen LH, Olsen NV, Hassel B, Chaudhry FA, Kolko M. Potential metabolic markers in glaucoma and their regulation in response to hypoxia. Acta Ophthalmol 2019; 97:567-576. [PMID: 30690927 DOI: 10.1111/aos.14021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 12/09/2018] [Indexed: 12/25/2022]
Abstract
PURPOSE To assess novel differences in serum levels of glucose, lactate and amino acids in patients with normal-tension glaucoma (NTG) compared to age-matched controls, at baseline and in response to universal hypoxia. METHODS Twelve patients diagnosed with NTG and eleven control subjects underwent normobaric hypoxia for 2 hr. Peripheral venous blood samples were taken at baseline, during hypoxia and in the recovery phase. Serum glucose and lactate levels were measured by a blood gas analyser. Amino acids were analysed by high-performance liquid chromatography. RESULTS Baseline levels of lactate and total amino acids were significantly lower in patients with NTG compared to healthy controls. No differences were seen in blood glucose levels between the two groups. Lactate levels remained unchanged during hypoxia in the control group, but increased in patients with NTG. In the recovery phase, total amino acid levels were reduced in the control group, whereas no changes were found in patients with NTG. CONCLUSION Reduced serum levels of lactate and total amino acids were identified as potential markers for NTG. Moreover, significant differential regulatory patterns of certain amino acids were found in patients with NTG compared to control subjects. Overall, our results suggest a link between systemic energy metabolites and NTG and support a novel understanding of glaucoma as an inner retinal manifestation of a systemic condition.
Collapse
Affiliation(s)
- Rupali Vohra
- Department of Drug Design and Pharmacology University of Copenhagen Copenhagen Denmark
| | - Line Marie Dalgaard
- Department of Drug Design and Pharmacology University of Copenhagen Copenhagen Denmark
| | - Jeppe Vibæk
- Department of Drug Design and Pharmacology University of Copenhagen Copenhagen Denmark
| | | | - Linda Hildegaard Bergersen
- Center of Healthy Ageing University of Copenhagen Copenhagen Denmark
- Brain and Muscle Energy Group Faculty of Dentistry Department of Oral Biology University of Oslo Oslo Norway
| | - Niels Vidiendal Olsen
- Department of Neuroanaesthesia The Neuroscience Centre Copenhagen University Hospital Rigshospitalet Copenhagen Denmark
- Department of Biomedical Science University of Copenhagen Copenhagen Denmark
| | - Bjørnar Hassel
- Department of Complex Neurology and Neurohabilitation Oslo University Hospital University of Oslo Oslo Norway
- Norwegian Defence Research Establishment (FFI) Kjeller Norway
| | - Farrukh Abbas Chaudhry
- Department of Basic Medical Sciences Faculty of Medicine University of Oslo Oslo Norway
- Department of Medical Biochemistry Oslo University Hospital Oslo Norway
| | - Miriam Kolko
- Department of Drug Design and Pharmacology University of Copenhagen Copenhagen Denmark
- Department of Ophthalmology Copenhagen University Hospital Rigshospitalet‐Glostrup Glostrup Denmark
| |
Collapse
|
24
|
Vohra R, Aldana BI, Waagepetersen H, Bergersen LH, Kolko M. Dual Properties of Lactate in Müller Cells: The Effect of GPR81 Activation. Invest Ophthalmol Vis Sci 2019; 60:999-1008. [PMID: 30884529 DOI: 10.1167/iovs.18-25458] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Besides being actively metabolized, lactate may also function as a signaling molecule by activation of the G-protein-coupled receptor 81 (GPR81). Thus, we aimed to characterize the metabolic effects of GPR81 activation in Müller cells. Method Primary Müller cells from mice were treated with and without 10 mM L-lactate in the presence or absence of 6 mM glucose. The effects of lactate receptor GPR81 activation were evaluated by the addition of 5 mM 3,5-DHBA (3,5-dihydroxybenzoic acid), a GPR81 agonist. Western blot analyses were used to determine protein expression of GPR81. Cell survival was assessed through 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) viability assays. Lactate release was quantified by commercially available lactate kits. 13C-labeling studies via mass spectroscopy and Seahorse analyses were performed to evaluate metabolism of lactate and glucose, and mitochondrial function. Finally, Müller cell function was evaluated by measuring glutamate uptake. Results The lactate receptor, GPR81, was upregulated during glucose deprivation. Treatment with a GPR81 agonist did not affect Müller cell survival. However, GPR81 activation diminished lactate release allowing lactate to be metabolized intracellularly. Furthermore, GPR81 activation increased metabolism of glucose and mitochondrial function. Finally, maximal glutamate uptake decreased in response to GPR81 activation during glucose deprivation. Conclusions The present study revealed dual properties of lactate via functioning as an active metabolic energy substrate and a regulatory molecule by activation of the GPR81 receptor in primary Müller cells. Thus, combinational therapy of lactate and GPR81 agonists may be of future interest in maintaining Müller cell survival, ultimately leading to increased resistance toward retinal neurodegeneration.
Collapse
Affiliation(s)
- Rupali Vohra
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Blanca I Aldana
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Helle Waagepetersen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Linda H Bergersen
- Center of Healthy Aging, University of Copenhagen, Copenhagen, Denmark.,Brain and Muscle Energy Group, Faculty of Dentistry, Institute of Oral Biology, University of Oslo, Oslo, Norway
| | - Miriam Kolko
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.,Department of Ophthalmology, Rigshospitalet-Glostrup, Copenhagen, Denmark
| |
Collapse
|
25
|
Li XX, Zhang Z, Zeng HY, Wu S, Liu L, Zhang JX, Liu Q, Yang DY, Wang NL. Selective Early Glial Reactivity in the Visual Pathway Precedes Axonal Loss, Following Short-Term Cerebrospinal Fluid Pressure Reduction. Invest Ophthalmol Vis Sci 2019; 59:3394-3404. [PMID: 30025070 DOI: 10.1167/iovs.17-22232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To examine the early glial reactivity and neuron damage in response to short-term cerebrospinal fluid pressure (CSFp) reduction, as compared with intraocular pressure (IOP) elevation. Methods The experiment included 54 male Sprague-Dawley rats with elevated translaminar cribrosa pressure difference (TLPD), defined as IOP minus CSFp. These rats underwent either continuous CSF drainage for 6 hours (n = 18), or unilateral IOP elevation to 40 mm Hg for 6 hours (n = 18). For control, 18 normal rats were anesthetized for 6 hours. Orthograde axonal transport was examined by intravitreal injection of 3% rhodamine-β-isothiocyanate. We also used transmission electron microscopy to display the ultrastructural features of retinal ganglion cell axons in the optic nerve head. Early glial reactivity in the retina, lateral geniculate nucleus (LGN), and superior colliculus (SC) was detected by immunostaining and Western blot for the glial fibrillary acidic protein (GFAP) and glutamine synthetase (GS). We also observed the glial reactivity in the inferior colliculus and hippocampus to rule out possible influences of CSF dynamics and composition. Results Anterograde staining with 3% rhodamine-β-isothiocyanate revealed decreased fluorescence intensity of the SC and LGN projected from both lower CSFp and higher IOP eyes. Transmission electron microscopy showed loss of axons from the optic nerve head in the high-IOP group, but not in the low-CSFp group. Compared with the anesthesia control group, GFAP expression was significantly increased in the retina, LGN, and SC, whereas GS expression was only increased in the retina following CSFp reduction. However, their expressions were not significantly elevated in the inferior colliculus and hippocampus. In the high-IOP group, expressions of GFAP and GS were significantly increased in the retina, LGN, and SC. Conclusions Visual system neurons may be much more sensitive than other nervous tissues. Following short-term CSFp reduction, early glial reactivity may precede axonal loss. Changes of translaminar cribrosa pressure difference in both experimental low-CSFp and high-IOP groups induce selective early glial reactivity. The neuron damage from abnormally low CSFp may be pathogenetically similar to high IOP.
Collapse
Affiliation(s)
- Xiao Xia Li
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China.,Beijing Institute of Ophthalmology, Beijing, China
| | - Zheng Zhang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China
| | - Hui Yang Zeng
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China.,Beijing Institute of Ophthalmology, Beijing, China
| | - Shen Wu
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China.,Beijing Institute of Ophthalmology, Beijing, China
| | - Lu Liu
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China.,Beijing Institute of Ophthalmology, Beijing, China
| | - Jing Xue Zhang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China.,Beijing Institute of Ophthalmology, Beijing, China
| | - Qian Liu
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China.,Beijing Institute of Ophthalmology, Beijing, China
| | - Di Ya Yang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China
| | - Ning Li Wang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China.,Beijing Institute of Ophthalmology, Beijing, China
| |
Collapse
|
26
|
Lactate-Mediated Protection of Retinal Ganglion Cells. J Mol Biol 2019; 431:1878-1888. [PMID: 30878479 DOI: 10.1016/j.jmb.2019.03.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/27/2019] [Accepted: 03/05/2019] [Indexed: 12/30/2022]
Abstract
Loss of retinal ganglion cells (RGCs) is a leading cause of blinding conditions. The purpose of this study was to evaluate the effect of extracellular l-lactate on RGC survival facilitated through lactate metabolism and ATP production. We identified lactate as a preferred energy substrate over glucose in murine RGCs and showed that lactate metabolism and consequently increased ATP production are crucial components in promoting RGC survival during energetic crisis. Lactate was released to the extracellular environment in the presence of glucose and detained intracellularly during glucose deprivation. Lactate uptake and metabolism was unaltered in the presence and absence of glucose. However, the ATP production declined significantly for 24 h of glucose deprivation and increased significantly in the presence of lactate. Finally, lactate exposure for 2 and 24 h resulted in increased RGC survival during glucose deprivation. In conclusion, the metabolic pathway of lactate in RGCs may be of great future interest to unravel potential pharmaceutical targets, ultimately leading to novel therapies in the prevention of blinding neurodegenerative diseases, for example, glaucoma.
Collapse
|
27
|
Ruzafa N, Pereiro X, Lepper MF, Hauck SM, Vecino E. A Proteomics Approach to Identify Candidate Proteins Secreted by Müller Glia that Protect Ganglion Cells in the Retina. Proteomics 2018; 18:e1700321. [PMID: 29645351 DOI: 10.1002/pmic.201700321] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/20/2017] [Indexed: 12/27/2022]
Abstract
The retinal Müller glial cells, can enhance the survival and activity of neurons, especially of retinal ganglion cells (RGCs), which are the neurons affected in diseases such as glaucoma, diabetes, and retinal ischemia. It has been demonstrated that Müller glia release neurotrophic factors that support RGC survival, yet many of these factors remain to be elucidated. To define these neurotrophic factors, a quantitative proteomic approach was adopted aiming at identifying neuroprotective proteins. First, the conditioned medium from porcine Müller cells cultured in vitro under three different conditions were isolated and these conditioned media were tested for their capacity to promote survival of primary adult RGCs in culture. Mass spectrometry was used to identify and quantify proteins in the conditioned medium, and osteopontin (SPP1), clusterin (CLU), and basigin (BSG) were selected as candidate neuroprotective factors. SPP1 and BSG significantly enhance RGC survival in vitro, indicating that the survival-promoting activity of the Müller cell secretome is multifactorial, and that SPP1 and BSG contribute to this activity. Thus, the quantitative proteomics strategy identify proteins secreted by Müller glia that are potentially novel neuroprotectants, and it may also serve to identify other bioactive proteins or molecular markers.
Collapse
Affiliation(s)
- Noelia Ruzafa
- Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, 48940, Vizcaya, Spain
| | - Xandra Pereiro
- Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, 48940, Vizcaya, Spain
| | - Marlen F Lepper
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, D-80939, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, D-80939, Germany
| | - Elena Vecino
- Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, 48940, Vizcaya, Spain
| |
Collapse
|
28
|
Antioxidant effects of Lycium barbarum polysaccharides on photoreceptor degeneration in the light-exposed mouse retina. Biomed Pharmacother 2018; 103:829-837. [PMID: 29684862 DOI: 10.1016/j.biopha.2018.04.104] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 01/05/2023] Open
Abstract
We assessed the neuroprotective effects of Lycium barbarum Polysaccharides (LBP) on photoreceptor degeneration and the mechanisms involved in oxidative stress in light-exposed mouse retinas. Mice were given a gavage of LBP (150 mg/kg or 300 mg/kg) or phosphate buffered saline (PBS) for 7 days before exposure to light (5000 lx for 24 h). We found that LBP significantly improved the electroretinography (ERG) amplitudes of the a- and b-waves that had been attenuated by light exposure. In addition, changes caused by light exposure including photoreceptor cell loss, nuclear condensation, an increased number of mitochondria vacuoles, outer membrane disc swelling and cristae fractures were distinctly ameliorated by LBP. LBP treatment also significantly prevented the generation of reactive oxygen species (ROS) compared with PBS treatment. The levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and thioredoxin reductase (TrxR1) mRNA were decreased in PBS-treated mice compared with controls but increased remarkably in LBP-treated mice. The mRNA levels of the DNA repair gene Poly (ADP-ribose) polymerase (PARP14) was increased in PBS-treated mice but decreased significantly in the LBP-treated mice. Our findings indicate that pretreatment with LBP effectively protected photoreceptor cells against light-induced retinal damage probably through the up-regulation of the antioxidative genes Nrf2 and TrxR1, the elimination of oxygen free radicals, and the subsequent reduction in the mitochondrial reaction to oxidative stress and enhancement in antioxidant capacity. In addition, the decreased level of PARP14 mRNA in LBP-treated mice also indicated a protective effect of LBP on delaying photoreceptor in the light-damaged retina.
Collapse
|
29
|
Essential Roles of Lactate in Müller Cell Survival and Function. Mol Neurobiol 2018; 55:9108-9121. [PMID: 29644598 DOI: 10.1007/s12035-018-1056-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 03/29/2018] [Indexed: 12/17/2022]
Abstract
Müller cells are pivotal in sustaining retinal ganglion cells, and an intact energy metabolism is essential for upholding Müller cell functions. The present study aimed to investigate the impact of lactate on Müller cell survival and function. Primary mice Müller cells and human Müller cell lines (MIO-M1) were treated with or without lactate (10 or 20 mM) for 2 and 24 hours. Simultaneously, Müller cells were incubated with or without 6 mM of glucose. L-lactate exposure increased Müller cell survival independently of the presence of glucose. This effect was abolished by the addition of the monocarboxylate inhibitor 4-cinnamic acid to the treatment media, whereas survival continued to increase in response to addition of D-lactate during glucose restriction. ATP levels decreased over time in MIO-M1 cells and remained stable over time in primary Müller cells. Lactate was preferably metabolized in MIO-M1 cells compared to glucose, and 10 mM of L-Lactate exposure prevented complete glycogen depletion in MIO-M1 cells. Glutamate uptake increased after 2 hours and decreased after 24 hours in glucose-restricted Müller cells compared to cells with glucose supplement. The addition of 10 mM of lactate to the treatment media increased glutamate uptake in glucose supplemented and restricted cells. In conclusion, lactate is a key component in maintaining Müller cell survival and function. Hence, lactate administration may be of great future interest, ultimately leading to novel therapies to rescue retinal ganglion cells.
Collapse
|
30
|
Affiliation(s)
- Rupali Vohra
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Miriam Kolko
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark; Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet-Glostrup, Glostrup, Denmark
| |
Collapse
|
31
|
Kelly K, Wang JJ, Zhang SX. The unfolded protein response signaling and retinal Müller cell metabolism. Neural Regen Res 2018; 13:1861-1870. [PMID: 30233053 PMCID: PMC6183030 DOI: 10.4103/1673-5374.239431] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The retina is one of the most energy demanding tissues in the body. Like most neurons in the central nervous system, retinal neurons consume high amounts of adenosine-5'-triphosphate (ATP) to generate visual signal and transmit the information to the brain. Disruptions in retinal metabolism can cause neuronal dysfunction and degeneration resulting in severe visual impairment and even blindness. The homeostasis of retinal metabolism is tightly controlled by multiple signaling pathways, such as the unfolded protein response (UPR), and the close interactions between retinal neurons and other retinal cell types including vascular cells and Müller glia. The UPR is a highly conserved adaptive cellular response and can be triggered by many physiological stressors and pathophysiological conditions. Activation of the UPR leads to changes in glycolytic rate, ATP production, de novo serine synthesis, and the hexosamine biosynthetic pathway, which are considered critical components of Müller glia metabolism and provide metabolic support to surrounding neurons. When these pathways are disrupted, neurodegeneration occurs rapidly. In this review, we summarize recent advance in studies of the UPR in Müller glia and highlight the potential role of the UPR in retinal degeneration through regulation of Müller glia metabolism.
Collapse
Affiliation(s)
- Kristen Kelly
- Department of Ophthalmology and Neuroscience Program, Ross Eye Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Joshua J Wang
- Department of Ophthalmology and Neuroscience Program, Ross Eye Institute, University at Buffalo; SUNY Eye Institute, State University of New York, Buffalo, NY, USA
| | - Sarah X Zhang
- Department of Ophthalmology and Neuroscience Program, Ross Eye Institute, University at Buffalo; SUNY Eye Institute, State University of New York, Buffalo, NY, USA
| |
Collapse
|
32
|
Vohra R, Gurubaran IS, Henriksen U, Bergersen LH, Rasmussen LJ, Desler C, Skytt DM, Kolko M. Disturbed mitochondrial function restricts glutamate uptake in the human Müller glia cell line, MIO-M1. Mitochondrion 2017; 36:52-59. [DOI: 10.1016/j.mito.2017.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 02/03/2017] [Accepted: 02/03/2017] [Indexed: 01/09/2023]
|
33
|
Mitochondrial dysfunction underlying outer retinal diseases. Mitochondrion 2017; 36:66-76. [PMID: 28365408 DOI: 10.1016/j.mito.2017.03.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 03/06/2017] [Accepted: 03/27/2017] [Indexed: 01/21/2023]
Abstract
Dysfunction of photoreceptors, retinal pigment epithelium (RPE) or both contribute to the initiation and progression of several outer retinal disorders. Disrupted Müller glia function might additionally subsidize to these diseases. Mitochondrial malfunctioning is importantly associated with outer retina pathologies, which can be classified as primary and secondary mitochondrial disorders. This review highlights the importance of oxidative stress and mitochondrial DNA damage, underlying outer retinal disorders. Indeed, the metabolically active photoreceptors/RPE are highly prone to these hallmarks of mitochondrial dysfunction, indicating that mitochondria represent a weak link in the antioxidant defenses of outer retinal cells.
Collapse
|
34
|
Axonal Degeneration in Retinal Ganglion Cells Is Associated with a Membrane Polarity-Sensitive Redox Process. J Neurosci 2017; 37:3824-3839. [PMID: 28275163 DOI: 10.1523/jneurosci.3882-16.2017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/15/2017] [Accepted: 02/28/2017] [Indexed: 12/13/2022] Open
Abstract
Axonal degeneration is a pathophysiological mechanism common to several neurodegenerative diseases. The slow Wallerian degeneration (WldS) mutation, which results in reduced axonal degeneration in the central and peripheral nervous systems, has provided insight into a redox-dependent mechanism by which axons undergo self-destruction. We studied early molecular events in axonal degeneration with single-axon laser axotomy and time-lapse imaging, monitoring the initial changes in transected axons of purified retinal ganglion cells (RGCs) from wild-type and WldS rat retinas using a polarity-sensitive annexin-based biosensor (annexin B12-Cys101,Cys260-N,N'-dimethyl-N-(iodoacetyl)-N'-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) ethylenediamine). Transected axons demonstrated a rapid and progressive change in membrane phospholipid polarity, manifested as phosphatidylserine externalization, which was significantly delayed and propagated more slowly in axotomized WldS RGCs compared with wild-type axons. Delivery of bis(3-propionic acid methyl ester)phenylphosphine borane complex, a cell-permeable intracellular disulfide-reducing drug, slowed the onset and velocity of phosphatidylserine externalization in wild-type axons significantly, replicating the WldS phenotype, whereas extracellular redox modulation reversed the WldS phenotype. These findings are consistent with an intra-axonal redox mechanism for axonal degeneration associated with the initiation and propagation of phosphatidylserine externalization after axotomy.SIGNIFICANCE STATEMENT Axonal degeneration is a neuronal process independent of somal apoptosis, the propagation of which is unclear. We combined single-cell laser axotomy with time-lapse imaging to study the dynamics of phosphatidylserine externalization immediately after axonal injury in purified retinal ganglion cells. The extension of phosphatidylserine externalization was slowed and delayed in Wallerian degeneration slow (WldS) axons and this phenotype could be reproduced by intra-axonal disulfide reduction in wild-type axons and reversed by extra-axonal reduction in WldS axons. These results are consistent with a redox mechanism for propagation of membrane polarity asymmetry in axonal degeneration.
Collapse
|
35
|
Toft-Kehler AK, Skytt DM, Svare A, Lefevere E, Van Hove I, Moons L, Waagepetersen HS, Kolko M. Mitochondrial function in Müller cells - Does it matter? Mitochondrion 2017; 36:43-51. [PMID: 28179130 DOI: 10.1016/j.mito.2017.02.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 01/26/2017] [Accepted: 02/03/2017] [Indexed: 11/17/2022]
Abstract
Growing evidence suggests that mitochondrial dysfunction might play a key role in the pathogenesis of age-related neurodegenerative inner retinal diseases such as diabetic retinopathy and glaucoma. Therefore, the present review provides a perspective on the impact of functional mitochondria in the most predominant glial cells of the retina, the Müller cells. Müller cells span the entire thickness of the neuroretina and are in close proximity to retinal cells including the retinal neurons that provides visual signaling to the brain. Among multiple functions, Müller cells are responsible for the removal of neurotransmitters, buffering potassium, and providing neurons with essential metabolites. Thus, Müller cells are responsible for a stable metabolic dialogue in the inner retina and their crucial role in supporting retinal neurons is indisputable. Müller cell functions require considerable energy production and previous literature has primarily emphasized glycolysis as the main energy provider. However, recent studies highlight the need of mitochondrial ATP production to upheld Müller cell functions. Therefore, the present review aims to provide an overview of the current evidence on the impact of mitochondrial functions in Müller cells.
Collapse
Affiliation(s)
- Anne Katrine Toft-Kehler
- Eye Translational Research Unit, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen O, Denmark; Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen N, Denmark.
| | - Dorte Marie Skytt
- Eye Translational Research Unit, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen O, Denmark; Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen N, Denmark
| | - Alicia Svare
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen N, Denmark
| | - Evy Lefevere
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Inge Van Hove
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Lieve Moons
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Helle S Waagepetersen
- Neuromet, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen O, Denmark
| | - Miriam Kolko
- Eye Translational Research Unit, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen O, Denmark; Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen N, Denmark; Zealand University Hospital, Department of Ophthalmology, Vestermarksvej 23, 4000 Roskilde, Denmark.
| |
Collapse
|