1
|
Esmailpour Z, Madadi S, Baazm M. The antiapoptotic effects of conditioned medium from bone marrow-derived mesenchymal stromal stem cells on cyclophosphamide-induced testicular damage in rat: An experimental study. Int J Reprod Biomed 2024; 22:89-100. [PMID: 38628779 PMCID: PMC11017209 DOI: 10.18502/ijrm.v22i2.15706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/09/2023] [Accepted: 01/10/2024] [Indexed: 04/19/2024] Open
Abstract
Background Cyclophosphamide (CP) has some negative effects on the reproductive system. Stem cells and their metabolites are being utilized to enhance fertility after chemotherapy. Objective This study aimed to investigate the impact of conditioned medium (CM) derived from bone marrow mesenchymal stromal stem cells (BM-MSCs) on the toxic effects of CP on testicles. Materials and Methods BM-MSCs were isolated, a CM was collected and 25-fold concentrated. 24 male Wistar rats (8 wk, 200-250 gr) were randomly divided into following groups: control, CP, CP+ Dulbecco's Modified Eagle Medium (DMEM), CP+CM. CP was given at a single dose of 100 mg/kg. 2 wk after the CP administration, CM was injected into the testicular efferent duct. Sperm parameters, testicular histopathology, and the level of testosterone were analyzed 2 months after treatment. The expression of B-cell lymphoma 2 (Bcl2) and Bcl2-associated X protein (Bax) genes were evaluated by real-time polymerase chain reaction. Results CP had a negative effect on testis histology (p < 0.001) and sperm quality (p < 0.001). It changed the expression of genes associated with apoptosis (p < 0.001). Treatment with CM reduced the expression of Bax (p < 0.001), while significantly increasing the expression of Bcl2 (p = 0.01). It improved sperm count (p = 0.03), viability (p < 0.001), motility (p < 0.001), spermatogonial count (p < 0.001), and epithelial thickness of testicular tubules (p = 0.02). Conclusion These findings suggest that CM produced from BM-MSCs may be valuable for therapeutic approaches in reproductive medicine and may lessen the side effects of CP.
Collapse
Affiliation(s)
- Zeynab Esmailpour
- Students Research Committee, Arak University of Medical Sciences, Arak, Iran
| | - Soheila Madadi
- Department of Anatomy, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Maryam Baazm
- Department of Anatomy, School of Medicine, Arak University of Medical Sciences, Arak, Iran
- Molecular and Medicine Research Center, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
2
|
Pinter ZW, Elder BD, Kaye ID, Kepler CK, Wagner S, Freedman BA, Sebastian AS. A Review of Commercially Available Cellular-based Allografts. Clin Spine Surg 2022; 35:E77-E86. [PMID: 34654775 DOI: 10.1097/bsd.0000000000001262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 09/15/2021] [Indexed: 11/27/2022]
Abstract
STUDY DESIGN This was a narrative review. OBJECTIVE This review discusses our current knowledge regarding cellular-based allografts while highlighting the key gaps in the literature that must be addressed before their widespread adoption. SUMMARY OF BACKGROUND DATA Iliac crest bone graft is the gold-standard bone graft material but is associated with donor site morbidity. Commonly utilized bone graft extenders such as demineralized bone matrix and bone morphogenetic protein have conflicting data supporting their efficacy and lack the osteogenic potential of new cellular-based allograft options. METHODS An extensive literature review was performed. The literature was then summarized in accordance with the authors' clinical experience. RESULTS There is not widespread evidence thus far that the addition of the osteogenic cellular component to allograft enhances spinal fusion, as a recent study by Bhamb and colleagues demonstrated superior bone formation during spine fusion in an aythmic rat model when demineralized bone matrix was used in comparison to Osteocel Plus. Furthermore, the postimplantation cellular viability and osteogenic and osteoinductive capacity of cellular-based allografts need to be definitively established, especially given that a recent study by Lina and colleagues demonstrated a paucity of bone marrow cell survival in an immunocompetent mouse posterolateral spinal fusion model. CONCLUSIONS This data indicates that the substantially increased cost of these cellular allografts may not be justified. LEVEL OF EVIDENCE Level V.
Collapse
Affiliation(s)
| | | | - I David Kaye
- Department of Orthopedic Surgery, Thomas Jefferson University, Philadelphia, PA
| | | | - Scott Wagner
- Walter Reed National Military Medical Center, Bethesda, MD
| | | | | |
Collapse
|
3
|
Kim IK, Park JH, Kim B, Hwang KC, Song BW. Recent advances in stem cell therapy for neurodegenerative disease: Three dimensional tracing and its emerging use. World J Stem Cells 2021; 13:1215-1230. [PMID: 34630859 PMCID: PMC8474717 DOI: 10.4252/wjsc.v13.i9.1215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/20/2021] [Accepted: 08/30/2021] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative disease is a brain disorder caused by the loss of structure and function of neurons that lowers the quality of human life. Apart from the limited potential for endogenous regeneration, stem cell-based therapies hold considerable promise for maintaining homeostatic tissue regeneration and enhancing plasticity. Despite many studies, there remains insufficient evidence for stem cell tracing and its correlation with endogenous neural cells in brain tissue with three-dimensional structures. Recent advancements in tissue optical clearing techniques have been developed to overcome the existing shortcomings of cross-sectional tissue analysis in thick and complex tissues. This review focuses on recent progress of stem cell treatments to improve neurodegenerative disease, and introduces tissue optical clearing techniques that can implement a three-dimensional image as a proof of concept. This review provides a more comprehensive understanding of stem cell tracing that will play an important role in evaluating therapeutic efficacy and cellular interrelationship for regeneration in neurodegenerative diseases.
Collapse
Affiliation(s)
- Il-Kwon Kim
- Institute for Bio-Medical Convergence, Catholic Kwandong University International St. Mary’s Hospital, Incheon Metropolitan City 22711, South Korea
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangwon-do 25601, South Korea
| | - Jun-Hee Park
- Institute for Bio-Medical Convergence, Catholic Kwandong University International St. Mary’s Hospital, Incheon Metropolitan City 22711, South Korea
| | - Bomi Kim
- Institute for Bio-Medical Convergence, Catholic Kwandong University International St. Mary’s Hospital, Incheon Metropolitan City 22711, South Korea
| | - Ki-Chul Hwang
- Institute for Bio-Medical Convergence, Catholic Kwandong University International St. Mary’s Hospital, Incheon Metropolitan City 22711, South Korea
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangwon-do 25601, South Korea
| | - Byeong-Wook Song
- Institute for Bio-Medical Convergence, Catholic Kwandong University International St. Mary’s Hospital, Incheon Metropolitan City 22711, South Korea
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangwon-do 25601, South Korea.
| |
Collapse
|
4
|
Sameni HR, Seiri M, Safari M, Tabrizi Amjad MH, Khanmohammadi N, Zarbakhsh S. Bone Marrow Stromal Cells with the Granulocyte Colony-Stimulating Factor in the Management of Chemotherapy-Induced Ovarian Failure in a Rat Model. IRANIAN JOURNAL OF MEDICAL SCIENCES 2019; 44:135-145. [PMID: 30936600 PMCID: PMC6423433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Bone marrow stromal cells (BMSCs), as a type of mesenchymal stem cells, and the granulocyte colony-stimulating factor (G-CSF), as a type of growth factor, may recover damaged ovaries. The aim of the present study was to investigate the effects of the coadministration of BMSCs and the G-CSF on damaged ovaries after creating a chemotherapy model with cyclophosphamide (CTX) in rats. METHODS The present study was performed in Semnan, Iran, in the late 2016 and the early 2017. BMSCs were cultured and were confirmed using the CD markers of stromal cells. Forty female Wistar rats were randomly divided into 4 groups. The rats were injected intraperitoneally with CTX for 14 days to induce chemotherapy and ovarian destruction. Then, the BMSCs were injected into bilateral ovaries and the G-CSF was injected intraperitoneally, individually and together. Four weeks later, the number of ovarian follicles using H&E staining, the number of apoptotic granulosa cells using the TUNEL assay, the number of produced oocytes from the ovaries, and the levels of serum E2 and FSH using an ELISA reader were assessed. Statistical analysis was done using one-way ANOVA with SPSS, version 16.0. RESULTS The results showed that the effects of the coadministration of 2×106 BMSCs and 70 µg/kg of the G-CSF were significantly more favorable than those in the control group (P<0.001), the BMSC group (P=0.016), and the G-CSF group (P<0.001) on the recovery of damaged ovaries. CONCLUSION The efficacy of the coadministration of BMSCs and the G-CSF in the recovery of ovaries damaged by chemotherapy was high by comparison with the administration of either of them separately.
Collapse
|
5
|
Lina IA, Ishida W, Liauw JA, Lo SFL, Elder BD, Perdomo-Pantoja A, Theodros D, Witham TF, Holmes C. A mouse model for the study of transplanted bone marrow mesenchymal stem cell survival and proliferation in lumbar spinal fusion. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2018; 28:710-718. [PMID: 30511246 DOI: 10.1007/s00586-018-5839-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 10/21/2018] [Accepted: 11/25/2018] [Indexed: 12/18/2022]
Abstract
PURPOSE Bone marrow aspirate has been successfully used alongside a variety of grafting materials to clinically augment spinal fusion. However, little is known about the fate of these transplanted cells. Herein, we develop a novel murine model for the in vivo monitoring of implanted bone marrow cells (BMCs) following spinal fusion. METHODS A clinical-grade scaffold was implanted into immune-intact mice undergoing spinal fusion with or without freshly isolated BMCs from either transgenic mice which constitutively express the firefly luciferase gene or syngeneic controls. The in vivo survival, distribution and proliferation of these luciferase-expressing cells was monitored via bioluminescence imaging over a period of 8 weeks and confirmed via immunohistochemistry. MicroCT imaging was performed 8 weeks to assess fusion. RESULTS Bioluminescence imaging indicated transplanted cell survival and proliferation over the first 2 weeks, followed by a decrease in cell numbers, with transplanted cell survival still evident at the end of the study. New bone formation and increased fusion mass volume were observed in mice implanted with cell-seeded scaffolds. CONCLUSIONS By enabling the tracking of transplanted bone marrow-derived cells during spinal fusion in vivo, this mouse model will be integral to developing a deeper understanding of the biological processes underlying spinal fusion in future studies. These slides can be retrieved under Electronic Supplementary Material.
Collapse
Affiliation(s)
- Ioan A Lina
- Department of Otolaryngology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wataru Ishida
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, 1550 Orleans St, Rm 2M-51, Baltimore, MD, 21287, USA
| | - Jason A Liauw
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, 1550 Orleans St, Rm 2M-51, Baltimore, MD, 21287, USA
| | - Sheng-Fu L Lo
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, 1550 Orleans St, Rm 2M-51, Baltimore, MD, 21287, USA
| | - Benjamin D Elder
- Department of Neurological Surgery, Mayo Clinic School of Medicine, Rochester, MN, USA
| | - Alexander Perdomo-Pantoja
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, 1550 Orleans St, Rm 2M-51, Baltimore, MD, 21287, USA
| | - Debebe Theodros
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, 1550 Orleans St, Rm 2M-51, Baltimore, MD, 21287, USA
| | - Timothy F Witham
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, 1550 Orleans St, Rm 2M-51, Baltimore, MD, 21287, USA
| | - Christina Holmes
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, 1550 Orleans St, Rm 2M-51, Baltimore, MD, 21287, USA.
| |
Collapse
|
6
|
Peng W, Zhang J, Zhang H, Liu G, Dong W, Zhang F. Effects of lentiviral transfection containing bFGF gene on the biological characteristics of rabbit BMSCs. J Cell Biochem 2018; 119:8389-8397. [DOI: 10.1002/jcb.27034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 04/06/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Wuxun Peng
- Department of Emergency OrthopedicsAffiliated Hospital of Guizhou Medical UniversityChina
| | - Jian Zhang
- Department of Emergency OrthopedicsAffiliated Hospital of Guizhou Medical UniversityChina
| | - Huai Zhang
- Department of Emergency OrthopedicsAffiliated Hospital of Guizhou Medical UniversityChina
| | - Gang Liu
- Department of Emergency OrthopedicsAffiliated Hospital of Guizhou Medical UniversityChina
| | - Wentao Dong
- Department of Emergency OrthopedicsAffiliated Hospital of Guizhou Medical UniversityChina
| | - Fei Zhang
- Department of Emergency OrthopedicsAffiliated Hospital of Guizhou Medical UniversityChina
| |
Collapse
|
7
|
Liu M, Wu Y, Liu Y, Chen Z, He S, Zhang H, Wu L, Tu F, Zhao Y, Liu C, Chen X. Basic Fibroblast Growth Factor Protects Astrocytes Against Ischemia/Reperfusion Injury by Upregulating the Caveolin-1/VEGF Signaling Pathway. J Mol Neurosci 2018; 64:211-223. [PMID: 29299743 DOI: 10.1007/s12031-017-1023-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 12/20/2017] [Indexed: 10/18/2022]
Abstract
A previous in vivo study demonstrated that intracerebroventricular injection of basic fibroblast growth factor (bFGF) in middle cerebral artery occlusion rats increased the expression of caveolin-1 (cav-1) and vascular endothelial growth factor (VEGF) in cerebral ischemia penumbra. Because astrocytes are the largest population in the brain, the aim of this in vitro study was to investigate the influence of bFGF on cav-1 and VEGF expression in rat astrocytes following oxygen glucose deprivation/reoxygenation (OGD/R). For this, an ischemic model in vitro of oxygen glucose deprivation lasting for 6 h, followed by 24 h of reoxygenation was used. Primary astrocytes from newborn rats were pre-treated with siRNA targeting bFGF before OGD/R. Cell viability was measured by a CCK-8 assay. The protein and mRNA expressions of bFGF, cav-1, and VEGF were evaluated by western blotting, immunofluorescence staining, and reverse transcription-quantitative polymerase chain reaction. The results showed that OGD/R reduced cell viability, which was decreased further following bFGF knockdown; however, restoring bFGF improved cell survival. A cav-1 inhibitor abrogated the effect of bFGF on cell viability. The expression levels of bFGF mRNA, bFGF protein, cav-1 mRNA, cav-1 protein, and VEGF protein were higher in OGD/R astrocytes. bFGF knockdown markedly decreased the expression levels of cav-1 mRNA, cav-1 protein, and VEGF protein, which were effectively reversed by exogenous bFGF treatment. Moreover, exogenous bFGF treatment significantly increased the expression levels of cav-1 mRNA, cav-1 protein, and VEGF protein in OGD/R astrocytes; however, a cav-1 inhibitor abolished the effect of bFGF on VEGF protein expression. These results suggested that bFGF may protect astrocytes against ischemia/reperfusion injury by upregulating caveolin-1/VEGF signaling pathway.
Collapse
Affiliation(s)
- Meixia Liu
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuanxi Road, Wenzhou, Zhejiang, 325027, China
| | - Yudan Wu
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuanxi Road, Wenzhou, Zhejiang, 325027, China
| | - Yidian Liu
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuanxi Road, Wenzhou, Zhejiang, 325027, China
| | - Zhenzhen Chen
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuanxi Road, Wenzhou, Zhejiang, 325027, China
| | - Shujuan He
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuanxi Road, Wenzhou, Zhejiang, 325027, China
| | - Huimei Zhang
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuanxi Road, Wenzhou, Zhejiang, 325027, China
| | - Liang Wu
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuanxi Road, Wenzhou, Zhejiang, 325027, China
| | - Fengxia Tu
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuanxi Road, Wenzhou, Zhejiang, 325027, China
| | - Yun Zhao
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuanxi Road, Wenzhou, Zhejiang, 325027, China
| | - Chan Liu
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuanxi Road, Wenzhou, Zhejiang, 325027, China
| | - Xiang Chen
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuanxi Road, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
8
|
Khanmohammadi N, Sameni HR, Mohammadi M, Pakdel A, Mirmohammadkhani M, Parsaie H, Zarbakhsh S. Effect of Transplantation of Bone Marrow Stromal Cell- Conditioned Medium on Ovarian Function, Morphology and Cell Death in Cyclophosphamide-Treated Rats. CELL JOURNAL 2017; 20:10-18. [PMID: 29308613 PMCID: PMC5759671 DOI: 10.22074/cellj.2018.4919] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/12/2017] [Indexed: 12/13/2022]
Abstract
Objective Although stem cell transplantation has beneficial effects on tissue regeneration, but there are still problems
such as high cost and safety issues. Since stem cell therapy is largely dependent on paracrine activity, in this study,
utilization of transplantation of bone marrow stromal cells (BMSCs)-secretome instead of the cells, into damaged
ovaries was evaluated to overcome the limitations of stem cell transplantation.
Materials and Methods In this experimental study, BMSCs were cultured and 25-fold concentrated conditioned
medium (CM) from BMSCs was prepared. Female rats were injected intraperitoneally with cyclophosphamide (CTX)
for 14 days. Then, BMSCs and CM were individually transplanted into bilateral ovaries, and the ovaries were excised
after four weeks of treatment. The follicle count was performed using hematoxylin and eosin (H&E) staining and the
apoptotic cells were counted using TUNEL assay. Ovarian function was evaluated by monitoring the ability of ovulation
and the levels of serum estradiol (E2) and follicle-stimulating hormone (FSH).
Results Evaluation of the ovarian function and structure showed that results of secretome transplantation were almost
similar to those of BMSCs transplantation and there was no significant differences between them.
Conclusion BMSCs-secretome is likely responsible for the therapeutic paracrine effect of BMSCs. Stem cell-
secretome is expected to overcome the limitations of stem cell transplantation and become the basis of a novel therapy
for ovarian damage.
Collapse
Affiliation(s)
- Nasrin Khanmohammadi
- Research Center of Nervous System Stem Cells, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Hamid Reza Sameni
- Research Center of Nervous System Stem Cells, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Moslem Mohammadi
- Molecular and Cell Biology Research Center, Department of Physiology and Pharmacology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abbas Pakdel
- Research Center of Nervous System Stem Cells, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Majid Mirmohammadkhani
- Research Center for Social Determinants of Health Community Medicine Department, Semnan University of Medical Sciences, Semnan, Iran
| | - Houman Parsaie
- Research Center of Nervous System Stem Cells, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Sam Zarbakhsh
- Research Center of Nervous System Stem Cells, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
9
|
Wang X, Gao J, Wang Y, Zhao B, Zhang Y, Han F, Zheng Z, Hu D. Curcumin pretreatment prevents hydrogen peroxide-induced oxidative stress through enhanced mitochondrial function and deactivation of Akt/Erk signaling pathways in rat bone marrow mesenchymal stem cells. Mol Cell Biochem 2017; 443:37-45. [DOI: 10.1007/s11010-017-3208-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/14/2017] [Indexed: 12/13/2022]
|
10
|
Tellez-Gabriel M, Brown HK, Young R, Heymann MF, Heymann D. The Challenges of Detecting Circulating Tumor Cells in Sarcoma. Front Oncol 2016; 6:202. [PMID: 27656422 PMCID: PMC5013264 DOI: 10.3389/fonc.2016.00202] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/26/2016] [Indexed: 12/11/2022] Open
Abstract
Sarcomas are a heterogeneous group of malignant neoplasms of mesenchymal origin, many of which have a propensity to develop distant metastases. Cancer cells that have escaped from the primary tumor are able to invade into surrounding tissues, to intravasate into the bloodstream to become circulating tumor cells (CTCs), and are responsible for the generation of distant metastases. Due to the rarity of these tumors and the absence of specific markers expressed by sarcoma tumor cells, the characterization of sarcoma CTCs has to date been relatively limited. Current techniques for isolating sarcoma CTCs are based on size criteria, the identification of circulating cells that express either common mesenchymal markers, sarcoma-specific markers, such as CD99, CD81, or PAX3, and chromosomal translocations found in certain sarcoma subtypes, such as EWS-FLI1 in Ewing’s sarcoma, detection of osteoblast-related genes, or measurement of the activity of specific metabolic enzymes. Further studies are needed to improve the isolation and characterization of sarcoma CTCs, to demonstrate their clinical significance as predictive and/or prognostic biomarkers, and to utilize CTCs as a tool for investigating the metastatic process in sarcoma and to identify novel therapeutic targets. The present review provides a short overview of the most recent literature on CTCs in sarcoma.
Collapse
Affiliation(s)
- Marta Tellez-Gabriel
- UMR 957, Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours, Equipe Ligue 2012, Faculty of Medicine, INSERM, University of Nantes, Nantes, France; Laboratotio Hematologia Oncologica y de Transplantes, Institut Investigacions Biomèdiques (IBB) Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Hannah K Brown
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK; European Associated Laboratory, INSERM-University of Sheffield, Sarcoma Research Unit, Medical School, Sheffield, UK
| | - Robin Young
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK; European Associated Laboratory, INSERM-University of Sheffield, Sarcoma Research Unit, Medical School, Sheffield, UK
| | - Marie-Françoise Heymann
- UMR 957, Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours, Equipe Ligue 2012, Faculty of Medicine, INSERM, University of Nantes, Nantes, France; Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK; European Associated Laboratory, INSERM-University of Sheffield, Sarcoma Research Unit, Medical School, Sheffield, UK; Nantes University Hospital, Nantes, France
| | - Dominique Heymann
- UMR 957, Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours, Equipe Ligue 2012, Faculty of Medicine, INSERM, University of Nantes, Nantes, France; Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK; European Associated Laboratory, INSERM-University of Sheffield, Sarcoma Research Unit, Medical School, Sheffield, UK; Nantes University Hospital, Nantes, France
| |
Collapse
|