1
|
Badi YE, Salcman B, Taylor A, Rana B, Kermani NZ, Riley JH, Worsley S, Mumby S, Dahlen SE, Cousins D, Bulfone-Paus S, Affleck K, Chung KF, Bates S, Adcock IM. IL1RAP expression and the enrichment of IL-33 activation signatures in severe neutrophilic asthma. Allergy 2023; 78:156-167. [PMID: 35986608 PMCID: PMC10086999 DOI: 10.1111/all.15487] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 07/06/2022] [Accepted: 07/14/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND Interleukin (IL)-33 is an upstream regulator of type 2 (T2) eosinophilic inflammation and has been proposed as a key driver of some asthma phenotypes. OBJECTIVE To derive gene signatures from in vitro studies of IL-33-stimulated cells and use these to determine IL-33-associated enrichment patterns in asthma. METHODS Signatures downstream of IL-33 stimulation were derived from our in vitro study of human mast cells and from public datasets of in vitro stimulated human basophils, type 2 innate lymphoid cells (ILC2), regulatory T cells (Treg) and endothelial cells. Gene Set Variation Analysis (GSVA) was used to probe U-BIOPRED and ADEPT sputum transcriptomics to determine enrichment scores (ES) for each signature according to asthma severity, sputum granulocyte status and previously defined molecular phenotypes. RESULTS IL-33-activated gene signatures were cell-specific with little gene overlap. Individual signatures, however, were associated with similar signalling pathways (TNF, NF-κB, IL-17 and JAK/STAT signalling) and immune cell differentiation pathways (Th17, Th1 and Th2 differentiation). ES for IL-33-activated gene signatures were significantly enriched in asthmatic sputum, particularly in patients with neutrophilic and mixed granulocytic phenotypes. IL-33 mRNA expression was not elevated in asthma whereas the expression of mRNA for IL1RL1, the IL-33 receptor, was up-regulated in the sputum of severe eosinophilic asthma. The mRNA expression for IL1RAP, the IL1RL1 co-receptor, was greatest in severe neutrophilic and mixed granulocytic asthma. CONCLUSIONS IL-33-activated gene signatures are elevated in neutrophilic and mixed granulocytic asthma corresponding with IL1RAP co-receptor expression. This suggests incorporating T2-low asthma in anti-IL-33 trials.
Collapse
Affiliation(s)
- Yusef Eamon Badi
- National Heart and Lung Institute, Imperial College London, London, UK.,Data Science Institute, Imperial College London, London, UK.,BenevolentAI, London, UK
| | - Barbora Salcman
- School of Biological Sciences, University of Manchester, Manchester, UK
| | - Adam Taylor
- GSK Respiratory Therapeutic Area Unit, Stevenage, UK
| | | | | | - John H Riley
- School of Biological Sciences, University of Manchester, Manchester, UK
| | - Sally Worsley
- GSK Value Evidence and Outcomes, GSK House, Brentford, UK
| | - Sharon Mumby
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Sven-Eric Dahlen
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - David Cousins
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | | | | | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Stewart Bates
- School of Biological Sciences, University of Manchester, Manchester, UK
| | - Ian M Adcock
- National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
2
|
Karnati S, Seimetz M, Kleefeldt F, Sonawane A, Madhusudhan T, Bachhuka A, Kosanovic D, Weissmann N, Krüger K, Ergün S. Chronic Obstructive Pulmonary Disease and the Cardiovascular System: Vascular Repair and Regeneration as a Therapeutic Target. Front Cardiovasc Med 2021; 8:649512. [PMID: 33912600 PMCID: PMC8072123 DOI: 10.3389/fcvm.2021.649512] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity and mortality worldwide and encompasses chronic bronchitis and emphysema. It has been shown that vascular wall remodeling and pulmonary hypertension (PH) can occur not only in patients with COPD but also in smokers with normal lung function, suggesting a causal role for vascular alterations in the development of emphysema. Mechanistically, abnormalities in the vasculature, such as inflammation, endothelial dysfunction, imbalances in cellular apoptosis/proliferation, and increased oxidative/nitrosative stress promote development of PH, cor pulmonale, and most probably pulmonary emphysema. Hypoxemia in the pulmonary chamber modulates the activation of key transcription factors and signaling cascades, which propagates inflammation and infiltration of neutrophils, resulting in vascular remodeling. Endothelial progenitor cells have angiogenesis capabilities, resulting in transdifferentiation of the smooth muscle cells via aberrant activation of several cytokines, growth factors, and chemokines. The vascular endothelium influences the balance between vaso-constriction and -dilation in the heart. Targeting key players affecting the vasculature might help in the development of new treatment strategies for both PH and COPD. The present review aims to summarize current knowledge about vascular alterations and production of reactive oxygen species in COPD. The present review emphasizes on the importance of the vasculature for the usually parenchyma-focused view of the pathobiology of COPD.
Collapse
Affiliation(s)
- Srikanth Karnati
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Michael Seimetz
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Florian Kleefeldt
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Avinash Sonawane
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Thati Madhusudhan
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Akash Bachhuka
- UniSA Science, Technology, Engineering and Mathematics, University of South Australia, Mawson Lakes Campus, Adelaide, SA, Australia
| | - Djuro Kosanovic
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany.,Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Norbert Weissmann
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, University of Giessen, Giessen, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| |
Collapse
|
3
|
Systemic Inflammation, Vascular Function, and Endothelial Progenitor Cells after an Exercise Training Intervention in COPD. Am J Med 2021; 134:e171-e180. [PMID: 32781050 DOI: 10.1016/j.amjmed.2020.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 01/09/2023]
Abstract
BACKGROUND Exercise training is a cornerstone of the treatment of chronic obstructive pulmonary disease (COPD) in all disease stages. Data about the training effects with supplemental oxygen in nonhypoxemic patients remains inconclusive. In this study we set out to investigate the training and oxygen effects on inflammatory markers, vascular function, and endothelial progenitor cells in this population of increased cardiovascular risk. METHODS In this prospective, randomized, double-blind, crossover study, 29 patients with nonhypoxemic COPD performed combined endurance and strength training 3 times a week while breathing medical air or supplemental oxygen for the first 6-week period, and were then reallocated to the opposite gas for the following 6 weeks. Exercise capacity, inflammatory biomarkers, endothelial function (peripheral arterial tone analysis), and endothelial progenitor cells were assessed. Data were also analyzed for a subgroup with endothelial dysfunction (reactive hyperemia index <1.67). RESULTS Following 12 weeks of exercise training, patients demonstrated a significant improvement of peak work rate and an associated decrease of blood fibrinogen and leptin. Eosinophils were found significantly reduced after exercise training in patients with endothelial dysfunction. In this subgroup, peripheral arterial tone analysis revealed a significant improvement of reactive hyperemia index. Generally, late endothelial progenitor cells were found significantly reduced after the exercise training intervention. Supplemental oxygen during training positively influenced the effect on exercise capacity without impact on inflammation and endothelial function. CONCLUSIONS This is the first randomized controlled trial in patients with COPD to show beneficial effects of exercise training not only on exercise capacity, but also on systemic/eosinophilic inflammation and endothelial dysfunction.
Collapse
|
4
|
He ZH, Chen Y, Chen P, Xie LH, Liang GB, Zhang HL, Peng HH. Cigarette smoke extract affects methylation status and attenuates Sca-1 expression of mouse endothelial progenitor cell in vitro. Tob Induc Dis 2021; 19:08. [PMID: 33542680 PMCID: PMC7842580 DOI: 10.18332/tid/131625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 11/22/2020] [Accepted: 12/12/2020] [Indexed: 01/28/2023] Open
Abstract
INTRODUCTION Endothelial dysfunction appears in many smoking-related diseases, it is also an important pathophysiological feature. Endothelial progenitor cells (EPCs) are precursors of endothelial cells and have a crucial effect on the repair and maintenance of endothelial integrity. Sca-1 is not only common in bone marrow-derived hematopoietic stem cells (HSCs), but it is also expressed in nonhematopoietic organs by tissue-resident stem and progenitor cells. The aim of this study is to investigate the impact of cigarette smoke extract (CSE) on the function of bone marrow-derived EPCs and the expression level of Sca-1 in EPCs, and also whether the methylation of Sca-1 is involved in EPC dysfunction. METHODS We measured EPC capacities including adhesion, secretion and proliferation, the concentration of endothelial nitric oxide synthase (eNOS) and apoptosis-inducing factor (AIF) in cell culture supernatant, and also Sca-1 expression and promoter methylation in EPCs induced by CSE. Decitabine (Dec) was applied to test whether it could alter the impact caused by CSE. RESULTS The adhesion, proliferation and secretion ability of EPCs can be induced to be decreased by CSE in vitro, accompanied by decreased concentrations of AIF and eNOS in cell culture supernatant and decreased Sca-1 expression in EPCs. In addition, Dec could partly attenuate the impact described above. There were no significant differences in the quantitative analysis of Sca-1 promoter methylation among different groups. CONCLUSIONS The decreased Sca-1 expression was related to EPC dysfunction induced by CSE. EPC dysfunction resulting from CSE may be related to methylation mechanism, but not the methylation of Sca-1 promoter.
Collapse
Affiliation(s)
- Zhi-Hui He
- Department of Intensive Care Unit, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yan Chen
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ping Chen
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Li-Hua Xie
- Department of Respiratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Gui-Bin Liang
- Department of Intensive Care Unit, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hong-Liang Zhang
- Department of Emergency, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Huai-Huai Peng
- Department of Intensive Care Unit, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
5
|
Song H, Zhang J, He W, Wang P, Wang F. Activation of Cofilin Increases Intestinal Permeability via Depolymerization of F-Actin During Hypoxia in vitro. Front Physiol 2019; 10:1455. [PMID: 31849705 PMCID: PMC6901426 DOI: 10.3389/fphys.2019.01455] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 11/11/2019] [Indexed: 12/15/2022] Open
Abstract
Mechanical barriers play a key role in maintaining the normal function of the intestinal mucosa. The barrier function of intestinal epithelial cells is significantly damaged after severe hypoxia. However, the molecular mechanisms underlying this hypoxia-induced damage are still not completely clear. Through the establishment of an in vitro cultured intestinal epithelial cell monolayer model (Caco-2), we treated cells with hypoxia or drugs [jasplakinolide or latrunculin A (LatA)] to detect changes in the transepithelial electrical resistance (TER), the expression of the cellular tight junction (TJ) proteins zonula occludens-1 (ZO-1) and occludin, the distribution of F-actin, the ratio of F-actin/G-actin content, and the expression of the cofilin protein. The results showed that hypoxia and drug treatment could both induce a significant reduction in the TER of the intestinal epithelial cell monolayer and a significant reduction in the expression of the ZO-1 and occludin protein. Hypoxia and LatA could cause a significant reduction in the ratio of F-actin/G-actin content, whereas jasplakinolide caused a significant increase in the ratio of F-actin/G-actin content. After hypoxia, cofilin phosphorylation was decreased. We concluded that the barrier function of the intestinal epithelial cell monolayer was significantly damaged after severe burn injury. The molecular mechanism might be that hypoxia-induced F-actin depolymerization and an imbalance between F-actin and G-actin through cofilin activation resulted in reduced expression and a change in the distribution of cellular TJ proteins.
Collapse
Affiliation(s)
- Huapei Song
- Department of Burns, State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Army Medical University, Chongqing, China
| | - Jian Zhang
- Department of Burns, State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Army Medical University, Chongqing, China
| | - Wen He
- Department of Burns, State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Army Medical University, Chongqing, China
| | - Pei Wang
- Department of Burns, State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Army Medical University, Chongqing, China
| | - Fengjun Wang
- Department of Burns, State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
6
|
Tura-Ceide O, Pizarro S, García-Lucio J, Ramírez J, Molins L, Blanco I, Torralba Y, Sitges M, Bonjoch C, Peinado VI, Barberà JA. Progenitor cell mobilisation and recruitment in pulmonary arteries in chronic obstructive pulmonary disease. Respir Res 2019; 20:74. [PMID: 30992021 PMCID: PMC6469212 DOI: 10.1186/s12931-019-1024-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/12/2019] [Indexed: 12/22/2022] Open
Abstract
Background Pulmonary vascular abnormalities are a characteristic feature of chronic obstructive pulmonary disease (COPD). Cigarette smoking is the most important risk factor for COPD. It is believed that its constant exposure triggers endothelial cell damage and vascular remodelling. Under pathological conditions, progenitor cells (PCs) are mobilized from the bone marrow and recruited to sites of vascular injury. The aim of the study was to investigate whether in COPD the number of circulating PCs is related to the presence of bone marrow-derived cells in pulmonary arteries and the association of these phenomena to both systemic and pulmonary endothelial dysfunction. Methods Thirty-nine subjects, 25 with COPD, undergoing pulmonary resection because of a localized carcinoma, were included. The number of circulating PCs was assessed by flow cytometry using a triple combination of antibodies against CD45, CD133 and CD34. Infiltrating CD45+ cells were identified by immunohistochemistry in pulmonary arteries. Endothelial function in systemic and pulmonary arteries was measured by flow-mediated dilation and adenosine diphosphate-induced vasodilation, respectively. Results COPD patients had reduced numbers of circulating PCs (p < 0.05) and increased numbers of CD45+ cells (< 0.05) in the pulmonary arterial wall than non-COPD subjects, being both findings inversely correlated (r = − 0.35, p < 0.05). In pulmonary arteries, the number of CD45+ cells correlated with the severity of vascular remodelling (r = 0.4, p = 0.01) and the endothelium-dependent vasodilation (r = − 0.3, p = 0.05). Systemic endothelial function was unrelated to the number of circulating PCs and changes in pulmonary vessels. Conclusion In COPD, the decrease of circulating PCs is associated with their recruitment in pulmonary arteries, which in turn is associated with endothelial dysfunction and vessel remodelling, suggesting a mechanistic link between these phenomena. Our findings are consistent with the notion of an imbalance between endothelial damage and repair capacity in the pathogenesis of pulmonary vascular abnormalities in COPD. Electronic supplementary material The online version of this article (10.1186/s12931-019-1024-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Olga Tura-Ceide
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain. .,Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain. .,Servei de Pneumologia, Hospital Clínic, Villarroel, 170, 08036, Barcelona, Spain.
| | - Sandra Pizarro
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Jéssica García-Lucio
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Josep Ramírez
- Department of Pathology, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Laureano Molins
- Department of Thoracic Surgery, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.,Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Isabel Blanco
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.,Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Yolanda Torralba
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.,Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Marta Sitges
- Department of Cardiology, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.,Biomedical Research Networking Center on Cardiovascular Diseases (CIBERCV), Madrid, Spain
| | - Cristina Bonjoch
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Victor I Peinado
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.,Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Joan Albert Barberà
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain. .,Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain. .,Servei de Pneumologia, Hospital Clínic, Villarroel, 170, 08036, Barcelona, Spain.
| |
Collapse
|
7
|
Coppolino I, Ruggeri P, Nucera F, Cannavò MF, Adcock I, Girbino G, Caramori G. Role of Stem Cells in the Pathogenesis of Chronic Obstructive Pulmonary Disease and Pulmonary Emphysema. COPD 2018; 15:536-556. [DOI: 10.1080/15412555.2018.1536116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Irene Coppolino
- Dipartimento di Scienze Biomediche, Unità Operativa Complessa di Pneumologia, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Messina, Italy
| | - Paolo Ruggeri
- Dipartimento di Scienze Biomediche, Unità Operativa Complessa di Pneumologia, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Messina, Italy
| | - Francesco Nucera
- Dipartimento di Scienze Biomediche, Unità Operativa Complessa di Pneumologia, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Messina, Italy
| | - Mario Francesco Cannavò
- Dipartimento di Scienze Biomediche, Unità Operativa Complessa di Pneumologia, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Messina, Italy
| | - Ian Adcock
- Airways Disease Section, National Heart and Lung Institute, Royal Brompton Hospital Biomedical Research Unit, Imperial College, London, UK
| | - Giuseppe Girbino
- Dipartimento di Scienze Biomediche, Unità Operativa Complessa di Pneumologia, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Messina, Italy
| | - Gaetano Caramori
- Dipartimento di Scienze Biomediche, Unità Operativa Complessa di Pneumologia, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Messina, Italy
| |
Collapse
|
8
|
Song H, Wang Y, Li L, Sui H, Wang P, Wang F. Cucurbitacin E Inhibits Proliferation and Migration of Intestinal Epithelial Cells via Activating Cofilin. Front Physiol 2018; 9:1090. [PMID: 30131725 PMCID: PMC6090878 DOI: 10.3389/fphys.2018.01090] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 07/23/2018] [Indexed: 01/07/2023] Open
Abstract
The proliferation and migration of intestinal epithelial cell is important to the barrier integrity of intestinal epithelium. Cucurbitacin E (CuE) is one of the tetracyclic triterpenoids extracted from the cucurbitaceae that has been shown to inhibit cancer cell growth, tumor angiogenesis and inflammatory response. Nevertheless, the role of Cucurbitacin E in regulating the proliferation and migration of intestinal epithelial cells remain unclear. In this study, the human intestinal epithelial cell line Caco-2 was treated with CuE and the effects of CuE on cell cycle, proliferation, migration and actin dynamics in Caco-2 cells were investigated successively. We found that CuE significantly inhibited the cell proliferation and migration, inducing the cell cycle arrest in G2/M phase and disrupting the actin dynamic balance in Caco-2 cells. Finally, we showed that CuE inhibited cofilin phosphorylation by suppressing the phosphorylation of both LIM kinase (LIMK)1 and LIMK2 in vitro, resulting in the activation of cofilin, which is closely associated with cell proliferation and migration. Therefore, our studies provided the first evidence that CuE inhibited the proliferation and migration of intestinal epithelial cells via activating cofilin, and CuE is a potential candidate in intestinal disease therapy.
Collapse
Affiliation(s)
- Huapei Song
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yu Wang
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Li Li
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hehuan Sui
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Pei Wang
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Fengjun Wang
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
9
|
The association between airway eosinophilic inflammation and IL-33 in stable non-atopic COPD. Respir Res 2018; 19:108. [PMID: 29859068 PMCID: PMC5984757 DOI: 10.1186/s12931-018-0807-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/07/2018] [Indexed: 12/22/2022] Open
Abstract
Background Interleukin(IL)-33 is an epithelial alarmin important for eosinophil maturation, activation and survival. The aim of this study was to examine the association between IL-33, its receptor expression and airway eosinophilic inflammation in non-atopic COPD. Methods IL-33 concentrations were measured in exhaled breath condensate (EBC) collected from healthy non-smokers, asthmatics and non-atopic COPD subjects using ELISA. Serum and sputum samples were collected from healthy non-smokers, healthy smokers and non-atopic COPD patients. Based on sputum eosinophil count, COPD subjects were divided into subgroups with airway eosinophilic inflammation (sputum eosinophils > 3%) or without (sputum eosinophils ≤3%). IL-33 and soluble form of IL-33 receptor (sST2) protein concentrations were measured in serum and sputum supernatants using ELISA. ST2 mRNA expression was measured in peripheral mononuclear cells and sputum cells by qPCR. Hemopoietic progenitor cells (HPC) expressing ST2 and intracellular IL-5 were enumerated in blood and induced sputum by means of flow cytometry. Results IL-33 levels in EBC were increased in COPD patients to a similar extent as in asthma and correlated with blood eosinophil count. Furthermore, serum and sputum IL-33 levels were higher in COPD subjects with sputum eosinophilia than in those with a sputum eosinophil count ≤3% (p < 0.001 for both). ST2 mRNA was overexpressed in sputum cells obtained from COPD patients with airway eosinophilic inflammation compared to those without sputum eosinophilia (p < 0.01). Similarly, ST2 + IL-5+ HPC numbers were increased in the sputum of COPD patients with airway eosinophilia (p < 0.001). Conclusions Our results indicate that IL-33 is involved in the development of eosinophilic airway inflammation in non-atopic COPD patients. Electronic supplementary material The online version of this article (10.1186/s12931-018-0807-y) contains supplementary material, which is available to authorized users.
Collapse
|
10
|
Barwinska D, Oueini H, Poirier C, Albrecht ME, Bogatcheva NV, Justice MJ, Saliba J, Schweitzer KS, Broxmeyer HE, March KL, Petrache I. AMD3100 ameliorates cigarette smoke-induced emphysema-like manifestations in mice. Am J Physiol Lung Cell Mol Physiol 2018; 315:L382-L386. [PMID: 29745251 DOI: 10.1152/ajplung.00185.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We have shown that cigarette smoke (CS)-induced pulmonary emphysema-like manifestations are preceded by marked suppression of the number and function of bone marrow hematopoietic progenitor cells (HPCs). To investigate whether a limited availability of HPCs may contribute to CS-induced lung injury, we used a Food and Drug Administration-approved antagonist of the interactions of stromal cell-derived factor 1 (SDF-1) with its chemokine receptor CXCR4 to promote intermittent HPC mobilization and tested its ability to limit emphysema-like injury following chronic CS. We administered AMD3100 (5mg/kg) to mice during a chronic CS exposure protocol of up to 24 wk. AMD3100 treatment did not affect either lung SDF-1 levels, which were reduced by CS, or lung inflammatory cell counts. However, AMD3100 markedly improved CS-induced bone marrow HPC suppression and significantly ameliorated emphysema-like end points, such as alveolar airspace size, lung volumes, and lung static compliance. These results suggest that antagonism of SDF-1 binding to CXCR4 is associated with protection of both bone marrow and lungs during chronic CS exposure, thus encouraging future studies of potential therapeutic benefit of AMD3100 in emphysema.
Collapse
Affiliation(s)
- Daria Barwinska
- Department of Cellular and Integrative Physiology, Indiana University , Indianapolis, Indiana.,Indiana Center for Vascular Biology and Medicine, Indiana University , Indianapolis, Indiana.,Vascular and Cardiac Center for Adult Stem Cell Therapy Signature Center, Indiana University, Purdue University , Indianapolis, Indiana.,Roudebush Veterans Affairs Medical Center, Indiana University , Indianapolis, Indiana.,Division of Nephrology, Department of Medicine, Indiana University , Indianapolis, Indiana
| | - Houssam Oueini
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Indiana University , Indianapolis, Indiana
| | - Christophe Poirier
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Indiana University , Indianapolis, Indiana
| | - Marjorie E Albrecht
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Indiana University , Indianapolis, Indiana
| | - Natalia V Bogatcheva
- Indiana Center for Vascular Biology and Medicine, Indiana University , Indianapolis, Indiana.,Vascular and Cardiac Center for Adult Stem Cell Therapy Signature Center, Indiana University, Purdue University , Indianapolis, Indiana.,Roudebush Veterans Affairs Medical Center, Indiana University , Indianapolis, Indiana.,Division of Cardiology, Department of Medicine, Indiana University , Indianapolis, Indiana
| | - Matthew J Justice
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Indiana University , Indianapolis, Indiana.,Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Jacob Saliba
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Indiana University , Indianapolis, Indiana
| | - Kelly S Schweitzer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Indiana University , Indianapolis, Indiana.,Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Hal E Broxmeyer
- Department of Microbiology and Immunology, Indiana University , Indianapolis, Indiana
| | - Keith L March
- Indiana Center for Vascular Biology and Medicine, Indiana University , Indianapolis, Indiana.,Vascular and Cardiac Center for Adult Stem Cell Therapy Signature Center, Indiana University, Purdue University , Indianapolis, Indiana.,Roudebush Veterans Affairs Medical Center, Indiana University , Indianapolis, Indiana.,Division of Cardiology, Department of Medicine, Indiana University , Indianapolis, Indiana.,Division of Cardiovascular Medicine and Center for Regenerative Medicine, University of Florida , Gainesville, Florida
| | - Irina Petrache
- Indiana Center for Vascular Biology and Medicine, Indiana University , Indianapolis, Indiana.,Vascular and Cardiac Center for Adult Stem Cell Therapy Signature Center, Indiana University, Purdue University , Indianapolis, Indiana.,Roudebush Veterans Affairs Medical Center, Indiana University , Indianapolis, Indiana.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Indiana University , Indianapolis, Indiana.,Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado.,Department of Medicine, University of Colorado , Denver, Colorado
| |
Collapse
|
11
|
García-Lucio J, Peinado VI, de Jover L, del Pozo R, Blanco I, Bonjoch C, Coll-Bonfill N, Paul T, Tura-Ceide O, Barberà JA. Imbalance between endothelial damage and repair capacity in chronic obstructive pulmonary disease. PLoS One 2018; 13:e0195724. [PMID: 29672621 PMCID: PMC5908268 DOI: 10.1371/journal.pone.0195724] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/28/2018] [Indexed: 02/07/2023] Open
Abstract
Background Circulating endothelial microparticles (EMPs) and progenitor cells (PCs) are biological markers of endothelial function and endogenous repair capacity. The study was aimed to investigate whether COPD patients have an imbalance between EMPs to PCs compared to controls and to evaluate the effect of cigarette smoke on these circulating markers. Methods Circulating EMPs and PCs were determined by flow cytometry in 27 nonsmokers, 20 smokers and 61 COPD patients with moderate to severe airflow obstruction. We compared total EMPs (CD31+CD42b-), apoptotic if they co-expressed Annexin-V+ or activated if they co-expressed CD62E+, circulating PCs (CD34+CD133+CD45+) and the EMPs/PCs ratio between groups. Results COPD patients presented increased levels of total and apoptotic circulating EMPs, and an increased EMPs/PCs ratio, compared with nonsmokers. Women had less circulating PCs than men through all groups and those with COPD showed lower levels of PCs than both control groups. In smokers, circulating EMPs and PCs did not differ from nonsmokers, being the EMPs/PCs ratio in an intermediate position between COPD and nonsmokers. Conclusions We conclude that COPD patients present an imbalance between endothelial damage and repair capacity that might explain the frequent concurrence of cardiovascular disorders. Factors related to the disease itself and gender, rather than cigarette smoking, may account for this imbalance.
Collapse
Affiliation(s)
- Jéssica García-Lucio
- Department of Pulmonary Medicine, Hospital Clínic-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona; Barcelona, Spain
| | - Victor I. Peinado
- Department of Pulmonary Medicine, Hospital Clínic-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona; Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES); Madrid, Spain
| | - Lluís de Jover
- Biostatistics Unit, Department of Public Health, School of Medicine, University of Barcelona; Barcelona, Spain
| | - Roberto del Pozo
- Department of Pulmonary Medicine, Hospital Clínic-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona; Barcelona, Spain
| | - Isabel Blanco
- Department of Pulmonary Medicine, Hospital Clínic-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona; Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES); Madrid, Spain
| | - Cristina Bonjoch
- Department of Pulmonary Medicine, Hospital Clínic-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona; Barcelona, Spain
| | - Núria Coll-Bonfill
- Department of Pulmonary Medicine, Hospital Clínic-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona; Barcelona, Spain
| | - Tanja Paul
- Department of Pulmonary Medicine, Hospital Clínic-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona; Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES); Madrid, Spain
| | - Olga Tura-Ceide
- Department of Pulmonary Medicine, Hospital Clínic-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona; Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES); Madrid, Spain
| | - Joan Albert Barberà
- Department of Pulmonary Medicine, Hospital Clínic-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona; Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES); Madrid, Spain
- * E-mail:
| |
Collapse
|
12
|
Salter B, Sehmi R. The role of bone marrow-derived endothelial progenitor cells and angiogenic responses in chronic obstructive pulmonary disease. J Thorac Dis 2017; 9:2168-2177. [PMID: 28840018 DOI: 10.21037/jtd.2017.07.56] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Increased vascularity of the bronchial sub-mucosa is a cardinal feature of chronic obstructive pulmonary disease (COPD) and is associated with disease severity. Capillary engorgement, leakage, and vasodilatation can directly increase airway wall thickness resulting in airway luminal narrowing and facilitate inflammatory cell trafficking, thereby contributing to irreversible airflow obstruction, a characteristic of COPD. Airway wall neovascularisation, seen as increases in both the size and number of bronchial blood vessels is a prominent feature of COPD that correlates with reticular basement membrane thickening and airway obstruction. Sub-epithelial vascularization may be an important remodelling event for airway narrowing and airflow obstruction in COPD. Post-natal angiogenesis is a complex process, whereby new blood vessels sprouting from extant microvasculature, can arise from the proliferation of resident mature vascular endothelial cells (ECs). In addition, this may arise from increased turnover and lung-homing of circulating endothelial progenitor cells (EPCs) from the bone marrow (BM). Following lung-homing, EPCs can differentiate locally within the tissue into ECs, further contributing to vascular repair, maintenance, and expansion under pathological conditions, governed by a locally elaborated milieu of growth factors (GFs). In this article, we will review evidence for the role of BM-derived EPCs in the development of angiogenesis in the lug and discuss how this may relate to the pathogenesis of COPD.
Collapse
Affiliation(s)
- Brittany Salter
- CardioRespiratory Research Group, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Roma Sehmi
- CardioRespiratory Research Group, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|