1
|
Zafar S, Sarfraz MS, Ali S, Saeed L, Mahmood MS, Khan AU, Anwar MN. Recapitulation of Peste des Petits Ruminants (PPR) Prevalence in Small Ruminant Populations of Pakistan from 2004 to 2023: A Systematic Review and Meta-Analysis. Vet Sci 2024; 11:280. [PMID: 38922027 PMCID: PMC11209094 DOI: 10.3390/vetsci11060280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/07/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
Peste des petits ruminants (PPR) is an extremely transmissible viral disease caused by the PPR virus that impacts domestic small ruminants, namely sheep and goats. This study aimed to employ a methodical approach to evaluate the regional occurrence of PPR in small ruminants in Pakistan and the contributing factors that influence its prevalence. A thorough search was performed in various databases to identify published research articles between January 2004 and August 2023 on PPR in small ruminants in Pakistan. Articles were chosen based on specific inclusion and exclusion criteria. A total of 25 articles were selected from 1275 studies gathered from different databases. The overall pooled prevalence in Pakistan was calculated to be 51% (95% CI: 42-60), with heterogeneity I2 = 100%, τ2 = 0.0495, and p = 0. The data were summarized based on the division into five regions: Punjab, Baluchistan, KPK, Sindh, and GB and AJK. Among these, the pooled prevalence of PPR in Sindh was 61% (95% CI: 46-75), I2 = 100%, τ2 = 0.0485, and p = 0, while in KPK, it was 44% (95% CI: 26-63), I2 = 99%, τ2 = 0.0506, and p < 0.01. However, the prevalence of PPR in Baluchistan and Punjab was almost the same. Raising awareness, proper surveillance, and application of appropriate quarantine measures interprovincially and across borders must be maintained to contain the disease.
Collapse
Affiliation(s)
- Saad Zafar
- Institute of Microbiology, Faculty of Veterinary Science, University of Agriculture, Faisalabad 38000, Punjab, Pakistan; (S.Z.); (M.S.S.); (S.A.); (M.S.M.)
| | - Muhammad Shehroz Sarfraz
- Institute of Microbiology, Faculty of Veterinary Science, University of Agriculture, Faisalabad 38000, Punjab, Pakistan; (S.Z.); (M.S.S.); (S.A.); (M.S.M.)
| | - Sultan Ali
- Institute of Microbiology, Faculty of Veterinary Science, University of Agriculture, Faisalabad 38000, Punjab, Pakistan; (S.Z.); (M.S.S.); (S.A.); (M.S.M.)
| | - Laiba Saeed
- Institute of Microbiology, Government College University, Faisalabad 38000, Punjab, Pakistan;
| | - Muhammad Shahid Mahmood
- Institute of Microbiology, Faculty of Veterinary Science, University of Agriculture, Faisalabad 38000, Punjab, Pakistan; (S.Z.); (M.S.S.); (S.A.); (M.S.M.)
| | - Aman Ullah Khan
- Department of Pathobiology, University of Veterinary and Animal Sciences (Jhang Campus), Lahore 54000, Punjab, Pakistan
| | - Muhammad Naveed Anwar
- Institute of Microbiology, Faculty of Veterinary Science, University of Agriculture, Faisalabad 38000, Punjab, Pakistan; (S.Z.); (M.S.S.); (S.A.); (M.S.M.)
| |
Collapse
|
2
|
Byadovskaya O, Shalina K, Prutnikov P, Shumilova I, Tenitilov N, Konstantinov A, Moroz N, Chvala I, Sprygin A. The Live Attenuated Vaccine Strain "ARRIAH" Completely Protects Goats from a Virulent Lineage IV Field Strain of Peste Des Petits Ruminants Virus. Vaccines (Basel) 2024; 12:110. [PMID: 38400094 PMCID: PMC10892433 DOI: 10.3390/vaccines12020110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/27/2023] [Accepted: 01/16/2024] [Indexed: 02/25/2024] Open
Abstract
Peste des petits ruminants (PPR) is a transboundary viral disease that affects small ruminants, such as goats and sheep, in Africa, the Middle East, and Asia, causing substantial damage to livelihoods and disrupting livestock trade. Although Russia is PPR virus (PPRV)-free, controlling PPRV in neighboring countries is the top national priority. Recent PPR outbreaks in Mongolia and other countries in the Middle East caused by a lineage IV virus represent a risk of transboundary emergence in neighboring countries, including China, Kazakhstan, and Russia. In the present study, we assessed the potency and safety of the ARRIAH live attenuated PPRV vaccine (lineage II) in Zaannen and Nubian goat breeds by challenging them with a virulent lineage IV Mongolia/2021 isolate. For comparison, two commercial vaccines of Nigeria75/1 strain were used. The ARRIAH-vaccinated animals showed an increase in body temperature of 1-1.5 °C above the physiological norm, similar to the animals vaccinated with Nigeria75/1 vaccines. In all vaccinated groups, the average rectal temperature never exceeded 39.4-39.7 °C throughout the infection period, and no clinical signs of the disease were observed, demonstrating vaccine efficacy and safety in the current experimental setting. However, the control group (mock vaccinated) challenged with Mongolia/2021 PPRV exhibited moderate-to-severe clinical signs. Overall, the findings of the present study demonstrate that the ARRIAH vaccine strain has a promising protective phenotype compared with Nigeria75/1 vaccines, suggesting its potential as an effective alternative for curbing and controlling PPR in affected countries. Although the ARRIAH vaccine against PPR is not currently endorsed by the World Organization for Animal Health due to its incomplete safety and potency profile, this study is the first step to provide experimentally validated data on the ARRIAH vaccine.
Collapse
|
3
|
Molecular Epidemiology and Phylogenetic Analysis of Peste des Petits Ruminants Virus Circulating in Sheep in Bangladesh. Transbound Emerg Dis 2023. [DOI: 10.1155/2023/1175689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Peste des petits ruminants (PPR) is a viral disease of small ruminants that is highly contagious, severe, reportable, and economically important. The present study was conducted to detect the PPR virus (PPRV) circulating in sheep in Bangladesh to determine its association with epidemiological risk factors and the degree of relationship between the F and H genes of the PPRV of sheep with those of other sheep and goat isolates. A cross-sectional study was conducted in five selected districts of Bangladesh to collect data on locations, ecological zones, breeds, age, sex, sources, time period, and farming systems using a structured questionnaire accompanied by face-to-face interviews. During sampling, 250 nasal swab samples were collected from live sheep with the typical clinical signs of PPR. Thereafter, a reverse-transcriptase polymerase chain reaction (RT-PCR) assay was employed to detect PPRV using the F and H genes. Risk factors were determined using bivariable and multivariable logistic regression analyses. Phylogenetic analysis of the detected PPRV was performed using MEGA software after sequencing both F and H genes. Using RT-PCR, 35.6% (89/250, 95% CI: 29.6%–41.6%) of the samples were found to be positive for PPRV. Locations, breeds, sources, and feeding systems were identified as potential molecular epidemiological risk factors for PPRV infection in a multivariate logistic regression model. Nucleotide sequencing and phylogenetic analysis showed that the PPRV strain was genetically related to the lineage IV virus isolates. For the F gene, the sequence divergence of our gene and other selected genes ranged from 0.01% to 0.018% within lineage IV, and the similarity ranged from 98.2% to 99.0%. In the case of the H gene, similar results were also observed in divergence, ranging from 0.017% to 0.083% among lineage IV and others, and similarity varied from 91.7% to 98.3%. To the best of our knowledge, this is the first study in Bangladesh conducted to determine the RT-PCR-based molecular epidemiology of PPRV in sheep. This study highlights the importance of establishing successful interventions for managing PPRV infections in small ruminants in Bangladesh.
Collapse
|
4
|
Saeed FA, M Gumaa M, A Abdelaziz S, Enan KA, Ahmed SK, Hussien MO. Epidemiology and molecular characterization of re-emerged virulent strains of Peste des Petits Ruminants virus among sheep in Kassala State, Eastern Sudan. Ir Vet J 2021; 74:23. [PMID: 34493342 PMCID: PMC8424802 DOI: 10.1186/s13620-021-00202-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/23/2021] [Indexed: 11/21/2022] Open
Abstract
Background Peste des Petits Ruminants (PPR) is a severe contagious viral disease, which mainly affects small ruminants. PPR is caused by a Morbillivirus that belongs to the family Paramyxoviridae. In this study 12 suspected PPR outbreaks among sheep and goats were investigated in four localities in Kassala State, Eastern Sudan, during 2015—2017. The causative agent was confirmed by a Sandwich Enzyme-Linked Immunosorbent Assay (sELISA), and a Reverse Transcription Polymerase Chain Reaction (RT-PCR) targeting a partial sequence of nucleocapsid protein gene (N- gene) and a partial sequence of fusion protein gene (F- gene). Sequencing and phylogenetic analysis were carried out on six N- gene based RT-PCR products selected from two outbreaks occurred on border and inner localities of Kassala State to determine the circulating lineages of PPRV strains. Identity percentages were determined between isolates in this study and previous Sudanese, and other (African and Asian) isolates which clustered along with them. Results Out of 30 samples, 22 (73.3%) were positive using sandwich ELISA. From 22 s ELISA positive samples, 17 (77.3%) were positive by Ngene based RT-PCR and only 7(43.8%) out of 16 positive samples by N gene based RT-PCR were positive using Fgene based RT-PCR. The sequencing and phylogenetic analysis confirmed involvement of the lineage IV of PPRV in outbreaks among small ruminants in Kassala State and high identity percentage between our isolates and previous Sudanese and other (African and Asian) isolates. Conclusions The present study demonstrates that genetic relationship between PPRV strains circulating in sheep in Kassala State, Eastern Sudan, and PPRV strains characterized as lineage IV in neighboring African countries such as Eretria,Ethiopia, Egypt, and other Asian countries
Collapse
Affiliation(s)
- Fatima A Saeed
- Kassala Veterinary Research Laboratory (KVRL), Central Veterinary Research Laboratories (CVRL), Animal Resources Research Corporation (ARRC), Al Amarat, P.O. Box 237P.O. Box 8067, Khartoum, Sudan.
| | - Mohammed M Gumaa
- Kassala Veterinary Research Laboratory (KVRL), Central Veterinary Research Laboratories (CVRL), Animal Resources Research Corporation (ARRC), Al Amarat, P.O. Box 237P.O. Box 8067, Khartoum, Sudan
| | - Sana A Abdelaziz
- Department of Microbiology, Faculty of Veterinary Medicine, University of Khartoum, P.O. Box 32, Khartoum North, Sudan
| | - Khalid A Enan
- Central Laboratory, Ministry of Higher Education and Scientific Research, P.O. Box 7099, Khartoum, Sudan
| | - Selma K Ahmed
- Central Veterinary Research Laboratory (CVRL), Animal Resources Research Corporation (ARRC), Al Amarat, P.O. Box 8067, Khartoum, Sudan
| | - Mohammed O Hussien
- Central Laboratory, Ministry of Higher Education and Scientific Research, P.O. Box 7099, Khartoum, Sudan
| |
Collapse
|
5
|
Gortázar C, Barroso P, Nova R, Cáceres G. The role of wildlife in the epidemiology and control of Foot-and-mouth-disease And Similar Transboundary (FAST) animal diseases: A review. Transbound Emerg Dis 2021; 69:2462-2473. [PMID: 34268873 DOI: 10.1111/tbed.14235] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/28/2021] [Accepted: 07/10/2021] [Indexed: 12/19/2022]
Abstract
Transboundary Animal Diseases (TADs) are notifiable diseases which are highly transmissible and have the potential for rapid spread regardless of national borders. Many TADs are shared between domestic animals and wildlife, with the potential to affect both livestock sector and wildlife conservation and eventually, public health in the case of zoonosis. The European Commission for the Control of Foot-and-Mouth Disease (EuFMD), a commission of the Food and Agriculture Organization of the United Nations (FAO), has grouped six TADs as 'Foot-and-mouth disease (FMD) And Similar Transboundary animal diseases' (FAST diseases). FAST diseases are ruminant infections caused by viruses, for which vaccination is a control option. The EuFMD hold-FAST strategy aims primarily at addressing the threat represented by FAST diseases for Europe. Prevention and control of FAST diseases might benefit from assessing the role of wildlife. We reviewed the role of wildlife as indicators, victims, bridge hosts or maintenance hosts for the six TADs included in the EuFMD hold-FAST strategy: FMD, peste des petits ruminants, lumpy skin disease, sheep and goatpox, Rift Valley fever and bovine ephemeral fever. We observed that wildlife can act as indicator species. In addition, they are occasionally victims of disease outbreaks, and they are often relevant for disease management as either bridge or maintenance hosts. Wildlife deserves to become a key component of future integrated surveillance and disease control strategies in an ever-changing world. It is advisable to increase our knowledge on wildlife roles in relevant TADs to improve our preparedness in case of an outbreak in previously disease-free regions, where wildlife may be significant for disease surveillance and control.
Collapse
Affiliation(s)
- Christian Gortázar
- Grupo Sanidad y Biotecnología (SaBio), Instituto de Investigación en Recursos Cinegéticos (IREC; CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Patricia Barroso
- Grupo Sanidad y Biotecnología (SaBio), Instituto de Investigación en Recursos Cinegéticos (IREC; CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Rodrigo Nova
- School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, Leicestershire, UK
| | - Germán Cáceres
- European Commission for the Control of Foot-and-Mouth Disease, Rome, Italy
| |
Collapse
|
6
|
Optimization and evaluation of a non-invasive tool for peste des petits ruminants surveillance and control. Sci Rep 2019; 9:4742. [PMID: 30894600 PMCID: PMC6426962 DOI: 10.1038/s41598-019-41232-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/05/2019] [Indexed: 11/08/2022] Open
Abstract
Peste des petits ruminants (PPR) is a highly contagious and devastating viral disease affecting mainly sheep and goats, but also a large number of wild species within the order Artiodactyla. A better understanding of PPR transmission dynamics in multi-host systems is necessary to efficiently control the disease, in particular where wildlife and livestock co-occur. Notably, the role of wildlife in PPR epidemiology is still not clearly understood. Non-invasive strategies to detect PPR infection without the need for animal handling could greatly facilitate research on PPR epidemiology and management of the disease in atypical hosts and in complex field situations. Here, we describe optimized methods for the direct detection of PPR virus genetic material and antigen in fecal samples. We use these methods to determine the detection window of PPR in fecal samples, and compare the sensitivity of these methods to standard invasive sampling and PPR diagnostic methods using field samples collected at a wildlife-livestock interface in Africa. Our results show that quantitative reverse transcription PCR (RT-QPCR) amplification of PPRV from fecal swabs has good sensitivity in comparison to ocular swabs. Animals infected by PPRV could be identified relatively early on and during the whole course of infection based on fecal samples using RT-QPCR. Partial gene sequences could also be retrieved in some cases, from both fecal and ocular samples, providing important information about virus origin and relatedness to other PPRV strains. Non-invasive strategies for PPRV surveillance could provide important data to fill major gaps in our knowledge of the multi-host PPR epidemiology.
Collapse
|
7
|
Parida S, Selvaraj M, Gubbins S, Pope R, Banyard A, Mahapatra M. Quantifying Levels of Peste Des Petits Ruminants (PPR) Virus in Excretions from Experimentally Infected Goats and Its Importance for Nascent PPR Eradication Programme. Viruses 2019; 11:E249. [PMID: 30871054 PMCID: PMC6466160 DOI: 10.3390/v11030249] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 02/28/2019] [Indexed: 02/02/2023] Open
Abstract
Following the successful eradication of rinderpest, the World Organization of Animal Health (OIE) and the Food and Agriculture Organisation (FAO) have set a goal to globally eradicate Peste des petits ruminants (PPR) by 2030. To support the eradication programme we have quantified the levels of PPR virus (PPRV) nucleic acid excreted in body fluids (blood, feces, saliva, nasal and eye swabs) of PPRV-infected goats to ascertain which days post-infection animals are potentially infectious, and hence direct quarantine activities. The data will also indicate optimal sample strategies to assess presence of PPR infection in the naturally infected herd. Peak PPRV nucleic acid detection in different bodily fluids was between 5 and 10 days post-infection. As such, this period must be considered the most infectious period for contact transmission, although high viral load was observed through RNA detection in nasal excretions from two days post-infection until at least two weeks post-infection. Percentage sample positivity was low both in eye swabs and saliva samples during the early stage of infection although RNA was detected as late as two weeks post-infection. From the individual animal data, PPRV was detected later post-infection in fecal material than in other body fluids and the detection was intermittent. The results from this study indicate that nasal swabs are the most appropriate to sample when considering molecular diagnosis of PPRV.
Collapse
Affiliation(s)
- Satya Parida
- The Pirbright Institute, Ash Road, Woking, Surrey GU24 0NF, UK.
| | - M Selvaraj
- The Pirbright Institute, Ash Road, Woking, Surrey GU24 0NF, UK.
| | - S Gubbins
- The Pirbright Institute, Ash Road, Woking, Surrey GU24 0NF, UK.
| | - R Pope
- The Pirbright Institute, Ash Road, Woking, Surrey GU24 0NF, UK.
| | - A Banyard
- Animal and Plant Health Agency, Weybridge, Surrey KT15 3NB, UK.
| | - Mana Mahapatra
- The Pirbright Institute, Ash Road, Woking, Surrey GU24 0NF, UK.
| |
Collapse
|
8
|
Elhaig MM, Selim A, Mandour AS, Schulz C, Hoffmann B. Prevalence and molecular characterization of peste des petits ruminants virus from Ismailia and Suez, Northeastern Egypt, 2014–2016. Small Rumin Res 2018. [DOI: 10.1016/j.smallrumres.2018.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
9
|
Clarke BD, Islam MR, Yusuf MA, Mahapatra M, Parida S. Molecular detection, isolation and characterization of Peste-des-petits ruminants virus from goat milk from outbreaks in Bangladesh and its implication for eradication strategy. Transbound Emerg Dis 2018; 65:1597-1604. [PMID: 29806118 PMCID: PMC6282541 DOI: 10.1111/tbed.12911] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 04/09/2018] [Accepted: 04/22/2018] [Indexed: 10/27/2022]
Abstract
Peste-des-petits ruminants (PPR) is a highly contagious transboundary viral disease of small ruminants, which is endemic in much of Africa, the Middle East and Asia. In South Asia, PPR is of significant concern to the Indian subcontinent including Bangladesh as more than 30% of the world's sheep and goats are farmed in this region, predominantly by small, poor and marginal farmers. PPR virus was detected and isolated from goat milk from field samples from PPR outbreaks (2012-2015) in Bangladesh and its full-length sequences obtained. Sequence analysis of the partial N gene of Bangladesh isolates showed 99.3%-100% identity whereas 98.2%-99.6% identity was observed when compared with neighbouring Indian viruses. Further analysis of the full-length genomes indicated that the Bangladesh isolates were 99.3%-99.99% identical among themselves and 98.3%-98.4% identical to neighbouring Indian viruses. These findings further support the transboundary transmission of PPR virus across the Indian and Bangladesh border. In additional, the establishment of a cross-border strategy between India and Bangladesh will be of paramount importance for the eradication of PPR in this region. Molecular detection and isolation of PPR virus from milk is of significant potential concern for spread of the disease to free areas as the major producers of goat milk globally are PPR endemic countries in particular India and Bangladesh, as well as Sudan. Milk is a noninvasive sample type and bulk goat milk sampling for the detection of PPRV would be of practical significance for regional surveillance of PPRV as progress is made towards the targeted 2030 eradication.
Collapse
Affiliation(s)
| | | | - Mohammad Abu Yusuf
- SAARC Regional Leading Diagnostic Laboratory for PPR, Bangladesh Livestock Research Institute, Savar, Bangladesh
| | | | | |
Collapse
|