1
|
Ghamari M, Emaneini M, Hemmati S, Jabalameli F, Beigverdi R. Phenotypic and genotypic evaluation of aminoglycoside resistance in Escherichia coli isolated from patients with blood stream infections in Tehran, Iran. IRANIAN JOURNAL OF MICROBIOLOGY 2024; 16:187-192. [PMID: 38854982 PMCID: PMC11162164 DOI: 10.18502/ijm.v16i2.15351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Background and Objectives Escherichia coli is a significant causative agent of bloodstream infections (BSIs). Aminoglycoside antibiotics play a crucial role in treating severe infections such as sepsis and pneumonia. However, resistance to these antibiotics often occurs due to the production of aminoglycoside-modifying enzymes (AMEs). This study was conducted to assess antimicrobial susceptibility patterns against various aminoglycosides and to determine the prevalence of common AME genes in E. coli strains isolated from BSIs. Materials and Methods Sixty-five E. coli isolates were obtained from blood samples in a referral hospital in Tehran, Iran. The susceptibility patterns of aminoglycosides were determined using disk diffusion method and AMEs genes were investigated using PCR assay. Results Resistance to aminoglycosides was observed in 64.6% (42/65) of the isolates. The most frequent resistance rate was found for kanamycin (44.6%) and gentamicin (38.5%), followed by tobramycin (29.2%) and amikacin (4.6%). The most frequent AME gene was aac(3)-IVa, which detected in 49.2% isolates, followed by aac(6)-Ib (40%), aac(3)-IIa (32.3%), and ant(2)-Ia (30.8%), respectively. Conclusion Athough the findings of this survey are based on specimens collected from a single hospital, our study shows that the high prevalence of aminoglycoside resistance is primarily attributed to the presence of the aac(3)-Iva, aac(6)-Ib and aac(3)-IIa genes. The low rate of resistance to amikacin makes this antibiotic a good candidate for treatment of BSIs due to E. coli.
Collapse
Affiliation(s)
- Mahsa Ghamari
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Emaneini
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Hemmati
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Jabalameli
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Beigverdi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Azimi L, Armin S, Samadi Kafil H, Abdollahi N, Ghazvini K, Hasanzadeh S, Shahraki Zahedani S, Rafiei Tabatabaei S, Fallah F. Evaluation of phenotypic and genotypic patterns of aminoglycoside resistance in the Gram-negative bacteria isolates collected from pediatric and general hospitals. Mol Cell Pediatr 2022; 9:2. [PMID: 35119565 PMCID: PMC8816979 DOI: 10.1186/s40348-022-00134-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/24/2022] [Indexed: 11/21/2022] Open
Abstract
The purpose of the current study was to evaluate the phenotypic and genotypic patterns of aminoglycoside resistance among the Gram-negative bacteria (GNB) isolates collected from pediatric and general hospitals in Iran. A total of 836 clinical isolates of GNB were collected from pediatric and general hospitals from January 2018 to the end of December 2019. The identification of bacterial isolates was performed by conventional biochemical tests. Susceptibility to aminoglycosides was evaluated by the disk diffusion method (DDM). The frequency of genes encoding aminoglycoside-modifying enzymes (AMEs) was screened by the PCR method via specific primers. Among all pediatric and general hospitals, the predominant GNB isolates were Acinetobacter spp. (n = 327) and Escherichia coli (n = 144). However, E. coli (n = 20/144; 13.9%) had the highest frequency in clinical samples collected from pediatrics. The DDM results showed that 64.3% of all GNB were resistant to all of the tested aminoglycoside agents. Acinetobacter spp. and Klebsiella pneumoniae with 93.6%, Pseudomonas aeruginosa with 93.4%, and Enterobacter spp. with 86.5% exhibited very high levels of resistance to gentamicin. Amikacin was the most effective antibiotic against E. coli isolates. In total, the results showed that the aac (6')-Ib gene with 59% had the highest frequency among genes encoding AMEs in GNB. The frequency of the surveyed aminoglycoside-modifying enzyme genes among all GNB was found as follows: aph (3')-VIe (48.7%), aadA15 (38.6%), aph (3')-Ia (31.3%), aph (3')-II (14.4%), and aph (6) (2.6%). The obtained data demonstrated that the phenotypic and genotypic aminoglycoside resistance among GNB was quite high and it is possible that the resistance genes may frequently spread among clinical isolates of GNB.
Collapse
Affiliation(s)
- Leila Azimi
- Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, P. Box, Tehran, 19857-17443, Iran
| | - Shahnaz Armin
- Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, P. Box, Tehran, 19857-17443, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nafiseh Abdollahi
- Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, P. Box, Tehran, 19857-17443, Iran
| | - Kiarash Ghazvini
- Department of Microbiology and Virology, Antimicrobial Resistance Research Center, Avicenna Research Institute, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sepide Hasanzadeh
- Department of Microbiology and Virology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shahram Shahraki Zahedani
- Department of Medical Microbiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Sedigheh Rafiei Tabatabaei
- Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, P. Box, Tehran, 19857-17443, Iran
| | - Fatemeh Fallah
- Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, P. Box, Tehran, 19857-17443, Iran.
| |
Collapse
|
3
|
Gastine S, Obiero C, Kane Z, Williams P, Readman J, Murunga S, Thitiri J, Ellis S, Correia E, Nyaoke B, Kipper K, van den Anker J, Sharland M, Berkley JA, Standing JF. Simultaneous pharmacokinetic/pharmacodynamic (PKPD) assessment of ampicillin and gentamicin in the treatment of neonatal sepsis. J Antimicrob Chemother 2022; 77:448-456. [PMID: 35107141 PMCID: PMC8809196 DOI: 10.1093/jac/dkab413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/06/2021] [Indexed: 12/12/2022] Open
Abstract
Objectives This study aimed to simultaneously investigate the pharmacokinetics of ampicillin and gentamicin, currently the WHO standard of care for treating neonatal sepsis. Methods Pharmacokinetic data were collected in 59 neonates receiving ampicillin and gentamicin for suspected or proven sepsis in the NeoFosfo trial (NCT03453177). A panel of 23 clinical Escherichia coli isolates from neonates with sepsis, resistant to either ampicillin, gentamicin or both, were tested for susceptibility using chequerboards. Pharmacokinetic/pharmacodynamic (PKPD) modelling and simulations were used to compare single-agent (EUCAST MIC) and combination (chequerboard MIC) target attainment with standard dosing regimens. Results A model was established that simultaneously estimated parameters of a one-compartment ampicillin model and a two-compartment gentamicin model. A common clearance for both drugs was used (6.89 L/h/70 kg) relating to glomerular filtration (CLGFR), with an additional clearance term added for ampicillin (5.3 L/h/70 kg). Covariate modelling included a priori allometric weight and post-menstrual age scaling of clearance. Further covariate relationships on renal clearance were postnatal age and serum creatinine. Simulation-based PKPD assessments suggest good Gram-positive (MIC ≤ 0.25 mg/L) cover. However, less than one-quarter of neonates were predicted to receive efficacious coverage against Enterobacterales (MIC ≤ 2 mg/L). The benefit of the ampicillin/gentamicin combination was limited, with only 2/23 E. coli clinical strains showing FIC index < 0.5 (synergy) and most in the range 0.5–1 (suggesting additivity). Simulations showed that feasible dosing strategies would be insufficient to cover resistant strains. Conclusions PKPD simulations showed ampicillin and gentamicin combination therapy was insufficient to cover Enterobacterales, suggesting the need for alternative empirical treatment options for neonatal sepsis.
Collapse
Affiliation(s)
- Silke Gastine
- Infection, Immunity and Inflammation, Great Ormond Street Institute of Child Health, University College London, London, UK
| | | | - Zoe Kane
- Infection, Immunity and Inflammation, Great Ormond Street Institute of Child Health, University College London, London, UK.,Quotient Sciences, Mere Way, Ruddington, Nottingham, UK
| | - Phoebe Williams
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya.,Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - John Readman
- Infection, Immunity and Inflammation, Great Ormond Street Institute of Child Health, University College London, London, UK
| | | | | | - Sally Ellis
- Global Antibiotic Research & Development Partnership (GARDP), Genève, Switzerland
| | - Erika Correia
- Global Antibiotic Research & Development Partnership (GARDP), Genève, Switzerland
| | - Borna Nyaoke
- Drugs for Neglected Diseases Initiative (DNDi), Nairobi, Kenya
| | - Karin Kipper
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - John van den Anker
- Department of Paediatric Pharmacology and Pharmacometrics, University Children's Hospital Basel, University of Basel, Switzerland.,Division of Clinical Pharmacology, Children's National Hospital, Washington, DC, USA
| | - Mike Sharland
- Paediatric Infectious Diseases Research Group, Institute for Infection and Immunity, St. George's, University of London, London, UK
| | - James A Berkley
- Quotient Sciences, Mere Way, Ruddington, Nottingham, UK.,Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,The Childhood Acute Illness & Nutrition (CHAIN) Network, Nairobi, Kenya
| | - Joseph F Standing
- Infection, Immunity and Inflammation, Great Ormond Street Institute of Child Health, University College London, London, UK.,Pharmacy Department, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
| |
Collapse
|
4
|
El-Badawy MF, Abou-Elazm FI, Omar MS, El-Naggar ME, Maghrabi IA. The First Saudi Study Investigating the Plasmid-borne Aminoglycoside and Sulfonamide Resistance among Acinetobacter baumannii Clinical Isolates Genotyped by RAPD-PCR: the Declaration of a Novel Allelic Variant Called aac(6')-SL and Three Novel Mutations in the sul1 Gene in the Acinetobacter Plasmid (s). Infect Drug Resist 2021; 14:4739-4756. [PMID: 34795490 PMCID: PMC8594745 DOI: 10.2147/idr.s324707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022] Open
Abstract
Background Acinetobacter baumannii (A. baumannii) is one of the most important nosocomial pathogens responsible for a wide range of infections. Aim This study aimed to investigate the existence of the plasmidic genes encoding for aminoglycoside modifying enzymes (AMEs), 16S rRNA methyltransferases (RMT), and the altered dihydropetroate synthase (DHPS) encoded by the sul1 gene among A. baumannii clinical isolates collected from Taif, Kingdom of Saudi Arabia (KSA). The mutations in aac(6ʹ)-Ib and sul1 genes were also investigated. Methods Forty A. baumannii clinical isolates were investigated for their susceptibility to ten antibiotics. The plasmid DNA was extracted and screened for nine genes encoding for aminoglycoside resistance in addition to the sul1 gene. The clonal relatedness was determined by random amplified polymorphic DNA (RAPD)-PCR. Mutation in aac(6ʹ)-Ib and the sul1 genes were detected by capillary electrophoresis sequencing (CES). Results All isolates were A. baumannii in which 42.5% of them exhibited a high level of aminoglycoside resistance (HLAR). The most prevalent AMEs and RMT encoding genes were aph(3ʹ)-VI, the two aac(6ʹ) gene variants [aac(6ʹ)-Ib and aac(6ʹ)-SL], ant(3ʹʹ)-I, and armA in which 90%, 87.5%, 85%, and 45% of isolates tested positive, respectively. The other investigated aminoglycoside resistant encoding genes, namely aac(3)-II, aac(6ʹ)-II, and rmtB, were not detected. Only 15% of isolates harbored the sul1 gene. RAPD-PCR classified the 40 isolates into three clusters in which cluster II was the main cluster. DNA sequencing revealed that 34.29% (12/35) of isolates tested positive for aac(6ʹ)-Ib were found to harbor a common missense mutation in position 102 indicating a novel allelic variant named aac(6ʹ)-SL. Also, DNA sequencing revealed three missense mutations in the sul1 gene. Conclusion This is the first Saudi study to investigate the plasmid borne aminoglycoside and sulfonamide resistance genes among A. baumannii clinical isolates. A novel allelic variant for aac(6ʹ)-Ib was detected in addition to novel mutations in the sul1 gene.
Collapse
Affiliation(s)
- Mohamed F El-Badawy
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Sadat City, Sadat City, Menoufia, 32897, Egypt
| | - Fatma I Abou-Elazm
- Department of Microbiology and Immunology, Faculty of Pharmacy, Misr University for Science and Technology, 6th of October City, Egypt
| | - Mohamed S Omar
- Department of Chemistry, Faculty of Science, Benha University, Benha, 13508, Egypt
| | - Mostafa E El-Naggar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Sadat City, Sadat City, Menoufia, 32897, Egypt
| | - Ibrahim A Maghrabi
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif, 21974, Saudi Arabia
| |
Collapse
|
5
|
Zakaria Z, Hassan L, Ahmad N, Husin SA, Ali RM, Sharif Z, Sohaimi NM, Garba B. Discerning the Antimicrobial Resistance, Virulence, and Phylogenetic Relatedness of Salmonella Isolates Across the Human, Poultry, and Food Materials Sources in Malaysia. Front Microbiol 2021; 12:652642. [PMID: 34531832 PMCID: PMC8438298 DOI: 10.3389/fmicb.2021.652642] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 08/09/2021] [Indexed: 12/15/2022] Open
Abstract
Salmonella enterica subspecies enterica serovar Enteritidis is one of the major foodborne zoonotic pathogens globally. It has significantly impacted human health and global trade. In this investigation, whole-genome sequencing was employed to determine the antimicrobial resistance (AMR) pattern of a collection of Salmonella Enteritidis isolated from humans, poultry, and food sources. The study also investigated the virulence genes profile of the isolates as well as the phylogenetic relationships among strains. Illumina NextSeq technology was used to sequence the genome of 82 Salmonella Enteritidis strains isolated over 3 years (2016-2018) in Peninsular Malaysia. The pattern of resistance showed that tetracycline had the highest frequency (37/82, 45.12%), and isolates from food samples showed the highest rate of 9/18 (50.00%), followed by human 17/35 (48.57%) and then poultry 11/29 (37.93%). The second drug with the highest resistance rate is ampicillin with 5/29 (17.24%) for poultry, 4/35 (11.43%) for human, and 0/18 (0.00%) for food isolates respectively. Similarly, a total of 19 antimicrobial resistance (AMR) genes corresponding to the nine drugs used in the disc diffusion assay were evaluated from the whole genome sequence data. The aminoglycoside resistance gene aac(6')-ly was detected in 79 of the 82 isolates (96.34%). While the phylogenetic analysis revealed distinct lineages isolated, the three sources indicating possible cross-contamination. In conclusion, the results showed that the genomic profile of Salmonella Enteritidis isolated from humans, poultry, and food samples share genetic traits, hence the need to institute measures at controlling the continuous spread of these resistant pathogens.
Collapse
Affiliation(s)
- Zunita Zakaria
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia.,Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | - Latiffah Hassan
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia.,Department of Veterinary Laboratory Diagnostics, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | - Norazah Ahmad
- Infectious Diseases Research Centre, Institute for Medical Research, National Institutes of Health, Selangor, Malaysia
| | - Suraya Amir Husin
- Medical Development Division, Ministry of Health, Putrajaya, Malaysia
| | - Rohaya Mohd Ali
- Diagnostic and Quality Assurance Division, Department of Veterinary Services, Ministry of Agriculture and Agro-Based Industry, Putrajaya, Malaysia
| | - Zawiyah Sharif
- Food Safety and Quality Division, Ministry of Health, Selangor, Malaysia
| | - Norfitriah Mohamed Sohaimi
- Department of Veterinary Laboratory Diagnostics, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | - Bashiru Garba
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia.,Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, Usmanu Danfodiyo University, Sokoto, Nigeria
| |
Collapse
|
6
|
Xing Z, Li H, Li M, Gao R, Guo C, Mi S. Disequilibrium in chicken gut microflora with avian colibacillosis is related to microenvironment damaged by antibiotics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:143058. [PMID: 33127154 DOI: 10.1016/j.scitotenv.2020.143058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/25/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
The avian colibacillosis outbreak is a disease that threatens public health, poultry production, and economic interests, even after antibiotic feed addition. It is known that avian pathogenic E. coli is a major pathogenic factor; however, the systemic characteristics of gut flora in disease samples and how pathogens grow remain unknown. To study these issues in depth, we used the whole microbial genome shotgun sequencing technique to compare entire microbes in diseased and healthy broiler chickens. We found that it was not only E. coli that increased substantially, but most pathogenic flora also increased significantly in diseased samples. Subsequently, we proved that aminoglycoside antibiotic resistance genes were mainly found in non-E. coli strains. This suggests that E. coli survival under antibiotic stress was due to the cooperative resistance from non-E. coli strains. Among all these increasing strains, attaching and effacing pathogens could damage host intestinal epithelial cells to release oxygen in the gut to make the microenvironment more adaptable for E. coli strains. Furthermore, we observed that the functions of the T4SS/T6SS secretion system were dramatically enhanced, which could help E. coli to compete and enlarge their living spaces. Ultimately, pathogenic E. coli accumulated to cause avian colibacillosis. This study provides a new insight into intestinal microecology in diseased individuals, which would propose new treatment options for avian colibacillosis from a metagenome perspective.
Collapse
Affiliation(s)
- Zhikai Xing
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Hui Li
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Meng Li
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, China
| | - Ran Gao
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Chongye Guo
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, China.
| | - Shuangli Mi
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
7
|
Amin M, Mehdipour G, Navidifar T. High distribution of 16S rRNA methylase genes rmtB and armA among Enterobacter cloacae strains isolated from an Ahvaz teaching hospital, Iran. Acta Microbiol Immunol Hung 2019; 66:337-348. [PMID: 30786728 DOI: 10.1556/030.66.2019.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The emergence of 16S rRNA methylase genes encoded on plasmids confers high-level aminoglycoside resistance (HLAR). This study aimed to investigate the prevalence of 16S rRNA methylases among Enterobacter cloacae strains isolated from an Ahvaz teaching hospital, Iran. A total of 68 E. cloacae clinical strains were collected between November 2017 and September 2018. The MICs of aminoglycosides were assessed using the agar dilution method. The presence of 16S rRNA methylase genes, including armA, rmtA to rmtH, and nmpA was evaluated by PCR. The transferability of 16S rRNA methylase-harboring plasmids was evaluated by conjugation assay. The genetic diversity of all isolates was evaluated by ERIC-PCR. The armA and rmtB genes were the only 16S rRNA methylase genes detected in this study (29 out of 68 isolates; 42.64%). The transferability by conjugation was observed in 23 rmtB or/and armA positive donors. HLAR phenotype was in 33 of 68 strains. Ten clonal types were obtained by ERIC-PCR and significant associations (p < 0.05) were between the clone types and aminoglycoside susceptibility, as well as with profile of the 16S rRNA methylase genes. In conclusion, both horizontal transfer and clonal spread are responsible for dissemination of the rmtB and armA genes among E. cloacae strains.
Collapse
Affiliation(s)
- Mansour Amin
- 1 Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- 2 Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Golshan Mehdipour
- 2 Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Tahereh Navidifar
- 2 Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|