1
|
Shen H, Cai X, Liu J, Yan G, Ye Y, Dong R, Wu J, Li L, Shen Q, Ma Y, Ou Q, Shen M, Chen W, Lu G. Case report: The clinical utility of metagenomic next-generation sequencing in mucormycosis diagnosis caused by fatal Lichtheimia ramosa infection in pediatric neuroblastoma. Front Pediatr 2023; 11:1130775. [PMID: 37404554 PMCID: PMC10315538 DOI: 10.3389/fped.2023.1130775] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/30/2023] [Indexed: 07/06/2023] Open
Abstract
Lichtheimia ramosa (L. ramosa) is an opportunistic fungal pathogen of the order Mucorales that may result in a rare but serious mucormycosis infection. Mucormycosis could be angioinvasive, causing thrombosis and necrosis in the nose, brain, digestive tract, and respiratory tract. The infection is highly lethal, especially in immunocompromised hosts, and the incidence has been on the rise. However, due to its relatively low incidence in pediatric population and the challenges with diagnosis, the awareness and management experience for pediatric mucormycosis are extremely limited, which might lead to poor outcomes. In this study, we comprehensively reviewed the course of a fatal rhinocerebral mucormycosis case in a pediatric neuroblastoma patient receiving chemotherapy. Due to a lack of awareness of the infection, the standard care of amphotericin B treatment was delayed and not administered until the identification of L. ramosa by metagenomic next-generation sequencing (mNGS)-based pan-pathogen detection of the patient's peripheral blood sample. We also reviewed the literature on L. ramosa infection cases reported worldwide between 2010 and 2022, with an analysis of clinical manifestation, prognosis, and epidemiological data. Our study not only highlighted the clinical value of comprehensive mNGS in rapid pathogen detection but also raised awareness of recognizing lethal fungal infection early in immunocompromised hosts including pediatric cancer patients.
Collapse
Affiliation(s)
- Huili Shen
- Pediatric Intensive Care Unit, Children’s Hospital of Fudan University, National Center for Children’s Health, Shanghai, China
| | - Xiaodi Cai
- Pediatric Intensive Care Unit, Children’s Hospital of Fudan University, National Center for Children’s Health, Shanghai, China
| | - Jing Liu
- Pediatric Intensive Care Unit, Children’s Hospital of Fudan University, National Center for Children’s Health, Shanghai, China
| | - Gangfeng Yan
- Pediatric Intensive Care Unit, Children’s Hospital of Fudan University, National Center for Children’s Health, Shanghai, China
| | - Ying Ye
- Dermatological Department, Children’s Hospital of Fudan University, National Center for Children’s Health, Shanghai, China
| | - Rui Dong
- Surgical Oncology Department, Children’s Hospital of Fudan University, National Center for Children’s Health, Shanghai, China
| | - Jufang Wu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Li Li
- Lab. of Mycology, Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Quanli Shen
- Radiology Department, Children’s Hospital of Fudan University, National Center for Children’s Health, Shanghai, China
| | - Yutong Ma
- Medical Department, Nanjing Dinfectome Technology Inc., Nanjing, China
| | - Qiuxiang Ou
- Medical Department, Nanjing Dinfectome Technology Inc., Nanjing, China
| | - Meili Shen
- Medical Department, Nanjing Dinfectome Technology Inc., Nanjing, China
| | - Weiming Chen
- Pediatric Intensive Care Unit, Children’s Hospital of Fudan University, National Center for Children’s Health, Shanghai, China
| | - Guoping Lu
- Pediatric Intensive Care Unit, Children’s Hospital of Fudan University, National Center for Children’s Health, Shanghai, China
| |
Collapse
|
2
|
He GQ, Xiao L, Pan Z, Wu JR, Liang DN, Guo X, Jiang MY, Gao J. Case report: A rare case of pulmonary mucormycosis caused by Lichtheimia ramosa in pediatric acute lymphoblastic leukemia and review of Lichtheimia infections in leukemia. Front Oncol 2022; 12:949910. [PMID: 36046038 PMCID: PMC9421258 DOI: 10.3389/fonc.2022.949910] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Mucormycosis caused by Lichtheimia ramosa is an emerging and uncommon opportunistic infection in patients with hematological malignancies, with high mortality rates. Herein, we first report a case of pulmonary mucormycosis with Lichtheimia ramosa in a 3-year-old girl recently diagnosed with B-cell acute lymphoblastic leukemia. The diagnosis was made using computerized tomography of the lung, metagenomic next-generation sequencing (mNGS) of blood and sputum specimens, and microscopic examination to detect the development of Lichtheimia ramosa on the surgical specimen. She was effectively treated after receiving prompt treatment with amphotericin B and posaconazole, followed by aggressive surgical debridement. In our case, the fungal isolates were identified as Lichtheimia ramosa using mNGS, which assisted clinicians in quickly and accurately diagnosing and initiating early intensive treatment. This case also indicated the importance of strong clinical suspicion, as well as aggressive antifungal therapy combined with surgical debridement of affected tissues.
Collapse
Affiliation(s)
- Guo-qian He
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | | | - Zhen Pan
- Sichuan University, Chengdu, China
| | - Jian-rong Wu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Dong-ni Liang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Pathology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xia Guo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Ming-yan Jiang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- *Correspondence: Ming-yan Jiang,
| | - Ju Gao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
William A, Kaur R, Rawat D, Kandir NSS, Sharma A. Necrotizing fasciitis in neonate by Lichtheimia ramosa : A case study. Access Microbiol 2022; 4:000327. [PMID: 35693464 PMCID: PMC9175980 DOI: 10.1099/acmi.0.000327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/11/2022] [Indexed: 11/18/2022] Open
Abstract
Zygomycetes have been known to cause life-threatening infections in humans which are often difficult to treat. We present a rare case of cutaneous mucormycosis in a premature neonate admitted with neonatal sepsis and necrotizing fasciitis. He was diagnosed with Lichtheimia ramosa infection and managed surgically along with Amphotericin B. Low birth weight, prematurity, respiratory distress, administration of corticosteroid and broad spectrum antibiotics were identified as the potential risk factors in this case which had led to the fungal infection. Early diagnosis and prompt management is critical in prevention of morbidity and mortality associated with the disease.
Collapse
Affiliation(s)
- Ashish William
- Department of Microbiology, Lady Hardinge Medical College and Associated Hospitals, New Delhi, India
- *Correspondence: Ashish William,
| | - Ravinder Kaur
- Department of Microbiology, Lady Hardinge Medical College and Associated Hospitals, New Delhi, India
| | - Deepti Rawat
- Department of Microbiology, Lady Hardinge Medical College and Associated Hospitals, New Delhi, India
| | - Neelam S. S. Kandir
- Department of Microbiology, Lady Hardinge Medical College and Associated Hospitals, New Delhi, India
| | - Akanksha Sharma
- Department of Microbiology, Lady Hardinge Medical College and Associated Hospitals, New Delhi, India
| |
Collapse
|
4
|
Zautner AE, Frickmann H, Podbielski A. Risk Assessment for Molds in the Vicinity of a Child Requiring Peritoneal Dialysis Living in a Rural Northern German Area. Microorganisms 2021; 9:microorganisms9112292. [PMID: 34835418 PMCID: PMC8623174 DOI: 10.3390/microorganisms9112292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
As well as severe immunosuppression, other predisposing factors may facilitate invasive mycosis caused by molds. Chronic kidney disease and the resulting peritoneal dialysis have been reported as factors putting patients at risk of fungal infections from environmental sources. We describe an environmental investigation undertaken to guide exposure prevention for a peritoneal dialysis patient with transient colonization of her nostrils by Lichtheimia corymbifera in a rural area of northern Germany. Systematic screening for airborne and surface-deposited molds enabled targeted recommendations to be made, although Lichtheimia corymbifera itself was not grown from the collected environmental samples. This communication is intended to illustrate how such an investigation can be performed on the basis of the environmental distribution of the molds and how preventive recommendations can be derived from the results.
Collapse
Affiliation(s)
- Andreas Erich Zautner
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Correspondence: ; Tel.: +49-391-67-15859
| | - Hagen Frickmann
- Department of Microbiology and Hospital Hygiene, Bundeswehr Hospital Hamburg, 20359 Hamburg, Germany;
- Institute for Medical Microbiology, Virology and Hospital Hygiene, University Medicine Rostock, 18057 Rostock, Germany;
| | - Andreas Podbielski
- Institute for Medical Microbiology, Virology and Hospital Hygiene, University Medicine Rostock, 18057 Rostock, Germany;
| |
Collapse
|
5
|
Lv L, Gu S, Jiang H, Yan R, Chen Y, Chen Y, Luo R, Huang C, Lu H, Zheng B, Zhang H, Xia J, Tang L, Sheng G, Li L. Gut mycobiota alterations in patients with COVID-19 and H1N1 infections and their associations with clinical features. Commun Biol 2021; 4:480. [PMID: 33850296 PMCID: PMC8044104 DOI: 10.1038/s42003-021-02036-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 03/24/2021] [Indexed: 02/06/2023] Open
Abstract
The relationship between gut microbes and COVID-19 or H1N1 infections is not fully understood. Here, we compared the gut mycobiota of 67 COVID-19 patients, 35 H1N1-infected patients and 48 healthy controls (HCs) using internal transcribed spacer (ITS) 3-ITS4 sequencing and analysed their associations with clinical features and the bacterial microbiota. Compared to HCs, the fungal burden was higher. Fungal mycobiota dysbiosis in both COVID-19 and H1N1-infected patients was mainly characterized by the depletion of fungi such as Aspergillus and Penicillium, but several fungi, including Candida glabrata, were enriched in H1N1-infected patients. The gut mycobiota profiles in COVID-19 patients with mild and severe symptoms were similar. Hospitalization had no apparent additional effects. In COVID-19 patients, Mucoromycota was positively correlated with Fusicatenibacter, Aspergillus niger was positively correlated with diarrhoea, and Penicillium citrinum was negatively correlated with C-reactive protein (CRP). In H1N1-infected patients, Aspergillus penicilloides was positively correlated with Lachnospiraceae members, Aspergillus was positively correlated with CRP, and Mucoromycota was negatively correlated with procalcitonin. Therefore, gut mycobiota dysbiosis occurs in both COVID-19 patients and H1N1-infected patients and does not improve until the patients are discharged and no longer require medical attention. Lv et al. associate the gut mycobiota with clinical features and the bacterial microbiota by comparing COVID-19 patients to those infected with H1N1 and healthy controls. They find that gut mycobiota dysbiosis occurs in both COVID-19 patients and those infected with H1N1 and that it does not improve until patients no longer require medical attention, providing insights into a better healthcare guideline.
Collapse
Affiliation(s)
- Longxian Lv
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Silan Gu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Huiyong Jiang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ren Yan
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yanfei Chen
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yunbo Chen
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Rui Luo
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chenjie Huang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Haifeng Lu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Beiwen Zheng
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hua Zhang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jiafeng Xia
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lingling Tang
- Department of Infectious Diseases, Shulan (Hangzhou) Hospital, Affiliated to Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Guoping Sheng
- Department of Infectious Diseases, Shulan (Hangzhou) Hospital, Affiliated to Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
6
|
Improved strategies to efficiently isolate thermophilic, thermotolerant, and heat-resistant fungi from compost and soil. Mycol Prog 2021. [DOI: 10.1007/s11557-021-01674-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractThermophilic, thermotolerant and heat-resistant fungi developed different physiological traits, enabling them to sustain or even flourish under elevated temperatures, which are life-hostile for most other eukaryotes. With the growing demand of heat-stable molecules in biotechnology and industry, the awareness of heat-adapted fungi as a promising source of respective enzymes and biomolecules is still increasing. The aim of this study was to test two different strategies for the efficient isolation and identification of distinctly heat-adapted fungi from easily accessible substrates and locations. Eight compost piles and ten soil sites were sampled in combination with different culture-dependent approaches to describe suitable strategies for the isolation and selection of thermophilous fungi. Additionally, an approach with a heat-shock treatment, but without elevated temperature incubation led to the isolation of heat-resistant mesophilic species. The cultures were identified based on morphology, DNA barcodes, and microsatellite fingerprinting. In total, 191 obtained isolates were assigned to 31 fungal species, from which half are truly thermophilic or thermotolerant, while the other half are heat-resistant fungi. A numerous amount of heat-adapted fungi was isolated from both compost and soil samples, indicating the suitability of the used approaches and that the richness and availability of those organisms in such environments are substantially high.
Collapse
|
7
|
Jung IY, Lee YJ, Shim HS, Cho YS, Sohn YJ, Hyun JH, Baek YJ, Kim MH, Kim JH, Ahn JY, Jeong SJ, Ku NS, Park YS, Yeom JS, Kim YK, Kim HY, Choi JY. Identification of Fungal Species and Detection of Azole-Resistance Mutations in the Aspergillus fumigatus cyp51A Gene at a South Korean Hospital. Yonsei Med J 2020; 61:698-704. [PMID: 32734733 PMCID: PMC7393294 DOI: 10.3349/ymj.2020.61.8.698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/26/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022] Open
Abstract
PURPOSE With changing fungal epidemiology and azole resistance in Aspergillus species, identifying fungal species and susceptibility patterns is crucial to the management of aspergillosis and mucormycosis. The objectives of this study were to evaluate performance of panfungal polymerase chain reaction (PCR) assays on formalin-fixed paraffin embedded (FFPE) samples in the identification of fungal species and in the detection of azole-resistance mutations in the Aspergillus fumigatus cyp51A gene at a South Korean hospital. MATERIALS AND METHODS A total of 75 FFPE specimens with a histopathological diagnosis of aspergillosis or mucormycosis were identified during the 10-year study period (2006-2015). After deparaffinization and DNA extraction, panfungal PCR assays were conducted on FFPE samples for fungal species identification. The identified fungal species were compared with histopathological diagnosis. On samples identified as A. fumigatus, sequencing to identify frequent mutations in the cyp51A gene [tandem repeat 46 (TR46), L98H, and M220 alterations] that confer azole resistance was performed. RESULTS Specific fungal DNA was identified in 31 (41.3%) FFPE samples, and of these, 16 samples of specific fungal DNA were in accord with a histopathological diagnosis of aspergillosis or mucormycosis; 15 samples had discordant histopathology and PCR results. No azole-mediating cyp51A gene mutation was noted among nine cases of aspergillosis. Moreover, no cyp51A mutations were identified among three cases with history of prior azole use. CONCLUSION Panfungal PCR assay with FFPE samples may provide additional information of use to fungal species identification. No azole-resistance mediating mutations in the A. fumigatus cyp51A gene were identified among FFPE samples during study period.
Collapse
Affiliation(s)
- In Young Jung
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Youn Jung Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Hyo Sup Shim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Yun Suk Cho
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Yu Jin Sohn
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Hoon Hyun
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Yae Jee Baek
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Moo Hyun Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jung Ho Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- AIDS Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jin Young Ahn
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- AIDS Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Su Jin Jeong
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- AIDS Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Nam Su Ku
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- AIDS Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Yoon Soo Park
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Joon Sup Yeom
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- AIDS Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Young Keun Kim
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Hyo Youl Kim
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Jun Yong Choi
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- AIDS Research Institute, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
8
|
Pan J, Tsui C, Li M, Xiao K, de Hoog GS, Verweij PE, Cao Y, Lu H, Jiang Y. First Case of Rhinocerebral Mucormycosis Caused by Lichtheimia ornata, with a Review of Lichtheimia Infections. Mycopathologia 2020; 185:555-567. [PMID: 32388712 DOI: 10.1007/s11046-020-00451-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 04/22/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Lichtheimia species are emerging opportunistic fungal pathogens in the Mucorales, causing serious skin and respiratory infections in immunocompromised patients. Established agents are Lichtheimia corymbifera and L. ramosa, while L. ornata is a novel agent. Available data on a species-specific analysis of Lichtheimia infections are limited. METHODS The first case of a fatal rhino-orbital-cerebral infection in a hematopoietic stem cell transplantation recipient caused by L. ornata is reported; the agent was identified by sequencing the ITS ribosomal region. We reviewed the literature on mucormycosis due to Lichtheimia species between 2009 and 2018, with an analysis of risk factors and epidemiological and clinical data. RESULTS In addition to our Lichtheimia ornata case, 44 cases of human Lichtheimia were analyzed. Lichtheimia predominated in Europe (68.2%), followed by Asia (16%), and Africa (9%). The most common underlying condition was hematological malignancy (36.3%), followed by trauma/major surgery (27.3%), while diabetes mellitus was rare (11.4%). Site of infection was mostly skin and soft tissues (45.5%) and lung (25%), while relatively few cases were disseminated (13.6%) or rhinocerebral (11.4%). Mortality (36.4%) was mainly due to disseminated and rhinocerebral infections. CONCLUSION In contrast to Rhizopus, the most common agent of mucormycosis recorded in patients with diabetes mellitus, Lichtheimia infections were primarily associated with hematological malignancies and major skin barrier damage. Given the fact that classical rhinocerebral mucormycosis remains difficult to treat, independent of causative species, timely application of amphotericin B accessory to debridement may be required for patient survival.
Collapse
Affiliation(s)
- Junling Pan
- Department of Dermatology, The Affiliated Hospital, Guizhou Medical University, Beijing Road 4, Yunyan District, Guiyang, China
| | - Clement Tsui
- Department of Pathology, Sidra Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar.,Department of Pathology and Laboratory Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar.,Division of Infectious Diseases, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Mengxing Li
- Department of Hematology, The Affiliated Hospital, Guizhou Medical University, Guiyang, China
| | - Kun Xiao
- Department of Radiology, Guiyang Third People's Hospital, Guiyang, China
| | - G Sybren de Hoog
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands.,Center of Expertise in Mycology of Radboud University Medical Center, Canisius Wilhelmina Hospital, Nijmegen, Netherlands
| | - Paul E Verweij
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands.,Center of Expertise in Mycology of Radboud University Medical Center, Canisius Wilhelmina Hospital, Nijmegen, Netherlands
| | - Yu Cao
- Department of Dermatology, The Affiliated Hospital, Guizhou Medical University, Beijing Road 4, Yunyan District, Guiyang, China
| | - Hongguang Lu
- Department of Dermatology, The Affiliated Hospital, Guizhou Medical University, Beijing Road 4, Yunyan District, Guiyang, China
| | - Yanping Jiang
- Department of Dermatology, The Affiliated Hospital, Guizhou Medical University, Beijing Road 4, Yunyan District, Guiyang, China. .,Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands. .,Center of Expertise in Mycology of Radboud University Medical Center, Canisius Wilhelmina Hospital, Nijmegen, Netherlands.
| |
Collapse
|
9
|
Disseminated Lichtheimia ramosa Infection After Hematopoietic Stem Cell Transplantation in a Child With Chronic Granulomatous Disease. Pediatr Infect Dis J 2017; 36:1222-1224. [PMID: 28333712 DOI: 10.1097/inf.0000000000001589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mucormycosis is uncommon in patients with chronic granulomatous disease (CGD). We report a 7-year-old boy with X-linked CGD and absent oxidative burst who developed fatal Lichtheimia ramosa infection with fungal thrombosis of the kidneys, spleen and other organs after hematopoietic stem cell transplantation. Lichtheimia infection is rarely reported in patients with CGD and could be related to iatrogenic immunosuppression.
Collapse
|