1
|
Ansari T, Asif M, Saleem M, Ahmed NZ, Meena R. Rubus moluccanus L.: a valuable medicinal plant of traditional system of medicine. Nat Prod Res 2024; 38:4435-4445. [PMID: 38073405 DOI: 10.1080/14786419.2023.2291706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/16/2023] [Accepted: 11/29/2023] [Indexed: 11/20/2024]
Abstract
Rubus moluccanus L., commonly known as Molucca bramble or broad-leaf bramble is a member of family Rosaceae which occurs mainly in tropical Asia and Australia. It has applications in indigenous medicines and is used in the treatment of number of ailments like headache, diarrhoea, dysentery, abdominal pain, nocturnal micturition of children and enhancement of female fertility. This plant is a rich and valuable source of bioactive flavonoids, terpenes and other chemical compounds. The presence of these active chemical compounds exerts antibacterial, antifungal, antihelminthic and antioxidant activities. Regardless of its use in various diseases and disorders, the information about this plant is scanty. So the present review assessed and summarised the knowledge on taxonomy, morphology, geographical distribution, nutritional value, ethnobotany, phytochemistry and biological activities of R. moluccanus.
Collapse
Affiliation(s)
- Taruba Ansari
- Pharmacognosy, Pharmacopoeia Commission for Indian Medicine & Homoeopathy, Ghaziabad, India
| | - Mohd Asif
- Botany, Regional Research Institute of Unani Medicine, Chennai, India
| | - Mohd Saleem
- Botany, The Cluster University of Jammu, Jammu, India
| | - Noor Zaheer Ahmed
- Unani, Central Council for Research in Unani Medicine, New Delhi, India
| | - Rampratap Meena
- Chemistry, Central Council for Research in Unani Medicine, New Delhi, India
| |
Collapse
|
2
|
Lapiz-Culqui YK, Meléndez-Mori JB, Tejada-Alvarado JJ, Cortez D, Huaman E, Zarantes VMN, Oliva M. Study of the physicochemical characteristics, antimicrobial activity, and in vitro multiplication of wild blackberry species from the Peruvian highlands. Sci Rep 2024; 14:3863. [PMID: 38365959 PMCID: PMC10873364 DOI: 10.1038/s41598-024-54058-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/08/2024] [Indexed: 02/18/2024] Open
Abstract
The Peruvian Andes are the natural habitat of several wild blackberry species that are little known and exploited due to the lack of technological and scientific development to support their agricultural potential. In this context, a study was conducted to understand the physicochemical composition, bioactive compounds, antimicrobial activity, and in vitro multiplication of four wild blackberry (Rubus sp.) species from the northern Peruvian highlands. The results indicate that fruits of R. floribundus presented the highest content of total soluble solids (9.58 ± 1.83°Brix) and titratable acidity (1.88 ± 0.07% citric acid). The fruits of R. weberbaueri recorded the highest total phenolic content (415.06 ± 8.69 mg GAE/100 g Ff). The antioxidant capacity determined by the DPPH assay varied significantly among species, with the highest value found in fruits of R. andicola (50.27 ± 0.11 mg TE/100 g Ff). The fruit extracts of R. weberbaueri and R. andicola showed better antimicrobial activity, with Staphylococcus aureus being the most sensitive bacterium. In the in vitro multiplication phase, the results show that BAP (6-Benzylaminopurine) has a significant effect at a dose of 1.5 mg l-1 on shoot number, leaf number, and shoot length. The results may help in the management of genetic resources.
Collapse
Affiliation(s)
- Yoiner K Lapiz-Culqui
- Instituto de Investigación Para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza (UNTRM), 01001, Chachapoyas, Peru
| | - Jegnes Benjamín Meléndez-Mori
- Instituto de Investigación Para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza (UNTRM), 01001, Chachapoyas, Peru.
| | - José Jesús Tejada-Alvarado
- Instituto de Investigación Para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza (UNTRM), 01001, Chachapoyas, Peru
- Estación Experimental Agraria Amazonas, Dirección de Recursos Genéticos y Biotecnología (DRGB), Instituto Nacional de Innovación Agraria (INIA), Ex Aeropuerto, Fundo San Juan, 01001, Chachapoyas, Amazonas, Peru
| | - Denny Cortez
- Instituto de Investigación Para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza (UNTRM), 01001, Chachapoyas, Peru
| | - Eyner Huaman
- Instituto de Investigación Para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza (UNTRM), 01001, Chachapoyas, Peru
- Facultad de Ciencias Agronómicas, Universidad de Chile, 11315, Santa Rosa, La Pintana, Santiago, Chile
| | - Victor M Núñez Zarantes
- Centro de Investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria, AGROSAVIA, Mosquera, Colombia
| | - Manuel Oliva
- Instituto de Investigación Para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza (UNTRM), 01001, Chachapoyas, Peru
| |
Collapse
|
3
|
El-Shafey ES, Elsherbiny ES. Cytotoxic effect of Ziziphus Spina-Christi extract alone and in combination with doxorubicin on breast cancer cells. UKRAINIAN BIOCHEMICAL JOURNAL 2023; 95:50-63. [DOI: 10.15407/ubj95.06.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Ziziphus Spina-Christi (L.) (ZSC) is a traditional Arabian medicinal plant used to treat inflammatory symptoms, swellings and pain since long. Triple negative breast cancer (TNBC) is a form of cancer with a poor prognosis owing to the paucity of therapy alternatives. Two of the most critical pathways of TNBC development are Wnt/β-catenin signaling and autophagy. In the present study, we intended to identify the possible mechanisms of the cytotoxic effects mediated by ZSC extract on MDA-MB-231 breast cancer cells and to improve the efficacy of DOX in combination with ZSC. The MTT test was used to estimate cell viability and IC50 values. Apoptosis was detected using AnnexinV-FITC detection kit. ELISA was used to measure caspase-3 levels. Cell cycle and the level of autophagosome marker LC3-II were analysed using flow cytometry. Acidic vesicular organelle (AVOs) formation was observed by fluorescence microscopy. Real-time PCR was used to monitor changes in gene expression of β-catenin and autophagic adapter NBR1. It was shown that ZSC treatment dose-dependently inhibited MDA-MB-231 cell viability and induced apoptosis with accompanying elevation of caspase-3 level. Besides ZSC caused a significant elevation in LC3II level and downregulation of NBR1 gene expression with subsequent downregulation of β-catenin gene expression, indicating the inhibition of the oncogenic Wnt pathway. ZSC and DOX combination had synergistic cytotoxic effect by more effective suppression of Wnt pathway and induction of apoptosis and autosis. Keywords: apoptosis, autophagic adapter NBR1, autophagosome marker LC3-II, breast cancer cells, DOX, Wnt/β-catenin signaling, Ziziphus Spina-Christi
Collapse
|
4
|
Tran CH, Nghiem MT, Dinh AMT, Dang TTN, Van Do TT, Chu TN, Mai TH, Phan VM. Optimization Conditions of Ultrasound-Assisted Extraction for Phenolic Compounds and Antioxidant Activity from Rubus alceifolius Poir Leaves. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2023; 2023:7576179. [PMID: 37854461 PMCID: PMC10581860 DOI: 10.1155/2023/7576179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/16/2023] [Accepted: 09/20/2023] [Indexed: 10/20/2023]
Abstract
Rubus alceifolius Poir (R.A. Poir) leaves are rich in phenolic compounds, offering many health benefits due to their incredible antioxidant potential. In this study, conditions for the ultrasound-assisted extraction (UAE) of phenolic compounds and antioxidant activity from R.A. Poir leaves were optimized using response surface methodology (RSM). This methodology assessed the effects of ultrasound power (X1: 100-500 W), extraction temperature (X2: 30-60°C), and extraction time (X3: 5-55 min). The optimized UAE conditions were then compared with conventional extraction methods (Soxhlet extraction: SE and maceration extraction: ME) for extracting total phenolics. A phenolic profile using GC-MS and antioxidant activity (ABTS) was also compared. According to the RSM, the best conditions for UAE to extract the highest total polyphenol content and ABTS radical scavenging activity were 320 W ultrasound power, 40°C extraction temperature, and 35.5 min sonication duration. Under these optimal conditions, the TPC and antioxidant activity reached 16.68 mg GAE/g dm and 21.9 mg TE/g, respectively, closely aligning with the predicted values. The UAE extraction technique proved to be more efficient in extracting phenolics and antioxidant capacity (ABTS (2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid)) radical scavenging activity, and enzyme inhibition) compared to the conventional extraction methods (SE and ME). A GC-MS analysis identified 12 components, including 5 phenolics and 3 flavonoids, which likely contribute to the antioxidant activity. Consequently, the UAE method improved extraction efficiency within a shorter time frame, suggesting that UAE is a promising, efficient, and ecofriendly technology for extracting bioactive compounds from R.A. Poir leaves.
Collapse
Affiliation(s)
- Chi Hai Tran
- Faculty of Food Science and Technology, Ho Chi Minh City University of Industry and Trade, 700000, Vietnam
| | - Minh Tri Nghiem
- Faculty of Food Science and Technology, Ho Chi Minh City University of Industry and Trade, 700000, Vietnam
| | - Anh Minh Trinh Dinh
- Faculty of Food Science and Technology, Ho Chi Minh City University of Industry and Trade, 700000, Vietnam
| | - Thi Thuy Nga Dang
- Faculty of Food Science and Technology, Ho Chi Minh City University of Industry and Trade, 700000, Vietnam
| | - Thi Thuy Van Do
- Faculty of Food Science and Technology, Ho Chi Minh City University of Industry and Trade, 700000, Vietnam
| | - Thi Nga Chu
- Faculty of Food Science and Technology, Ho Chi Minh City University of Industry and Trade, 700000, Vietnam
| | - Tien Hung Mai
- Faculty of Food Science and Technology, Ho Chi Minh City University of Industry and Trade, 700000, Vietnam
| | - Van Man Phan
- Faculty of Food Technology, Ba Ria–Vung Tau College of Technology, 790000, Vietnam
| |
Collapse
|
5
|
Chen F, Wang H, Lin Z, Hu J, Wu Y, Shi L, Wang J, Xiu Y, Lin S. Enzymatic and non-enzymatic bioactive compounds, and antioxidant and antimicrobial activities of the extract from one selected wild berry (Rubus coreanus) as novel natural agent for food preservation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Panchal SK, John OD, Mathai ML, Brown L. Anthocyanins in Chronic Diseases: The Power of Purple. Nutrients 2022; 14:2161. [PMID: 35631301 PMCID: PMC9142943 DOI: 10.3390/nu14102161] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 02/06/2023] Open
Abstract
Anthocyanins are mainly purple-coloured phenolic compounds of plant origin that as secondary metabolites are important in plant survival. Understanding their health benefits in humans requires sourcing these unstable compounds in sufficient quantities at a reasonable cost, which has led to improved methods of extraction. Dark-coloured fruits, cereals and vegetables are current sources of these compounds. The range of potential sustainable sources is much larger and includes non-commercialised native plants from around the world and agri-waste containing anthocyanins. In the last 5 years, there have been significant advances in developing the therapeutic potential of anthocyanins in chronic human diseases. Anthocyanins exert their beneficial effects through improvements in gut microbiota, oxidative stress and inflammation, and modulation of neuropeptides such as insulin-like growth factor-1. Their health benefits in humans include reduced cognitive decline; protection of organs such as the liver, as well as the cardiovascular system, gastrointestinal tract and kidneys; improvements in bone health and obesity; and regulation of glucose and lipid metabolism. This review summarises some of the sources of anthocyanins and their mechanisms and benefits in the treatment of chronic human diseases.
Collapse
Affiliation(s)
- Sunil K. Panchal
- School of Science, Western Sydney University, Penrith, NSW 2753, Australia;
- Global Centre for Land-Based Innovation, Western Sydney University, Penrith, NSW 2753, Australia
| | - Oliver D. John
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia; or
| | - Michael L. Mathai
- Institute of Health and Sport, College of Health and Biomedicine, Victoria University, Melbourne, VIC 3021, Australia;
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia
| | - Lindsay Brown
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
7
|
Bilawal A, Ishfaq M, Gantumur MA, Qayum A, Shi R, Fazilani SA, Anwar A, Jiang Z, Hou J. A review of the bioactive ingredients of berries and their applications in curing diseases. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Ranneh Y, Abu Bakar MF, Ismail NA, Kormin F, Mohamed M, Md Akim A, Isha A. Anti-aging and antioxidant of four traditional malaysian plants using simplex centroid mixture design approach. Saudi J Biol Sci 2021; 28:6711-6720. [PMID: 34866970 PMCID: PMC8626306 DOI: 10.1016/j.sjbs.2021.07.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/11/2021] [Accepted: 07/14/2021] [Indexed: 10/30/2022] Open
Abstract
Aging is a naturally biological process with adverse effects. The continuous accumulation of reactive oxygen species (ROS) trigger cellular and tissue damage by activating several aging enzymes. The antioxidant properties of traditional medicinal plants used by Jakun aborigine's community are a promising approach to alleviate aging process and prevent Alzheimer. The aim of the current investigation was to optimize a novel anti-aging formulation from traditional plants (Cnestis palala stem, Urceola micrantha stem, Marantodes pumilum stem and Microporus xanthopus fruiting bodies) using simplex centroid mixture design (SCMD). After selecting the optimal formulations based on desirability function of antioxidant activity (DPPḢ, ABTS ˙ + and FRAP), they were further examined against the activity of aging-related-enzymes (collagenase, tyrosinase, acetyl- and butyrylcholinesterase). The single extracts of C. palala, U. micrantha and the binary mixture of C. palala and U. micrantha were the optimal formulations with high antioxidant activities. Single extract of U. micrantha showed the highest inhibition towards matrix metalloproteinase-1 (49.44 ± 4.11 %), while C. palala water extract showed highest inhibitions towards tyrosinase (14.06 ± 0.31%), acetylcholinesterase (32.92 ± 2.13%) and butyrylcholinesterase (34.89 ± 2.84%) enzymes. The single extracts of C. palala and U. micrantha displayed better activity as compared to the binary mixture formulation. In conclusion, these findings could be a baseline for further exploration of novel anti-aging agents from natural resources.
Collapse
Affiliation(s)
- Yazan Ranneh
- Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (UTHM)- Pagoh Campus, KM 1, Jalan Panchor, 84600 Muar, Johor, Malaysia
| | - Mohd Fadzelly Abu Bakar
- Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (UTHM)- Pagoh Campus, KM 1, Jalan Panchor, 84600 Muar, Johor, Malaysia
| | - Nur Amalina Ismail
- Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (UTHM)- Pagoh Campus, KM 1, Jalan Panchor, 84600 Muar, Johor, Malaysia
| | - Faridah Kormin
- Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (UTHM)- Pagoh Campus, KM 1, Jalan Panchor, 84600 Muar, Johor, Malaysia
| | - Maryati Mohamed
- Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (UTHM)- Pagoh Campus, KM 1, Jalan Panchor, 84600 Muar, Johor, Malaysia
| | - Abdah Md Akim
- Faculty of Medicine and Health Science, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - Azizul Isha
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
9
|
Desmiaty Y, Hanafi M, Saputri FC, Elya B, Rifai EA, Syahdi RR. Two triterpenoids from Rubus fraxinifolius leaves and their tyrosinase and elastase inhibitory activities. Sci Rep 2021; 11:20452. [PMID: 34650166 PMCID: PMC8516952 DOI: 10.1038/s41598-021-99970-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 10/01/2021] [Indexed: 11/22/2022] Open
Abstract
Numerous therapeutic compounds have been isolated from naturally abundant organic resources, which may offer economical and sustainable sources of compounds with safe and efficacious biological activities. In the cosmetics industry, natural compounds with anti-aging activities are eagerly sought. Thus, we prepared various extracts from Rubus fraxinifolius leaves and used enzyme inhibition assays to isolate compounds with protective effects against skin aging. Two triterpenoids were isolated from Rubus fraxinifolius Poir. leaves. The structures were characterized by spectroscopic analyses (LC-ESI-MS, 1D/2D NMR) and comparison to reported data. Compound 1 and 2 were determined as 2,3-O-ethyleneglycol, 19-hydroxyurs-12-en-23,28-dioic acid and 2,3-O-propanediol,19-hydroxyurs-12-en-28-oic acid. Methanol extract and isolates were assessed for their inhibitory effects on elastase and tyrosinase. Compounds 1 and 2 inhibited elastase with IC50 122.199 µg/mL and 98.22 µg/mL, and also inhibited tyrosinase with IC50 207.79 µg/mL and 221.51 µg/mL, respectively. The molecular docking proved that both compounds have affinities toward the enzymes.
Collapse
Affiliation(s)
- Yesi Desmiaty
- Faculty of Pharmacy, Universitas Indonesia, Depok, Indonesia.,Faculty of Pharmacy, Pancasila University, Jakarta, Indonesia
| | - Muhammad Hanafi
- Faculty of Pharmacy, Pancasila University, Jakarta, Indonesia.,Research Centre for Chemistry, Indonesian Institute of Sciences, Jakarta, Indonesia
| | | | - Berna Elya
- Faculty of Pharmacy, Universitas Indonesia, Depok, Indonesia.
| | | | | |
Collapse
|
10
|
Goodman C, Lyon KN, Scotto A, Smith C, Sebrell TA, Gentry AB, Bala G, Stoner GD, Bimczok D. A High-Throughput Metabolic Microarray Assay Reveals Antibacterial Effects of Black and Red Raspberries and Blackberries against Helicobacter pylori Infection. Antibiotics (Basel) 2021; 10:845. [PMID: 34356766 PMCID: PMC8300682 DOI: 10.3390/antibiotics10070845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/17/2022] Open
Abstract
Helicobacter pylori infection is commonly treated with a combination of antibiotics and proton pump inhibitors. However, since H. pylori is becoming increasingly resistant to standard antibiotic regimens, novel treatment strategies are needed. Previous studies have demonstrated that black and red berries may have antibacterial properties. Therefore, we analyzed the antibacterial effects of black and red raspberries and blackberries on H. pylori. Freeze-dried powders and organic extracts from black and red raspberries and blackberries were prepared, and high-performance liquid chromatography was used to measure the concentrations of anthocyanins, which are considered the major active ingredients. To monitor antibiotic effects of the berry preparations on H. pylori, a high-throughput metabolic growth assay based on the Biolog system was developed and validated with the antibiotic metronidazole. Biocompatibility was analyzed using human gastric organoids. All berry preparations tested had significant bactericidal effects in vitro, with MIC90 values ranging from 0.49 to 4.17%. Antimicrobial activity was higher for extracts than powders and appeared to be independent of the anthocyanin concentration. Importantly, human gastric epithelial cell viability was not negatively impacted by black raspberry extract applied at the concentration required for complete bacterial growth inhibition. Our data suggest that black and red raspberry and blackberry extracts may have potential applications in the treatment and prevention of H. pylori infection but differ widely in their MICs. Moreover, we demonstrate that the Biolog metabolic assay is suitable for high-throughput antimicrobial susceptibility screening of H. pylori.
Collapse
Affiliation(s)
- Candace Goodman
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA; (C.G.); (G.B.)
| | - Katrina N. Lyon
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA; (K.N.L.); (A.S.); (C.S.); (T.A.S.); (G.D.S.)
| | - Aitana Scotto
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA; (K.N.L.); (A.S.); (C.S.); (T.A.S.); (G.D.S.)
| | - Cyra Smith
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA; (K.N.L.); (A.S.); (C.S.); (T.A.S.); (G.D.S.)
| | - Thomas A. Sebrell
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA; (K.N.L.); (A.S.); (C.S.); (T.A.S.); (G.D.S.)
| | - Andrew B. Gentry
- Bozeman Health GI Clinic, Bozeman Health Deaconess Hospital, Bozeman, MT 59715, USA;
| | - Ganesh Bala
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA; (C.G.); (G.B.)
| | - Gary D. Stoner
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA; (K.N.L.); (A.S.); (C.S.); (T.A.S.); (G.D.S.)
| | - Diane Bimczok
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA; (K.N.L.); (A.S.); (C.S.); (T.A.S.); (G.D.S.)
| |
Collapse
|
11
|
Sánchez-Velázquez OA, Mulero M, Cuevas-Rodríguez EO, Mondor M, Arcand Y, Hernández-Álvarez AJ. In vitro gastrointestinal digestion impact on stability, bioaccessibility and antioxidant activity of polyphenols from wild and commercial blackberries (Rubus spp.). Food Funct 2021; 12:7358-7378. [PMID: 34180938 DOI: 10.1039/d1fo00986a] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Gastrointestinal digestion (GID) is a physiological process that transforms the stability, bioaccessibility and antioxidant activity (AOX) of polyphenols from blackberries (Rubus spp.). This study aimed to investigate the effect of the INFOGEST® GID protocol on the phenolic stability, bioaccessibility and AOX of Mexican wild (WB) and commercial (CB) blackberries. After GID, the total phenolic and anthocyanin contents in blackberries decreased by ≥68% and ≥74%, respectively. More than 40 phenolics were identified during GID; most of them degraded completely during digestion. GID had a negative effect on the AOX of both fruits (>50%), but WB showed the highest antioxidant activities, as assessed by the ORAC, DPPH, reducing power and β-carotene bleaching methods. In Caco-2 cells, the cell-based antioxidant activity of digested blackberries (p < 0.05) decreased by 48% in WB and by 56% in CB. The capacity to inhibit intracellular ROS decreased by 50% in WB and by up to 86% in CB, after digestion. GID is a complex process that impacts on the bioactive properties of food nutrients, especially phenolics. In vitro and cellular AOX of WB polyphenols withstood the gastrointestinal environment better than CB phenolics. The in vitro assays results suggest that phenolics from underutilized WB have a higher bioaccessibility and antioxidant capacity than the polyphenols from the most frequently consumed CB. However, whether this corresponds to a better bioaccessibility in humans remains to be determined in future work.
Collapse
Affiliation(s)
- Oscar Abel Sánchez-Velázquez
- Programa Regional de Posgrado en Biotecnología; Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa. Av. Josefa Ortíz de Dominguez, s/n, Ciudad Universitaria, PC 80030, Culiacán Rosales, Sinaloa, Mexico
| | | | | | | | | | | |
Collapse
|
12
|
Zengin G, Ferrante C, Senkardes I, Gevrenova R, Zheleva-Dimitrova D, Menghini L, Orlando G, Recinella L, Chiavaroli A, Leone S, Brunetti L, Picot-Allain CMN, Rengasamy KR, Mahomoodally MF. Multidirectional biological investigation and phytochemical profile of Rubus sanctus and Rubus ibericus. Food Chem Toxicol 2019; 127:237-250. [PMID: 30914354 DOI: 10.1016/j.fct.2019.03.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 02/06/2023]
Abstract
In the present study, the biological properties, including, the enzyme inhibitory and antioxidant activities, as well as, the phytochemical profile of the ethyl acetate, methanol, and water extracts of Rubus sanctus Schreb. and Rubus ibericus Juz. leaves were determined using in vitro bioassays. Wide range of phytochemicals, including, hydroxybenzoic acids, hydroxycinnamic acids, acylquinic acids, ellagitannins, flavonoids, and triterpenoid saponins were determined using UHPLC-ESI/HRMS technique. The ethyl acetate and methanol extracts of the studied Rubus species effectively inhibited acetyl and butyryl cholinesterase. On the other hand, R. sanctus water extract showed low inhibition against α-amylase and prominent inhibitory action against α-glucosidase. Data collected from this study reported the radical scavenging and reducing potential of the studied Rubus species. Investigation of the protective effects of the different extracts of R. sanctus and R. ibericus in experimental model of ulcerative colitis was performed. The extracts were also tested on spontaneous migration of human colon cancer cells (HCT116) in wound healing experimental paradigm. Only R. sanctus methanol extract inhibited spontaneous HCT116 migration in the wound healing test. Our results suggested that R. sanctus and R. ibericus may be potential candidates as sources of biologically-active compounds for the development of nutraceuticals, pharmaceuticals, and/or cosmetics.
Collapse
Affiliation(s)
- Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University, Konya, Turkey.
| | - Claudio Ferrante
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy
| | - Ismail Senkardes
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| | - Reneta Gevrenova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, Bulgaria
| | | | - Luigi Menghini
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy
| | - Giustino Orlando
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy.
| | - Lucia Recinella
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy
| | - Annalisa Chiavaroli
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy
| | - Sheila Leone
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy
| | - Luigi Brunetti
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy
| | | | - Kannan Rr Rengasamy
- Department of Bio-resources and Food Science, Konkuk University, Seoul, South Korea
| | | |
Collapse
|
13
|
Xu XY, Shen XT, Yuan XJ, Zhou YM, Fan H, Zhu LP, Du FY, Sadilek M, Yang J, Qiao B, Yang S. Metabolomics Investigation of an Association of Induced Features and Corresponding Fungus during the Co-culture of Trametes versicolor and Ganoderma applanatum. Front Microbiol 2018; 8:2647. [PMID: 29375514 PMCID: PMC5767234 DOI: 10.3389/fmicb.2017.02647] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 12/19/2017] [Indexed: 11/26/2022] Open
Abstract
The co-culture of Trametes versicolor and Ganoderma applanatum is a model of intense basidiomycete interaction, which induces many newly synthesized or highly produced features. Currently, one of the major challenges is an identification of the origin of induced features during the co-culture. Herein, we report a 13C-dynamic labeling analysis used to determine an association of induced features and corresponding fungus even if the identities of metabolites were not available or almost nothing was known of biochemical aspects. After the co-culture of T. versicolor and G. applanatum for 10 days, the mycelium pellets of T. versicolor and G. applanatum were sterilely harvested and then mono-cultured in the liquid medium containing half fresh medium with 13C-labeled glucose as carbon source and half co-cultured supernatants collected on day 10. 13C-labeled metabolome analyzed by LC-MS revealed that 31 induced features including 3-phenyllactic acid and orsellinic acid were isotopically labeled in the mono-culture after the co-culture stimulation. Twenty features were derived from T. versicolor, 6 from G. applanatum, and 5 features were synthesized by both T. versicolor and G. applanatum. 13C-labeling further suggested that 12 features such as previously identified novel xyloside [N-(4-methoxyphenyl)formamide 2-O-beta-D-xyloside] were likely induced through the direct physical interaction of mycelia. Use of molecular network analysis combined with 13C-labeling provided an insight into the link between the generation of structural analogs and producing fungus. Compound 1 with m/z 309.0757, increased 15.4-fold in the co-culture and observed 13C incorporation in the mono-culture of both T. versicolor and G. applanatum, was purified and identified as a phenyl polyketide, 2,5,6-trihydroxy-4, 6-diphenylcyclohex-4-ene-1,3-dione. The biological activity study indicated that this compound has a potential to inhibit cell viability of leukemic cell line U937. The current work sets an important basis for further investigations including novel metabolites discovery and biosynthetic capacity improvement.
Collapse
Affiliation(s)
- Xiao-Yan Xu
- Shandong Province Key Laboratory of Applied Mycology, Qingdao International Center on Microbes Utilizing Biogas, School of Life Science, Qingdao Agricultural University, Qingdao, China
| | - Xiao-Ting Shen
- Shandong Province Key Laboratory of Applied Mycology, Qingdao International Center on Microbes Utilizing Biogas, School of Life Science, Qingdao Agricultural University, Qingdao, China
| | - Xiao-Jie Yuan
- Shandong Province Key Laboratory of Applied Mycology, Qingdao International Center on Microbes Utilizing Biogas, School of Life Science, Qingdao Agricultural University, Qingdao, China
| | - Yuan-Ming Zhou
- Central Laboratory, Qingdao Agricultural University, Qingdao, China
| | - Huan Fan
- Tianjin Animal Science and Veterinary Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Li-Ping Zhu
- Shandong Province Key Laboratory of Applied Mycology, Qingdao International Center on Microbes Utilizing Biogas, School of Life Science, Qingdao Agricultural University, Qingdao, China
| | - Feng-Yu Du
- School of Chemistry and Pharmacy, Qingdao Agricultural University, Qingdao, China
| | - Martin Sadilek
- Department of Chemistry, University of Washington, Seattle, WA, United States
| | - Jie Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Bin Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Song Yang
- Shandong Province Key Laboratory of Applied Mycology, Qingdao International Center on Microbes Utilizing Biogas, School of Life Science, Qingdao Agricultural University, Qingdao, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| |
Collapse
|