1
|
Dachani S, Kaleem M, Mujtaba MA, Mahajan N, Ali SA, Almutairy AF, Mahmood D, Anwer MK, Ali MD, Kumar S. A Comprehensive Review of Various Therapeutic Strategies for the Management of Skin Cancer. ACS OMEGA 2024; 9:10030-10048. [PMID: 38463249 PMCID: PMC10918819 DOI: 10.1021/acsomega.3c09780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 03/12/2024]
Abstract
Skin cancer (SC) poses a global threat to the healthcare system and is expected to increase significantly over the next two decades if not diagnosed at an early stage. Early diagnosis is crucial for successful treatment, as the disease becomes more challenging to cure as it progresses. However, identifying new drugs, achieving clinical success, and overcoming drug resistance remain significant challenges. To overcome these obstacles and provide effective treatment, it is crucial to understand the causes of skin cancer, how cells grow and divide, factors that affect cell growth, and how drug resistance occurs. In this review, we have explained various therapeutic approaches for SC treatment via ligands, targeted photosensitizers, natural and synthetic drugs for the treatment of SC, an epigenetic approach for management of melanoma, photodynamic therapy, and targeted therapy for BRAF-mutated melanoma. This article also provides a detailed summary of the various natural drugs that are effective in managing melanoma and reducing the occurrence of skin cancer at early stages and focuses on the current status and future prospects of various therapies available for the management of skin cancer.
Collapse
Affiliation(s)
- Sudharshan
Reddy Dachani
- Department
of Pharmacy Practice, College of Pharmacy, Shaqra University, Al-Dawadmi Campus, Al-Dawadmi 11961, Saudi Arabia
| | - Mohammed Kaleem
- Department
of Pharmacology, Babasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440037, Maharashtra, India
| | - Md. Ali Mujtaba
- Department
of Pharmaceutics, Faculty of Pharmacy, Northern
Border University, Arar 91911, Saudi Arabia
| | - Nilesh Mahajan
- Department
of Pharmaceutics, Dabasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440037, Maharashtra, India
| | - Sayyed A. Ali
- Department
of Pharmaceutics, Dabasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440037, Maharashtra, India
| | - Ali F Almutairy
- Department
of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Danish Mahmood
- Department
of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Md. Khalid Anwer
- Department
of Pharmaceutics, College of Pharmacy, Prince
Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Mohammad Daud Ali
- Department
of Pharmacy, Mohammed Al-Mana College for
Medical Sciences, Abdulrazaq Bin Hammam Street, Al Safa 34222, Dammam, Saudi Arabia
| | - Sanjay Kumar
- Department
of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Uttar Pradesh 201306, India
| |
Collapse
|
2
|
Kaur N, Sharma P, Aditya A, Shanavas A. Taking leads out of nature, can nano deliver us from COVID-like pandemics? Biomed Phys Eng Express 2022; 8. [PMID: 35078168 DOI: 10.1088/2057-1976/ac4ec8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/25/2022] [Indexed: 11/11/2022]
Abstract
The COVID-19 crisis has alerted the research community to re-purpose scientific tools that can effectively manage emergency pandemic situations. Researchers were never so desperate to discover a 'magic bullet' that has significant clinical benefits with minimal or no side effects. At the beginning of the pandemic, due to restricted access to traditional laboratory techniques, many research groups delved into computational screening of thousands of lead molecules that could inhibit SARS-CoV-2 at one or more stages of its infectious cycle. Several in silico studies on natural derivatives point out their potency against SARS-CoV-2 proteins. However, theoretical predictions and existing knowledge on related molecules reflect their poor oral bioavailability due to biotransformation in the gut and liver. Nanotechnology has evolved into a key field for precise and controlled delivery of various drugs that lack aqueous solubility, have low oral bioavailability and possess pronounced toxicity in their native form. In this review, we discuss various nanoformulations of natural products with favorable ADME properties, and also briefly explore nano-drug delivery to lungs, the primary site of SARS-CoV-2 infection. Natural products are also envisioned to augment nanotechnology-based 1) personnel protective equipment for ex vivo viral inactivation and 2) wearable sensors that perform rapid and non-invasive analysis of volatile organic compounds in exhaled breath of the infected person after therapeutic food consumption.
Collapse
Affiliation(s)
- Navneet Kaur
- Institute of Nano Science and Technology, Sector 81, Knowledge city, Mohali, 140306, INDIA
| | - Priyanka Sharma
- Institute of Nano Science and Technology, Sector 81, Knowledge city, Mohali, 140306, INDIA
| | - Adrija Aditya
- Institute of Nano Science and Technology, Sector 81, Knowledge city, Mohali, 140306, INDIA
| | - Asifkhan Shanavas
- Institute of Nano Science and Technology, Sector 81, Knowledge city, Mohali, 140306, INDIA
| |
Collapse
|
3
|
Yu Z, Chen F, Jin Y, Zhou M, Wang X, Shen X. Determination of oroxin A, oroxin B, oroxylin A, oroxyloside, chrysin, chrysin 7-O-beta-gentiobioside, and guaijaverin in mouse blood by UPLC-MS/MS and its application to pharmacokinetics. ACTA CHROMATOGR 2021. [DOI: 10.1556/1326.2021.00963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
In this study, a UPLC-MS/MS method was developed to measure the concentrations of the flavonoids oroxin A, oroxin B, oroxylin A, oroxyloside, chrysin, chrysin 7-O-beta-gentiobioside, and guaijaverin in the blank mouse blood, and the method was then used in the measurement of the pharmacokinetics of the compounds in mice. Oroxin A, oroxin B, oroxylin A, oroxyloside, chrysin, chrysin 7-O-beta-gentiobioside, and guaijaverin were administered intravenously at a dose of 5 mg kg−1, and the mouse blood (20 μL) was withdrawn from the caudal vein 0.08333, 0.25, 0.5, 1, 2, 4, 6, 8, and 10 h after administration. The mobile phase used for chromatographic separation by gradient elution was composed of acetonitrile and water (0.1% formic acid). The analytes were detected by operating in electrospray ionization (ESI) positive-ion mode using multiple reactions monitoring (MRM). The intra-day and inter-day accuracy ranged from 86.2 to 109.3%, the intra-day precision was less than 14%, and the inter-day precision was less than 15%. The matrix effect ranged from 85.3 to 111.3%, and the recovery of the analytes after protein precipitation were all above 78.2%. This method had the advantages of high sensitivity, accuracy, and recovery, and it had excellent selectivity, which enabled it to be applied to measuring the pharmacokinetics of the analytes in mice.
Collapse
Affiliation(s)
- Zheng Yu
- 1 Analytical and Testing Centre, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Fan Chen
- 2 Ruian People’s Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yinan Jin
- 1 Analytical and Testing Centre, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Minyue Zhou
- 1 Analytical and Testing Centre, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xianqin Wang
- 1 Analytical and Testing Centre, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiuwei Shen
- 2 Ruian People’s Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
4
|
Elango AV, Vasudevan S, Shanmugam K, Solomon AP, Neelakantan P. Exploring the anti-caries properties of baicalin against Streptococcus mutans: an in vitro study. BIOFOULING 2021; 37:267-275. [PMID: 33719751 DOI: 10.1080/08927014.2021.1897789] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Plant-derived molecules are excellent alternatives to antibiotics as anti-infective agents owing to their minimal cytotoxicity. Herein, the anti-infective property of the hydroxyflavone baicalin, was investigated against biofilms of the key dental caries pathogen Streptococcus mutans. Baicalin inhibited sucrose-dependent biofilm formation at a concentration of 500 µg ml-1 without affecting bacterial growth. It significantly inhibited acid production for an extended period of 8 h. Microscopic analysis revealed a 6-fold reduction in the number of adhered cells with baicalin treatment. Transcriptomic analysis of the mid-log phase and biofilm cells showed marked downregulation of the virulence genes required for biofilm formation and acid production. This study sheds significant new light on the potential for baicalin to be developed into an anti-caries agent.
Collapse
Affiliation(s)
- Arval Viji Elango
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Sahana Vasudevan
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Karthi Shanmugam
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Prasanna Neelakantan
- Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR
| |
Collapse
|
5
|
Baicalin mediated regulation of key signaling pathways in cancer. Pharmacol Res 2020; 164:105387. [PMID: 33352232 DOI: 10.1016/j.phrs.2020.105387] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023]
Abstract
Baicalin has been widely investigated against different types of malignancies both at the cellular and molecular levels over the past few years. Due to its remarkable anti-proliferative potential in numerous cancer cell lines, it has created immense interest as a potential chemotherapeutic modality compared to other flavonoids. Thus, this review focuses on the recent accomplishments of baicalin and its limitations in cancer prevention and treatment. Further, combination studies and nanoformulations using baicalin to treat cancer along with the metabolism, bioavailability, toxicity, and pharmacokinetics have been discussed. The present review explains biological source, and anti-proliferative potential of baicalin against cancers including breast, colon, hepatic, leukemia, lung, and skin, as well as the relevant mechanism of action to modulate diverse signaling pathways including apoptosis, cell cycle, invasion, and migration, angiogenesis, and autophagy. The anticancer mechanism of baicalin in orthotropic and xenograft mice models have been deliberated. The combination studies of baicalin in novel therapies as chemotherapeutic adjuvants have also been summarized. The low bioavailability, fast metabolism, and poor solubility, and other significant factors that limit the clinical use of baicalin have been examined as a challenge. The improvement in the pharmacokinetics and pharmacodynamics of baicalin with newer approaches and the gaps are highlighted, which could establish baicalin as an effective and safe compound for cancer treatment as well as help to translate its potential from bench to bedside.
Collapse
|
6
|
Stanković T, Dinić J, Podolski-Renić A, Musso L, Burić SS, Dallavalle S, Pešić M. Dual Inhibitors as a New Challenge for Cancer Multidrug Resistance Treatment. Curr Med Chem 2019; 26:6074-6106. [PMID: 29874992 DOI: 10.2174/0929867325666180607094856] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/28/2018] [Accepted: 05/28/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND Dual-targeting in cancer treatment by a single drug is an unconventional approach in relation to drug combinations. The rationale for the development of dualtargeting agents is to overcome incomplete efficacy and drug resistance frequently present when applying individual targeting agents. Consequently, -a more favorable outcome of cancer treatment is expected with dual-targeting strategies. METHODS We reviewed the literature, concentrating on the association between clinically relevant and/or novel dual inhibitors with the potential to modulate multidrug resistant phenotype of cancer cells, particularly the activity of P-glycoprotein. A balanced analysis of content was performed to emphasize the most important findings and optimize the structure of this review. RESULTS Two-hundred and forty-five papers were included in the review. The introductory part was interpreted by 9 papers. Tyrosine kinase inhibitors' role in the inhibition of Pglycoprotein and chemosensitization was illustrated by 87 papers. The contribution of naturalbased compounds in overcoming multidrug resistance was reviewed using 92 papers, while specific dual inhibitors acting against microtubule assembling and/or topoisomerases were described with 55 papers. Eleven papers gave an insight into a novel and less explored approach with hybrid drugs. Their influence on P-glycoprotein and multidrug resistance was also evaluated. CONCLUSION These findings bring into focus rational anticancer strategies with dual-targeting agents. Most evaluated synthetic and natural drugs showed a great potential in chemosensitization. Further steps in this direction are needed for the optimization of anticancer treatment.
Collapse
Affiliation(s)
- Tijana Stanković
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Jelena Dinić
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Ana Podolski-Renić
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Loana Musso
- DeFENS, Department of Food, Environmental and Nutritional Sciences, Universita degli Studi di Milano, Milano, Italy
| | - Sonja Stojković Burić
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Sabrina Dallavalle
- DeFENS, Department of Food, Environmental and Nutritional Sciences, Universita degli Studi di Milano, Milano, Italy
| | - Milica Pešić
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| |
Collapse
|
7
|
Kindl M, Bucar F, Jelić D, Brajša K, Blažeković B, Vladimir-Knežević S. Comparative study of polyphenolic composition and anti-inflammatory activity of Thymus species. Eur Food Res Technol 2019. [DOI: 10.1007/s00217-019-03297-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
8
|
Zuo AR, Dong HH, Yu YY, Shu QL, Zheng LX, Yu XY, Cao SW. The antityrosinase and antioxidant activities of flavonoids dominated by the number and location of phenolic hydroxyl groups. Chin Med 2018; 13:51. [PMID: 30364385 PMCID: PMC6194685 DOI: 10.1186/s13020-018-0206-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 09/06/2018] [Indexed: 01/27/2023] Open
Abstract
Background Compounds with the ability to scavenge reactive oxygen species (ROS) and inhibit tyrosinase may be useful for the treatment and prevention from ROS-related diseases. The number and location of phenolic hydroxyl of the flavonoids will significantly influence the inhibition of tyrosinase activity. Phenolic hydroxyl is indispensable to the antioxidant activity of flavonoids. Isoeugenol, shikonin, baicalein, rosmarinic acid, and dihydromyricetin have respectively one, two, three, four, or five phenolic hydroxyls. The different molecular structures with the similar structure to l-3,4-dihydroxyphenylalanine (l-DOPA) were expected to the different antityrosinase and antioxidant activities. Methods This investigation tested the antityrosinase activity, the inhibition constant, and inhibition type of isoeugenol, shikonin, baicalein, rosmarinic acid, and dihydromyricetin. Molecular docking was examined by the Discovery Studio 2.5 (CDOCKER Dock, Dassault Systemes BIOVIA, USA). This experiment also examined the antioxidant effects of the five compounds on supercoiled pBR322 plasmid DNA, lipid peroxidation in rat liver mitochondria in vitro, and DPPH, ABTS, hydroxyl, or superoxide free radical scavenging activity in vitro. Results The compounds exhibited good antityrosinase activities. Molecular docking results implied that the compounds could interact with the amino acid residues in the active site center of antityrosinase. These compounds also exhibited antioxidant effects on DPPH, ABTS, hydroxyl, or superoxide free radical scavenging activity in vitro, lipid peroxidation in rat liver mitochondria induced by Fe2+/vitamin C system in vitro, and supercoiled pBR322 plasmid DNA. The activity order is isoeugenol < shikonin < baicalein < rosmarinic acid < dihydromyricetin. The results showed the compounds with more phenolic hydroxyls have more antioxidant and antityrosinase activities. Conclusion This was the first study of molecular docking for modeling the antityrosinase activity of compounds. This was also the first study of the protective effects of compounds on supercoiled pBR322 plasmid DNA, the lipid peroxidation inhibition activity in liver mitochondria. These results suggest that the compounds exhibited antityrosinase and antioxidant activities may be useful in skin pigmentation and food additives. Electronic supplementary material The online version of this article (10.1186/s13020-018-0206-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ai-Ren Zuo
- 1State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047 Jiangxi China.,2Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi China
| | - Huan-Huan Dong
- 2Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi China
| | - Yan-Ying Yu
- 3Department of Chemistry, Nanchang University, Nanchang, Jiangxi China
| | - Qing-Long Shu
- 2Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi China
| | - Li-Xiang Zheng
- 2Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi China
| | - Xiong-Ying Yu
- 2Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi China
| | - Shu-Wen Cao
- 1State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047 Jiangxi China.,3Department of Chemistry, Nanchang University, Nanchang, Jiangxi China
| |
Collapse
|