1
|
Ibrahim NNIN, Rasool AHG, Rahman RA, Azlan M, Aziz AA. Pulse wave analysis as a tool to assess endothelial function following lipid lowering intervention in hypercholesterolemia. Microvasc Res 2025; 158:104772. [PMID: 39586372 DOI: 10.1016/j.mvr.2024.104772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
BACKGROUND Pulse wave analysis (PWA) assesses endothelial dependent vasodilation (EDV) via the change in augmentation index (AIx) and has been used as a tool to assess endothelial function. However, its effectiveness in assessing the response to lipid lowering treatment has not been evaluated. The study aimed to describe and correlate the change in EDV following lipid lowering intervention in patients with hypercholesterolemia. METHODS 48 newly diagnosed patients with hypercholesterolemia underwent 6 months intervention with statin and/or therapeutic lifestyle changes (TLC) in clinical setting. Lipid profile measurement and endothelial function assessment using PWA were performed pre- and post-intervention. RESULTS Significant reductions in low density lipoprotein cholesterol (LDL-C), non-high density lipoprotein cholesterol (non-HDL-C) and total cholesterol (TC) with corresponding significant improvement in EDV (2.94 ± 3.69 % to 7.50 ± 3.79 %, p < 0.001) were observed following intervention. Sub-analyses revealed greater LDL-C reductions and EDV improvements in the statin group compared to TLC. There was a significant inverse correlation between the change in EDV and the change in LDL-C after intervention (r = -0.298, p = 0.040). CONCLUSION Endothelial function assessed by PWA showed a parallel change with lipid profile pattern following lipid lowering intervention. The simple and non-invasive method may provide a potential tool for evaluating endothelial function and treatment outcomes in patients with hypercholesterolemia.
Collapse
Affiliation(s)
- Nik Nor Izah Nik Ibrahim
- Department of Pharmacology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia; Hospital Pakar USM, Jalan Raja Perempuan Zainab II, 16150 Kubang Kerian, Kelantan, Malaysia.
| | - Aida Hanum Ghulam Rasool
- Department of Pharmacology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia; Hospital Pakar USM, Jalan Raja Perempuan Zainab II, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Razlina Abdul Rahman
- Department of Family Medicine, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia; Hospital Pakar USM, Jalan Raja Perempuan Zainab II, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Maryam Azlan
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Aniza Abd Aziz
- Faculty of Medicine, Universiti Sultan Zainal Abidin, 20400 Kuala Terengganu, Terengganu, Malaysia
| |
Collapse
|
2
|
Villadangos L, Serrador JM. Subcellular Localization Guides eNOS Function. Int J Mol Sci 2024; 25:13402. [PMID: 39769167 PMCID: PMC11678294 DOI: 10.3390/ijms252413402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Nitric oxide synthases (NOS) are enzymes responsible for the cellular production of nitric oxide (NO), a highly reactive signaling molecule involved in important physiological and pathological processes. Given its remarkable capacity to diffuse across membranes, NO cannot be stored inside cells and thus requires multiple controlling mechanisms to regulate its biological functions. In particular, the regulation of endothelial nitric oxide synthase (eNOS) activity has been shown to be crucial in vascular homeostasis, primarily affecting cardiovascular disease and other pathophysiological processes of importance for human health. Among other factors, the subcellular localization of eNOS plays an important role in regulating its enzymatic activity and the bioavailability of NO. The aim of this review is to summarize pioneering studies and more recent publications, unveiling some of the factors that influence the subcellular compartmentalization of eNOS and discussing their functional implications in health and disease.
Collapse
Affiliation(s)
| | - Juan M. Serrador
- Interactions with the Environment Program, Immune System Development and Function Unit, Centro de Biología Molecular Severo Ochoa (CBM), Consejo Superior de Investigaciones Científicas (CSIC)—Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| |
Collapse
|
3
|
Bezerra TA, Souza Filho AND, Pessoa MLF, Ribeiro Bandeira PF, Cabral LGA, Moraes JFVND, Martins CMDL, Carvalho FO. Effects of a multicomponent intervention on cardiovascular risk factors in overweight children: a randomized clinical trial in light of complex systems. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:1368-1378. [PMID: 35699999 DOI: 10.1080/09603123.2022.2088704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Analyzing the effects of interventions from a theoretical and statistical perspective that allows understanding these dynamic relationships of obesity etiology can be a more efficient and innovative way of understanding the phenomenon's complexity. Thus, we aimed to analyze the pattern of cardiovascular risk factors between-participants, and the effects within-participants of a multidisciplinary intervention on cardiovascular risk factors in overweight children. This is a randomized clinical trial, and 41 participated in this study. A multicomponent intervention (physical activities, nutritional and psychological counseling) was performed for 10 weeks. Anthropometric and hemodynamics measurements, lipid and glucose profile, cardiorespiratory fitness, and left ventricular mass were evaluated. A network analysis was done. Considering patterns in the network at baseline, WC, WHR, BMI, and Fat were the main variables for cardiovascular risks. Group was the most critical variable in the within-participant network. Participating in a multicomponent intervention and decreasing body fat promoted beneficial cardiovascular factors.
Collapse
Affiliation(s)
- Thaynã Alves Bezerra
- Department of Physical Education, Federal University of Paraiba, João Pessoa, Brazil
| | | | | | | | | | | | - Clarice Maria de Lucena Martins
- Department of Physical Education, Federal University of Paraiba, João Pessoa, Brazil
- Research Centre of Physical Activity, Health and Leisure, Faculty of Sports, University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health, University of Porto, Portugal
| | | |
Collapse
|
4
|
Hong BV, Zheng J, Zivkovic AM. HDL Function across the Lifespan: From Childhood, to Pregnancy, to Old Age. Int J Mol Sci 2023; 24:15305. [PMID: 37894984 PMCID: PMC10607703 DOI: 10.3390/ijms242015305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
The function of high-density lipoprotein (HDL) particles has emerged as a promising therapeutic target and the measurement of HDL function is a promising diagnostic across several disease states. The vast majority of research on HDL functional biology has focused on adult participants with underlying chronic diseases, whereas limited research has investigated the role of HDL in childhood, pregnancy, and old age. Yet, it is apparent that functional HDL is essential at all life stages for maintaining health. In this review, we discuss current data regarding the role of HDL during childhood, pregnancy and in the elderly, how disturbances in HDL may lead to adverse health outcomes, and knowledge gaps in the role of HDL across these life stages.
Collapse
Affiliation(s)
| | | | - Angela M. Zivkovic
- Department of Nutrition, University of California-Davis, Davis, CA 95616, USA; (B.V.H.); (J.Z.)
| |
Collapse
|
5
|
Fadah K, Payan-Schober F. Physical Activity and Mortality in Patients with Coronary Artery Disease. Curr Cardiol Rep 2023:10.1007/s11886-023-01890-x. [PMID: 37171666 DOI: 10.1007/s11886-023-01890-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/02/2023] [Indexed: 05/13/2023]
Abstract
PURPOSE OF REVIEW Coronary artery disease (CAD) accounts for half of heart-related mortalities. Secondary prevention measures are aimed at enhancing the probability of survival in acute and chronic heart diseases. Physical activity (PA) has been shown to effectively reduce all-cause and cardiovascular (CV) mortality rates. This article reviews the relationship between PA and mortality in patients with CAD. Additionally, we discuss the process of vascular changes that contributes to survival benefits in physically active CAD patients, along with exercise dosing and guideline recommendations. RECENT FINDINGS Recent studies have shown that physical inactivity poses a modifiable risk factor that impedes favorable vasculature remodeling, unlike active individuals. Recent meta-analyses provide strong evidence of the multifaceted advantages of PA in lowering mortality rates in patients with CAD, as opposed to physically inactive participants. In summary, substantial evidence indicates that PA is significantly associated with reduction in all-cause and CV mortality in CAD patients, with a dose-response relationship.
Collapse
Affiliation(s)
- Kahtan Fadah
- Department of Internal Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA.
| | - Fernanda Payan-Schober
- Division of Nephrology, Department of Internal Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| |
Collapse
|
6
|
Association of physical activity with high-density lipoprotein functionality in a population-based cohort: the REGICOR study. REVISTA ESPANOLA DE CARDIOLOGIA (ENGLISH ED.) 2023; 76:86-93. [PMID: 35597758 DOI: 10.1016/j.rec.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/30/2022] [Indexed: 02/01/2023]
Abstract
INTRODUCTION AND OBJECTIVES To determine the dose-response association between current and past leisure-time physical activity (LTPA), total and at different intensities, and high-density lipoprotein (HDL) functionality parameters. METHODS Study participants (n=642) were randomly drawn from a large population-based survey. Mean age of the participants was 63.2 years and 51.1% were women. The analysis included data from a baseline and a follow-up visit (median follow-up, 4 years). LTPA was assessed using validated questionnaires at both visits. Two main HDL functions were assessed: cholesterol efflux capacity and HDL antioxidant capacity, at the follow-up visit. Linear regression and linear additive models were used to assess the linear and nonlinear association between LTPA and HDL functionality. RESULTS Total LTPA at follow-up showed an inverse and linear relationship between 0 and 400 METs x min/d with HDL antioxidant capacity (regression coefficient [beta]: -0.022; 95%CI, -0.030, -0.013), with a plateau above this threshold. The results were similar for moderate (beta: -0.028; 95%CI, -0.049, -0.007) and vigorous (beta: -0.025; 95%CI, -0.043, -0.007), but not for light-intensity LTPA. LTPA at follow-up was not associated with cholesterol efflux capacity. Baseline LTPA was not associated with any of the HDL functionality parameters analyzed. CONCLUSIONS Current moderate and vigorous LTPA showed a nonlinear association with higher HDL antioxidant capacity. Maximal benefit was observed with low-intermediate doses of total LTPA (up to 400 METs x min/d). Our results agree with current recommendations for moderate-vigorous LTPA practice and suggest an association between PA and HDL functionality in the general population.
Collapse
|
7
|
Sowa PW, Winzer EB, Hommel J, Männel A, van Craenenbroeck EM, Wisløff U, Pieske B, Halle M, Linke A, Adams V. Impact of different training modalities on high-density lipoprotein function in HFpEF patients: a substudy of the OptimEx trial. ESC Heart Fail 2022; 9:3019-3030. [PMID: 35747946 DOI: 10.1002/ehf2.14032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/18/2022] [Accepted: 06/09/2022] [Indexed: 11/12/2022] Open
Abstract
AIMS In heart failure with preserved ejection fraction (HFpEF), the reduction of nitric oxide (NO)-bioavailability and consequently endothelial dysfunction leads to LV stiffness and diastolic dysfunction of the heart. Besides shear stress, high-density lipoprotein (HDL) stimulates endothelial cells to increased production of NO via phosphorylation of endothelial nitric oxide synthase (eNOS). For patients with heart failure with reduced ejection fraction, earlier studies demonstrated a positive impact of exercise training (ET) on HDL-mediated eNOS activation. The study aims to investigate the influence of ET on HDL-mediated phosphorylation of eNOS in HFpEF patients. METHODS AND RESULTS The present study is a substudy of the OptimEx-Clin trial. The patients were randomized to three groups: (i) HIIT (high-intensity interval training; (ii) MCT (moderate-intensity continuous training); and (iii) CG (control group). Supervised training at study centres was offered for the first 3 months. From months 4-12, training sessions were continued at home with the same exercise protocol as performed during the in-hospital phase. Blood was collected at baseline, after 3, and 12 months, and HDL was isolated by ultracentrifugation. Human aortic endothelial cells were incubated with isolated HDL, and HDL-induced eNOS phosphorylation at Ser1177 and Thr495 was assessed. Subsequently, the antioxidative function of HDL was evaluated by measuring the activity of HDL-associated paraoxonase-1 (Pon1) and the concentration of thiobarbituric acid-reactive substances (TBARS). After 3 months of supervised ET, HIIT resulted in increased HDL-mediated eNOS-Ser1177 phosphorylation. This effect diminished after 12 months of ET. No effect of HIIT was observed on HDL-mediated eNOS-Thr495 phosphorylation. MCT had no effect on HDL-mediated eNOS phosphorylation at Ser1177 and Thr495 . HIIT also increased Pon1 activity after 12 months of ET and reduced the concentration of TBARS in the serum after 3 and 12 months of ET. A negative correlation was observed between TBARS concentration and HDL-associated Pon1 activity in the HIIT group (r = -0.61, P < 0.05), and a trend was evident for the correlation between the change in HDL-mediated eNOS-Ser1177 phosphorylation and the change in peak V̇O2 after 3 months in the HIIT group (r = 0.635, P = 0.07). CONCLUSIONS The present study documented that HIIT but not MCT exerts beneficial effects on HDL-mediated eNOS phosphorylation and HDL-associated Pon1 activity in HFpEF patients. These beneficial effects of HIIT were reduced as soon as the patients switched to home-based ET.
Collapse
Affiliation(s)
- Pamela W Sowa
- Laboratory of Molecular and Experimental Cardiology, Technische Universität Dresden, Heart Center Dresden, Dresden, Germany
| | - Ephraim B Winzer
- Laboratory of Molecular and Experimental Cardiology, Technische Universität Dresden, Heart Center Dresden, Dresden, Germany
| | - Jennifer Hommel
- Laboratory of Molecular and Experimental Cardiology, Technische Universität Dresden, Heart Center Dresden, Dresden, Germany
| | - Anita Männel
- Laboratory of Molecular and Experimental Cardiology, Technische Universität Dresden, Heart Center Dresden, Dresden, Germany
| | - Emeline M van Craenenbroeck
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium.,Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
| | - Ulrik Wisløff
- The Cardiac Exercise Research Group at Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Burkert Pieske
- Department Internal Medicine and Cardiology, Campus Virchow Klinikum, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Martin Halle
- Department of Prevention and Sports Medicine, University Hospital Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Axel Linke
- Laboratory of Molecular and Experimental Cardiology, Technische Universität Dresden, Heart Center Dresden, Dresden, Germany
| | - Volker Adams
- Laboratory of Molecular and Experimental Cardiology, Technische Universität Dresden, Heart Center Dresden, Dresden, Germany.,Dresden Cardiovascular Research Institute and Core Laboratories GmbH, Dresden, Germany
| |
Collapse
|
8
|
Viadas R, Toloba A, Fernández I, Sayols-Baixeras S, Hernáez Á, Schroeder H, Dégano IR, Lassale C, Marrugat J, Elosua R. Asociación de la actividad física con la funcionalidad de las lipoproteínas de alta densidad en una cohorte de base poblacional: el estudio REGICOR. Rev Esp Cardiol 2022. [DOI: 10.1016/j.recesp.2022.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Modification of High-Density Lipoprotein Functions by Diet and Other Lifestyle Changes: A Systematic Review of Randomized Controlled Trials. J Clin Med 2021; 10:jcm10245897. [PMID: 34945193 PMCID: PMC8707678 DOI: 10.3390/jcm10245897] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 01/01/2023] Open
Abstract
High-density lipoprotein (HDL) functional traits have emerged as relevant elements that may explain HDL antiatherogenic capacity better than HDL cholesterol levels. These properties have been improved in several lifestyle intervention trials. The aim of this systematic review is to summarize the results of such trials of the most commonly used dietary modifications (fatty acids, cholesterol, antioxidants, alcohol, and calorie restriction) and physical activity. Articles were screened from the Medline database until March 2021, and 118 randomized controlled trials were selected. Results from HDL functions and associated functional components were extracted, including cholesterol efflux capacity, cholesteryl ester transfer protein, lecithin-cholesterol acyltransferase, HDL antioxidant capacity, HDL oxidation status, paraoxonase-1 activity, HDL anti-inflammatory and endothelial protection capacity, HDL-associated phospholipase A2, HDL-associated serum amyloid A, and HDL-alpha-1-antitrypsin. In mainly short-term clinical trials, the consumption of monounsaturated and polyunsaturated fatty acids (particularly omega-3 in fish), and dietary antioxidants showed benefits to HDL functionality, especially in subjects with cardiovascular risk factors. In this regard, antioxidant-rich dietary patterns were able to improve HDL function in both healthy individuals and subjects at high cardiovascular risk. In addition, in randomized trial assays performed mainly in healthy individuals, reverse cholesterol transport with ethanol in moderate quantities enhanced HDL function. Nevertheless, the evidence summarized was of unclear quality and short-term nature and presented heterogeneity in lifestyle modifications, trial designs, and biochemical techniques for the assessment of HDL functions. Such findings should therefore be interpreted with caution. Large-scale, long-term, randomized, controlled trials in different populations and individuals with diverse pathologies are warranted.
Collapse
|
10
|
Sanllorente A, Soria-Florido MT, Castañer O, Lassale C, Salas-Salvadó J, Martínez-González MÁ, Subirana I, Ros E, Corella D, Estruch R, Tinahones FJ, Hernáez Á, Fitó M. A lifestyle intervention with an energy-restricted Mediterranean diet and physical activity enhances HDL function: a substudy of the PREDIMED-Plus randomized controlled trial. Am J Clin Nutr 2021; 114:1666-1674. [PMID: 34582548 DOI: 10.1093/ajcn/nqab246] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 06/30/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Consumption of a Mediterranean diet, adequate levels of physical activity, and energy-restricted lifestyle interventions have been individually associated with improvements in HDL functions. Evidence of intensive interventions with calorie restriction and physical activity is, however, scarce. OBJECTIVES To determine whether an intensive lifestyle intervention with an energy-restricted Mediterranean diet plus physical activity enhanced HDL function compared to a non-hypocaloric Mediterranean eating pattern without physical activity. METHODS In 391 older adults with metabolic syndrome (mean age, 65 years; mean BMI, 33.3 kg/m2) from 1 of the Prevención con Dieta Mediterránea-Plus trial centers, we evaluated the impact of a 6-month intervention with an energy-restricted Mediterranean diet plus physical activity (intensive lifestyle; n = 190) relative to a nonrestrictive Mediterranean diet without physical activity (control; n = 201) on a set of HDL functional traits. These included cholesterol efflux capacity, HDL oxidative/inflammatory index, HDL oxidation, and levels of complement component 3, serum amyloid A, sphingosine-1-phosphate, triglycerides, and apolipoproteins A-I, A-IV, C-III, and E in apoB-depleted plasma. RESULTS The intensive-lifestyle intervention participants displayed greater 6-month weight reductions (-3.83 kg; 95% CI: -4.57 to -3.09 kg) but no changes in HDL cholesterol compared with control-diet participants. Regarding HDL functional traits, the intensive lifestyle decreased triglyceride levels (-0.15 mg/g protein; 95% CI: -0.29 to -0.014 mg/g protein) and apoC-III (-0.11 mg/g protein; 95% CI: -0.18 to -0.026 mg/g protein) compared to the control diet, with weight loss being the essential mediator (proportions of mediation were 77.4% and 72.1% for triglycerides and apoC-III levels in HDL, respectively). CONCLUSIONS In older adults with metabolic syndrome, an energy-restricted Mediterranean diet plus physical activity improved the HDL triglyceride metabolism compared with a nonrestrictive Mediterranean diet without physical activity. This trial is registered at isrctn.com as ISRCTN89898870.
Collapse
Affiliation(s)
- Albert Sanllorente
- Cardiovascular Risk and Nutrition Research Group, Hospital del Mar Medical Research Institute, Barcelona, Spain.,PhD Program in Biomedicine, Universitat Pompeu Fabra, Barcelona, Spain.,Consorcio Centro de Investigación Biomédica En Red (CIBER), M.P. Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Olga Castañer
- Cardiovascular Risk and Nutrition Research Group, Hospital del Mar Medical Research Institute, Barcelona, Spain.,Consorcio Centro de Investigación Biomédica En Red (CIBER), M.P. Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Camille Lassale
- Cardiovascular Risk and Nutrition Research Group, Hospital del Mar Medical Research Institute, Barcelona, Spain.,Consorcio Centro de Investigación Biomédica En Red (CIBER), M.P. Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Jordi Salas-Salvadó
- Consorcio Centro de Investigación Biomédica En Red (CIBER), M.P. Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.,Unitat de Nutrició Humana, Departament de Bioquimica i Biotecnologia, Universitat Rovira i Virgili, Reus, Spain.,Institut d'Investigació Pere Virgili, Hospital Universitari Sant Joan de Reus, Reus, Spain
| | - Miguel Ángel Martínez-González
- Consorcio Centro de Investigación Biomédica En Red (CIBER), M.P. Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.,Department of Preventive Medicine and Public Health, Universidad de Navarra, Pamplona, Spain.,Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Isaac Subirana
- Consorcio Centro de Investigación Biomédica En Red (CIBER), M.P. Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.,Cardiovascular Epidemiology and Genetics Research Group, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Emilio Ros
- Consorcio Centro de Investigación Biomédica En Red (CIBER), M.P. Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.,Lipid Clinic, Endocrinology and Nutrition Service, Hospital Clínic, Barcelona, Spain.,August Pi i Sunyer Biomedical Research Institute, Barcelona, Spain
| | - Dolores Corella
- Consorcio Centro de Investigación Biomédica En Red (CIBER), M.P. Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.,Department of Preventive Medicine, Universidad de Valencia, Valencia, Spain
| | - Ramón Estruch
- Consorcio Centro de Investigación Biomédica En Red (CIBER), M.P. Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.,August Pi i Sunyer Biomedical Research Institute, Barcelona, Spain.,Department of Internal Medicine, Hospital Clínic, Barcelona, Spain
| | - Francisco J Tinahones
- Consorcio Centro de Investigación Biomédica En Red (CIBER), M.P. Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.,Virgen de la Victoria Hospital, Department of Endocrinology, Biomedical Research Institute of Málaga, University of Málaga, Málaga, Spain
| | - Álvaro Hernáez
- Consorcio Centro de Investigación Biomédica En Red (CIBER), M.P. Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.,August Pi i Sunyer Biomedical Research Institute, Barcelona, Spain.,Blanquerna School of Health Sciences, Universitat Ramon Llull, Barcelona, Spain.,Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Montserrat Fitó
- Cardiovascular Risk and Nutrition Research Group, Hospital del Mar Medical Research Institute, Barcelona, Spain.,Consorcio Centro de Investigación Biomédica En Red (CIBER), M.P. Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
11
|
Holzwirth E, Fischer-Schaepmann T, Obradovic D, von Lucadou M, Schwedhelm E, Daum G, Hindricks G, Marsche G, Trieb M, Thiele H, Kornej J, Büttner P. Anti-inflammatory HDL effects are impaired in atrial fibrillation. Heart Vessels 2021; 37:161-171. [PMID: 34459957 PMCID: PMC8732851 DOI: 10.1007/s00380-021-01908-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/09/2021] [Indexed: 02/02/2023]
Abstract
High-density lipoprotein (HDL), best known for cholesterol transport, also has anti-inflammatory effects. Previous studies suggest involvement of myeloperoxidase (MPO) in modification of HDL. HDL bound Sphingosine-1-phosphate (S1P) has been implied to be an essential protein regarding beneficial HDL effects. In this study, we analyzed anti-inflammatory HDL properties in patients with atrial fibrillation (AF), a disease involving atrial inflammation, compared to non-AF controls and whether anti-inflammatory properties improve upon catheter ablation. Additionally, association with serum concentrations of MPO and S1P were assessed. We isolated HDL from 25 AF patients, 13 non-AF individuals and 14 AF patients at follow-up (FU) after catheter ablation. S1P was measured in a cohort of 141 AF and 21 FU patients. Following preincubation with HDL from either group, bovine aortic endothelial cells were stimulated using tumor necrosis factor α and expression of pro-inflammatory genes intercellular adhesion molecule 1 (ICAM1), vascular cell adhesion molecule 1 (VCAM1), E-selectin (SELE) and P-selectin (SELP) was assessed using qPCR. Concentrations of circulating protein of these genes as well as MPO and S1P were measured in serum samples. Compared to non-AF individuals HDL from AF patients suppressed gene expression of the pro-inflammatory adhesion molecules ICAM1, VCAM1, SELE and SELP 27%, 18%, 21% and 57% less, respectively (p < 0.05 for all except SELE p = 0.06). In FU patients, the anti-inflammatory HDL activity was improved (suppression of ICAM1 + 22%, VCAM1 + 10%, SELE + 38% and SELP + 75%, p < 0.05 for all except VCAM1 p = 0.08). AF patients using angiotensin converting enzyme inhibitors or angiotensin receptor blockers had better anti-inflammatory HDL properties than non-users (gene expression suppression at least 28% more, p < 0.05 for all except ICAM1 p = 0.051). Circulating protein concentrations were not correlated with in vitro gene-expression, but circulating P-selectin was generally elevated in AF and FU patients compared to non-AF patients. MPO plasma concentration was positively associated with gene-expression of ICAM1, VCAM1 and SELP (r2 > 0.4, p < 0.05). Serum concentrations of S1P were increased in FU patients {1.201 µM [1.077–1.543]} compared to AF patients {0.953 µM [0.807–1.135], p < 0.01} but not correlated with ICAM1, VCAM1 and SELP gene expression. We conclude that the anti-inflammatory activity of HDL is impaired in AF patients, which might promote AF progression and AF-associated complications.
Collapse
Affiliation(s)
- Erik Holzwirth
- Department of Internal Medicine/Cardiology, Heart Center Leipzig at University of Leipzig, Strümpellstr. 39, 04289, Leipzig, Germany
| | - Tina Fischer-Schaepmann
- Department of Internal Medicine/Cardiology, Heart Center Leipzig at University of Leipzig, Strümpellstr. 39, 04289, Leipzig, Germany
| | - Danilo Obradovic
- Department of Internal Medicine/Cardiology, Heart Center Leipzig at University of Leipzig, Strümpellstr. 39, 04289, Leipzig, Germany
| | - Mirjam von Lucadou
- Institute of Clinical Pharmacology and Toxicology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Edzard Schwedhelm
- Institute of Clinical Pharmacology and Toxicology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Günter Daum
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany.,Department of Vascular Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Gerhard Hindricks
- Department of Electrophysiology, Heart Center Leipzig at University Leipzig, Leipzig, Germany
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Markus Trieb
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Holger Thiele
- Department of Internal Medicine/Cardiology, Heart Center Leipzig at University of Leipzig, Strümpellstr. 39, 04289, Leipzig, Germany
| | - Jelena Kornej
- School of Medicine-Cardiovascular Medicine, Boston University, Boston, MA, USA
| | - Petra Büttner
- Department of Internal Medicine/Cardiology, Heart Center Leipzig at University of Leipzig, Strümpellstr. 39, 04289, Leipzig, Germany.
| |
Collapse
|
12
|
Kosmas CE, Sourlas A, Guzman E, Kostara CE. Environmental Factors Modifying HDL Functionality. Curr Med Chem 2021; 29:1687-1701. [PMID: 34269662 DOI: 10.2174/0929867328666210714155422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/27/2021] [Accepted: 05/06/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Currently, it has been recognized that High-Density Lipoproteins (HDL) functionality plays a much more essential role in protection from atherosclerosis than circulating HDL-cholesterol (HDL-C) levels per se. Cholesterol efflux from macrophages to HDL, cholesterol efflux capacity (CEC) has been shown to be a key metric of HDL functionality. Thus, quantitative assessment of CEC may be an important tool for the evaluation of HDL functionality, as improvement of HDL function may lead to a reduction of the risk for Cardiovascular disease (CVD). INTRODUCTION Although the cardioprotective action of HDLs is exerted mainly through their involvement in the reverse cholesterol transport (RCT) pathway, HDLs also have important anti-inflammatory, antioxidant, antiaggregatory and anticoagulant properties that contribute to their favorable cardiovascular effects. Certain genetic, pathophysiologic, disease states and environmental conditions may influence the cardioprotective effects of HDL either by inducing modifications in lipidome and/or protein composition or in the enzymes responsible for HDL metabolism. On the other hand, certain healthy habits or pharmacologic interventions may actually favorably affect HDL functionality. METHOD The present review discusses the effects of environmental factors, including obesity, smoking, alcohol consumption, dietary habits, various pharmacologic interventions, as well as aerobic exercise, on HDL functionality. RESULT Experimental and clinical studies or pharmacological interventions support the impact of these environmental factors in the modification of HDL functionality, although the mechanisms that are mediated are poorly understood. CONCLUSION Further research should be conducted to unreal the underlying mechanisms of these environmental factors and to identify new pharmacologic interventions, capable of enhancing CEC, improving HDL functionality and potentially improving cardiovascular risk.
Collapse
Affiliation(s)
- Constantine E Kosmas
- Division of Cardiology, Department of Medicine, Montefiore Medical Center, Bronx, NY, United States
| | | | - Eliscer Guzman
- Division of Cardiology, Department of Medicine, Montefiore Medical Center, Bronx, NY, United States
| | - Christina E Kostara
- Laboratory of Clinical Chemistry, Medical Department, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45500 Ioannina, Greece
| |
Collapse
|
13
|
Robert J, Osto E, von Eckardstein A. The Endothelium Is Both a Target and a Barrier of HDL's Protective Functions. Cells 2021; 10:1041. [PMID: 33924941 PMCID: PMC8146309 DOI: 10.3390/cells10051041] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/19/2021] [Accepted: 04/26/2021] [Indexed: 12/11/2022] Open
Abstract
The vascular endothelium serves as a barrier between the intravascular and extravascular compartments. High-density lipoproteins (HDL) have two kinds of interactions with this barrier. First, bloodborne HDL must pass the endothelium to access extravascular tissues, for example the arterial wall or the brain, to mediate cholesterol efflux from macrophages and other cells or exert other functions. To complete reverse cholesterol transport, HDL must even pass the endothelium a second time to re-enter circulation via the lymphatics. Transendothelial HDL transport is a regulated process involving scavenger receptor SR-BI, endothelial lipase, and ATP binding cassette transporters A1 and G1. Second, HDL helps to maintain the integrity of the endothelial barrier by (i) promoting junction closure as well as (ii) repair by stimulating the proliferation and migration of endothelial cells and their progenitor cells, and by preventing (iii) loss of glycocalix, (iv) apoptosis, as well as (v) transmigration of inflammatory cells. Additional vasoprotective functions of HDL include (vi) the induction of nitric oxide (NO) production and (vii) the inhibition of reactive oxygen species (ROS) production. These vasoprotective functions are exerted by the interactions of HDL particles with SR-BI as well as specific agonists carried by HDL, notably sphingosine-1-phophate (S1P), with their specific cellular counterparts, e.g., S1P receptors. Various diseases modify the protein and lipid composition and thereby the endothelial functionality of HDL. Thorough understanding of the structure-function relationships underlying the multiple interactions of HDL with endothelial cells is expected to elucidate new targets and strategies for the treatment or prevention of various diseases.
Collapse
Affiliation(s)
| | | | - Arnold von Eckardstein
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, 8091 Zurich, Switzerland; (J.R.); (E.O.)
| |
Collapse
|
14
|
McGavock J, Chauhan BF, Rabbani R, Dias S, Klaprat N, Boissoneault S, Lys J, Wierzbowski AK, Sakib MN, Zarychanski R, Abou-Setta AM. Layperson-Led vs Professional-Led Behavioral Interventions for Weight Loss in Pediatric Obesity: A Systematic Review and Meta-analysis. JAMA Netw Open 2020; 3:e2010364. [PMID: 32658289 PMCID: PMC7358915 DOI: 10.1001/jamanetworkopen.2020.10364] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
IMPORTANCE The appropriate approach for weight loss among children and adolescents with overweight and obesity remains unclear. OBJECTIVE To evaluate the difference in the treatment outcomes associated with behavioral weight loss interventions led by laypersons and professionals in comparison with unsupervised control arms among children and adolescents with overweight and obesity. DATA SOURCES For this systematic review and meta-analysis, the Medical Literature Analysis and Retrieval System Online (MEDLINE), Embase, the Cochrane Library, and Cumulative Index of Nursing and Allied Health Literature (CINAHL) databases were searched from January 1, 1996, to June 1, 2019. STUDY SELECTION Included in this study were randomized clinical trials (RCTs) of behavioral interventions lasting at least 12 weeks for children and adolescents (aged 5-18 years) with overweight and obesity. Exclusion criteria included non-RCT studies, interventions lasting less than 12 weeks, adult enrollment, participants with other medical diagnoses, pharmacological treatment use, and articles not written in English. Two of 6 reviewers independently screened all citations. Of 25 586 citations, after duplicate removal, 78 RCTs (5780 participants) met eligibility criteria. DATA EXTRACTION AND SYNTHESIS A bayesian framework and Markov chain Monte Carlo simulation methods were used to combine direct and indirect associations. Random-effects and fixed-effect network meta-analysis models were used with the preferred model chosen by comparing the deviance information criteria. This study was registered with the International Prospective Register of Systematic Reviews (PROSPERO) and followed the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) reporting guideline. MAIN OUTCOMES AND MEASURES The immediate and sustained changes in weight and body mass index (BMI) standardized mean difference (SMD) were primary outcomes planned before data collection began, whereas waist circumference and percent body fat were secondary outcomes. The hypothesis being tested was formulated before the data collection. RESULTS Of 25 586 citations retrieved, we included 78 RCTs (5780 participants), with a follow-up of 12 to 104 weeks. Compared with the control condition, random-effects models revealed that professional-led weight loss interventions were associated with reductions in weight (mean difference [MD], -1.60 kg [95% CI, -2.30 to -0.99 kg]; 68 trials; P < .001) and BMI (SMD, -0.30 [95% CI, -0.39 to -0.20]; 59 trials; P < .001) that were not sustained long term (weight MD, -1.02 kg [95% CI, -2.20 to 0.34 kg]; 21 trials; P = .06; BMI SMD, -0.12 [95% CI, -0.46 to 0.21]; 20 trials; P < .001). There was no association between layperson-led interventions and weight loss in the short-term (MD, -1.40 kg [95% CI, -3.00 to 0.26 kg]; 5 trials; P = .05) or long-term (MD, -0.98 kg [95% CI, -3.60 to 1.80 kg]; 1 trial; P = .23) compared with standard care. No difference was found in head-to-head trials (professional vs layperson MD, -0.25 kg [95% CI -1.90 to 1.30 kg]; 5 trials; P = .38). CONCLUSIONS AND RELEVANCE This systematic review and meta-analysis found that professional-led weight loss interventions were associated with short-term but not sustained weight reduction among children and adolescents with overweight or obesity, and the evidence for layperson-led approaches was insufficient to draw firm conclusions.
Collapse
Affiliation(s)
- Jonathan McGavock
- Children's Hospital Research Institute of Manitoba, Winnipeg, Canada
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Canada
- Diabetes Research Envisioned and Accomplished in Manitoba, Children’s Hospital Research Institute of Manitoba, Winnipeg, Canada
| | - Bhupendrasinh F. Chauhan
- George & Fay Yee Centre for Healthcare Innovation, Winnipeg, Manitoba, Canada
- I. H. Asper Clinical Research Institute, St. Boniface Hospital Research Centre, Winnipeg, Manitoba, Canada
| | - Rasheda Rabbani
- George & Fay Yee Centre for Healthcare Innovation, Winnipeg, Manitoba, Canada
| | - Sofia Dias
- Centre for Reviews and Dissemination, University of York, York, United Kingdom
| | - Nika Klaprat
- Children's Hospital Research Institute of Manitoba, Winnipeg, Canada
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Canada
- Diabetes Research Envisioned and Accomplished in Manitoba, Children’s Hospital Research Institute of Manitoba, Winnipeg, Canada
| | - Sara Boissoneault
- Children's Hospital Research Institute of Manitoba, Winnipeg, Canada
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Canada
- Diabetes Research Envisioned and Accomplished in Manitoba, Children’s Hospital Research Institute of Manitoba, Winnipeg, Canada
| | - Justin Lys
- George & Fay Yee Centre for Healthcare Innovation, Winnipeg, Manitoba, Canada
| | | | - Mohammad Nazmus Sakib
- School of Public Health and Health Systems, University of Waterloo, Waterloo, Ontario, Canada
| | - Ryan Zarychanski
- George & Fay Yee Centre for Healthcare Innovation, Winnipeg, Manitoba, Canada
- Centre for Reviews and Dissemination, University of York, York, United Kingdom
- Department of Haematology and Medical Oncology, CancerCare Manitoba, Winnipeg, Canada
- Department of Internal Medicine, University of Manitoba, Winnipeg, Canada
| | - Ahmed M. Abou-Setta
- George & Fay Yee Centre for Healthcare Innovation, Winnipeg, Manitoba, Canada
| |
Collapse
|
15
|
Mury P, Chirico EN, Mura M, Millon A, Canet-Soulas E, Pialoux V. Oxidative Stress and Inflammation, Key Targets of Atherosclerotic Plaque Progression and Vulnerability: Potential Impact of Physical Activity. Sports Med 2019; 48:2725-2741. [PMID: 30302720 DOI: 10.1007/s40279-018-0996-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Atherosclerosis, a complex cardiovascular disease, is a leading cause of mortality and morbidity worldwide. Oxidative stress and inflammation are both involved in the development of atherosclerotic plaque as they increase the biological processes associated with this pathology, such as endothelial dysfunction and macrophage recruitment and adhesion. Atherosclerotic plaque rupture leading to major ischemic events is the result of vulnerable plaque progression, which is a result of the detrimental effect of oxidative stress and inflammation on risk factors for atherosclerotic plaque rupture, such as intraplaque hemorrhage, neovascularization, and fibrous cap thickness. Thus, both are key targets for primary and secondary interventions. It is well recognized that chronic physical activity attenuates oxidative stress in healthy subjects via the improvement of antioxidant enzyme capacities and inflammation via the enhancement of anti-inflammatory molecules. Moreover, it was recently shown that chronic physical activity could decrease oxidative stress and inflammation in atherosclerotic patients. The aim of this review is to summarize the role of oxidative stress and inflammation in atherosclerosis and the results of therapeutic interventions targeting them in both preclinical and clinical studies. The effects of chronic physical activity on these two key processes are then reviewed in vulnerable atherosclerotic plaques in both coronary and carotid arteries.
Collapse
Affiliation(s)
- Pauline Mury
- Team Vascular Biology and Red Blood Cell, Interuniversity Laboratory of Human Movement Biology, University Claude Bernard Lyon 1, University of Lyon, Faculté de Médecine Lyon Est, 8 Avenue Rockefeller, 69008, Lyon, France.,Laboratory of Excellence GR-Ex, Paris, France
| | - Erica N Chirico
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Mathilde Mura
- Team Vascular Biology and Red Blood Cell, Interuniversity Laboratory of Human Movement Biology, University Claude Bernard Lyon 1, University of Lyon, Faculté de Médecine Lyon Est, 8 Avenue Rockefeller, 69008, Lyon, France.,Laboratory of Excellence GR-Ex, Paris, France
| | - Antoine Millon
- University of Lyon, University Claude Bernard Lyon 1, CarMeN Laboratory, INSERM U1060, Bron, France.,Department of Vascular Surgery, Edouard Herriot Hospital, Lyon, France
| | - Emmanuelle Canet-Soulas
- University of Lyon, University Claude Bernard Lyon 1, CarMeN Laboratory, INSERM U1060, Bron, France
| | - Vincent Pialoux
- Team Vascular Biology and Red Blood Cell, Interuniversity Laboratory of Human Movement Biology, University Claude Bernard Lyon 1, University of Lyon, Faculté de Médecine Lyon Est, 8 Avenue Rockefeller, 69008, Lyon, France. .,Laboratory of Excellence GR-Ex, Paris, France. .,Institut Universitaire de France, Paris, France.
| |
Collapse
|
16
|
Samadi S, Mehramiz M, Kelesidis T, Mobarhan MG, Sahebkar AH, Esmaily H, Moohebati M, Farjami Z, Ferns GA, Mohammadpour AH, Avan A. High-density lipoprotein lipid peroxidation as a molecular signature of the risk for developing cardiovascular disease: Results from MASHAD cohort. J Cell Physiol 2019; 234:16168-16177. [PMID: 30784041 PMCID: PMC6699926 DOI: 10.1002/jcp.28276] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 01/17/2019] [Indexed: 01/25/2023]
Abstract
High-density lipoprotein (HDL) function rather than level may better predict cardiovascular disease (CVD). However, the contribution of the impaired antioxidant function of HDL that is associated with increased HDL lipid peroxidation (HDLox) to the development of clinical CVD remains unclear. We have investigated the association between serum HDLox with incident CVD outcomes in Mashhad cohort. Three-hundred and thirty individuals who had a median follow-up period of 7 years were recruited as part of the cohort. The primary end point was cardiovascular event, including myocardial infarction, stable angina, unstable angina, or coronary revascularization. In both univariate/multivariate analyses adjusted for traditional CVD risk factors, HDLox was an independent risk factor for CVD (odds ratio, 1.62; 95% confidence interval, 1.41-1.86; p < 0.001). For every increase in HDLox by 0.1 unit, there was an increase in CVD risk by 1.62-fold. In an adjusted analysis, there was a >2.5-fold increase in cardiovascular risk in individuals with HDLox higher than cutoff point of 1.06 compared to those with lower scores, suggesting HDLox > 1.06 is related to the impaired HDL oxidant function and in turn exposed to elevated risk of CVD outcomes (hazard ratio, 2.72; 95% CI, 1.88-3.94). Higher HDLox is a surrogate measure of reduced HDL antioxidant function that positively associated with cardiovascular events in a population-based cohort.
Collapse
Affiliation(s)
- Sara Samadi
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrane Mehramiz
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Theodoros Kelesidis
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Majid Ghayour Mobarhan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Hosein Sahebkar
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Habibollah Esmaily
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Moohebati
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Farjami
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A. Ferns
- Division of Medical Education, Brighton and Sussex Medical School, Sussex, UK
| | - Amir hooshang Mohammadpour
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran,Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran,Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW Low HDL-cholesterol (HDL-C) levels are a strong predictor of cardiovascular disease risk and can be improved with regular exercise. However, raising HDL-C levels pharmacologically has not shown convincing clinical benefits. Thus, research has recently focused on identifying therapies that improve HDL function, with exercise representing such a potential therapy. The purpose of this review is to summarize the effects of exercise interventions on HDL function. RECENT FINDINGS The effects of exercise and lifestyle interventions on the primary atheroprotective functions of HDL are reviewed, namely, cholesterol efflux, antioxidative, and anti-inflammatory properties. Differences in study design, study population, and assays are discussed to aid in the interpretation of the reviewed studies. SUMMARY There is mixed evidence that regular aerobic exercise improves cholesterol efflux capacity, with recent research suggesting an exercise dose threshold needs to be exceeded to produce beneficial effects. There is preliminary evidence that exercise improves the antioxidative and anti-inflammatory properties of HDL. Although exercise represents a potential therapeutic approach to improve HDL function, the heterogeneity and/or lack of findings warrants more and larger studies to determine what HDL function(s) are most responsive to regular exercise and what dose of exercise elicits the greatest improvements in HDL functionality.
Collapse
Affiliation(s)
- Jonathan J Ruiz-Ramie
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA
| | | | | |
Collapse
|
18
|
Affiliation(s)
- Ephraim Bernhard Winzer
- Department of Internal Medicine/Cardiology, Helios Stiftungsprofessur, Heart Center Leipzig-University Hospital, Leipzig, Germany
| | - Felix Woitek
- Department of Internal Medicine/Cardiology, Helios Stiftungsprofessur, Heart Center Leipzig-University Hospital, Leipzig, Germany
| | - Axel Linke
- Department of Internal Medicine and Cardiology, Technische Universität Dresden Heart Center Dresden-University Hospital, Dresden, Germany
| |
Collapse
|
19
|
Iqbal F, Baker WS, Khan MI, Thukuntla S, McKinney KH, Abate N, Tuvdendorj D. Current and future therapies for addressing the effects of inflammation on HDL cholesterol metabolism. Br J Pharmacol 2017; 174:3986-4006. [PMID: 28326542 PMCID: PMC5660004 DOI: 10.1111/bph.13743] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/16/2017] [Accepted: 02/02/2017] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular disease (CVD) is a major cause of morbidity and mortality worldwide. Inflammatory processes arising from metabolic abnormalities are known to precipitate the development of CVD. Several metabolic and inflammatory markers have been proposed for predicting the progression of CVD, including high density lipoprotein cholesterol (HDL-C). For ~50 years, HDL-C has been considered as the atheroprotective 'good' cholesterol because of its strong inverse association with the progression of CVD. Thus, interventions to increase the concentration of HDL-C have been successfully tested in animals; however, clinical trials were unable to confirm the cardiovascular benefits of pharmaceutical interventions aimed at increasing HDL-C levels. Based on these data, the significance of HDL-C in the prevention of CVD has been called into question. Fundamental in vitro and animal studies suggest that HDL-C functionality, rather than HDL-C concentration, is important for the CVD-preventive qualities of HDL-C. Our current review of the literature positively demonstrates the negative impact of systemic and tissue (i.e. adipose tissue) inflammation in the healthy metabolism and function of HDL-C. Our survey indicates that HDL-C may be a good marker of adipose tissue health, independently of its atheroprotective associations. We summarize the current findings on the use of anti-inflammatory drugs to either prevent HDL-C clearance or improve the function and production of HDL-C particles. It is evident that the therapeutic agents currently available may not provide the optimal strategy for altering HDL-C metabolism and function, and thus, further research is required to supplement this mechanistic approach for preventing the progression of CVD. LINKED ARTICLES This article is part of a themed section on Targeting Inflammation to Reduce Cardiovascular Disease Risk. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.22/issuetoc and http://onlinelibrary.wiley.com/doi/10.1111/bcp.v82.4/issuetoc.
Collapse
Affiliation(s)
- Fatima Iqbal
- Division of Endocrinology, Department of Internal MedicineUniversity of Texas Medical BranchGalvestonTXUSA
| | - Wendy S Baker
- Division of Endocrinology, Department of Internal MedicineUniversity of Texas Medical BranchGalvestonTXUSA
| | - Madiha I Khan
- Division of Endocrinology, Department of Internal MedicineUniversity of Texas Medical BranchGalvestonTXUSA
| | - Shwetha Thukuntla
- Division of Endocrinology, Department of Internal MedicineUniversity of Texas Medical BranchGalvestonTXUSA
| | - Kevin H McKinney
- Division of Endocrinology, Department of Internal MedicineUniversity of Texas Medical BranchGalvestonTXUSA
| | - Nicola Abate
- Division of Endocrinology, Department of Internal MedicineUniversity of Texas Medical BranchGalvestonTXUSA
| | - Demidmaa Tuvdendorj
- Division of Endocrinology, Department of Internal MedicineUniversity of Texas Medical BranchGalvestonTXUSA
| |
Collapse
|