1
|
Hassan AB, Salihu AT, Masta MA, Gunn H, Marsden J, Abdullahi A, Ahmad RY, Danazumi MS. Effect of transcutaneous spinal direct current stimulation on spasticity in upper motor neuron conditions: a systematic review and meta-analysis. Spinal Cord 2023; 61:587-599. [PMID: 37640926 DOI: 10.1038/s41393-023-00928-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/02/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
STUDY DESIGN A systematic review and meta-analysis of clinical trials. OBJECTIVES To determine the effect of non-invasive transcutaneous spinal direct current stimulation (tsDCS) on spasticity, activity limitations and participation restrictions in various upper motor neuron diseases. METHODS Six databases including CINAHL plus, Cochrane CENTRAL, Embase, MEDLINE, SCOPUS and Web of Science were searched for the relevant records from January 2008 to December 2022. Two reviewers independently selected and extracted data on spasticity, activity limitations and participation restrictions. The risk of bias was evaluated using the PEDro scale while the GRADE approach established the certainty of the evidence. RESULTS Eleven studies were identified of which 5 (45.5%) were rated as having a low risk of bias and 8 (72.7%) were meta-analyzed. The meta-analyses did not show any significant differences between cathodal (SMD = -0.67, 95% CI = -1.50 to 0.15, P = 0.11, I2 = 75%, 6 RCTs) or anodal (SMD = 0.11, 95% CI = -0.43 to -0.64, p = 0.69, I2 = 0%, 2 RCTs) and sham tsDCS for spasticity. There was also no significant difference between active and sham tsDCS for activity limitations (SMD = -0.42, 95% CI = -0.04 to 0.21, p = 0.2, I2 = 0%, 2 RCTs) and participation restrictions (MD = -8.10, 95% CI = -18.02 to 1.82, p = 0.11, 1 RCT). CONCLUSIONS The meta-analysis of the available evidence provides an uncertain estimate of the effect of cathodal tsDCS on spasticity, activity limitation and participation restriction. It might be very helpful, or it may make no difference at all. However, considering the level of the evidence and the limitation in the quality of the majority of the included studies, further well-designed research may likely change the estimate of effect. TRIAL REGISTRATION PROSPERO CRD42021245601.
Collapse
Affiliation(s)
- Auwal B Hassan
- Department of Medical Rehabilitation (Physiotherapy), Faculty of Allied Health Sciences, College of Medical Sciences, University of Maiduguri, Maiduguri, Borno State, Nigeria
| | - Abubakar T Salihu
- Department of Physiotherapy, Monash University, Melbourne, VIC, Australia
| | - Mamman A Masta
- Department of Medical Rehabilitation (Physiotherapy), Faculty of Allied Health Sciences, College of Medical Sciences, University of Maiduguri, Maiduguri, Borno State, Nigeria
| | - Hilary Gunn
- Peninsula Allied Health Centre, University of Plymouth, Plymouth, UK
| | - Jonathan Marsden
- Peninsula Allied Health Centre, University of Plymouth, Plymouth, UK
| | - Auwal Abdullahi
- Department of Physiotherapy, Bayero University Kano, Kano, Nigeria
| | - Rufa'i Y Ahmad
- Department of Physiotherapy, Bayero University Kano, Kano, Nigeria
| | - Musa S Danazumi
- Discipline of Physiotherapy, School of Allied Health, Human Services and Sport, College of Sciences, Health and Engineering, La Trobe University, Bundoora, VIC, 3085, Australia.
| |
Collapse
|
2
|
Paget-Blanc A, Chang JL, Saul M, Lin R, Ahmed Z, Volpe BT. Non-invasive treatment of patients with upper extremity spasticity following stroke using paired trans-spinal and peripheral direct current stimulation. Bioelectron Med 2020; 5:11. [PMID: 32232101 PMCID: PMC7098221 DOI: 10.1186/s42234-019-0028-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/24/2019] [Indexed: 12/17/2022] Open
Abstract
Background Muscle spasticity is a common impediment to motor recovery in patients with chronic stroke. Standard-of-care treatments such as botulinum toxin injections can temporarily relieve muscle stiffness and pain associated with spasticity, but often at the expense of increased muscle weakness. Recent preclinical investigations of a non-invasive treatment that pairs trans-spinal direct current stimulation and peripheral nerve direct current stimulation (tsDCS+pDCS) provided promising data for a novel approach based on bioelectronic medicine for the treatment of patients with post-stroke spasticity. Methods Twenty-six patients with upper limb hemiparesis and wrist spasticity at least 6 months after their initial stroke participated in this single-blind crossover design study to test whether tsDCS+pDCS reduces chronic upper-extremity spasticity. Subjects received five consecutive daily sessions (20 min of stimulation or sham) of anodal tsDCS+pDCS, separated by a one-week washout period. The sham condition always preceded the active condition. Clinical and objective measures of spasticity and motor function were collected before and after each condition, and for five weeks after the completion of the active intervention. Results Subjects treated with active tsDCS+pDCS demonstrated significant reductions in both Modified Tardieu Scale scores (summed across the upper limb, P < 0.05), and in objective torque measures (Nm) of the spastic catch response at the wrist flexor (P < 0.05), compared to the sham condition. Motor function also improved significantly (measured by the Fugl-Meyer and Wolf Motor Function Test; P < 0.05 for both tests) after active treatment. Conclusions tsDCS+pDCS intervention alone significantly reduced upper limb spasticity in participants with stroke. Decreased spasticity was persistent for five weeks after treatment, and was accompanied by improved motor function even though patients were unsupervised and there was no prescribed activity or training during that interval. Trial registration NCT03080454, March 15, 2017.
Collapse
Affiliation(s)
- Alexandra Paget-Blanc
- 1Feinstein Institute for Medical Research, Biomedical Science Division, Biomedical Sciences /Robot Lab, Laboratory of Clinical Neurorehabilitation Research, 350 Community Dr, Manhasset, NY 11030 USA
| | - Johanna L Chang
- 1Feinstein Institute for Medical Research, Biomedical Science Division, Biomedical Sciences /Robot Lab, Laboratory of Clinical Neurorehabilitation Research, 350 Community Dr, Manhasset, NY 11030 USA
| | - Maira Saul
- 1Feinstein Institute for Medical Research, Biomedical Science Division, Biomedical Sciences /Robot Lab, Laboratory of Clinical Neurorehabilitation Research, 350 Community Dr, Manhasset, NY 11030 USA
| | - Regina Lin
- BARC Global Central Laboratory, 5 Delaware Dr, Hyde Park, NY 11042 USA
| | - Zaghloul Ahmed
- College of Staten Island, Department of Physical Therapy, Center for Developmental Neuroscience, Staten Island, NY 10314 USA.,4Graduate Center, City University of New York, New York, NY USA
| | - Bruce T Volpe
- 1Feinstein Institute for Medical Research, Biomedical Science Division, Biomedical Sciences /Robot Lab, Laboratory of Clinical Neurorehabilitation Research, 350 Community Dr, Manhasset, NY 11030 USA
| |
Collapse
|
3
|
Mekhael W, Begum S, Samaddar S, Hassan M, Toruno P, Ahmed M, Gorin A, Maisano M, Ayad M, Ahmed Z. Repeated anodal trans-spinal direct current stimulation results in long-term reduction of spasticity in mice with spinal cord injury. J Physiol 2019; 597:2201-2223. [PMID: 30689208 PMCID: PMC6462463 DOI: 10.1113/jp276952] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 01/18/2019] [Indexed: 12/30/2022] Open
Abstract
KEY POINTS Spasticity is a disorder of muscle tone that is associated with lesions of the motor system. This condition involves an overactive spinal reflex loop that resists the passive lengthening of muscles. Previously, we established that application of anodal trans-spinal direct current stimulation (a-tsDCS) for short periods of time to anaesthetized mice sustaining a spinal cord injury leads to an instantaneous reduction of spasticity. However, the long-term effects of repeated a-tsDCS and its mechanism of action remained unknown. In the present study, a-tsDCS was performed for 7 days and this was found to cause long-term reduction in spasticity, increased rate-dependent depression in spinal reflexes, and improved ground and skill locomotion. Pharmacological, molecular and cellular evidence further suggest that a novel mechanism involving Na-K-Cl cotransporter isoform 1 mediates the observed long-term effects of repeated a-tsDCS. ABSTRACT Spasticity can cause pain, fatigue and sleep disturbances; restrict daily activities such as walking, sitting and bathing; and complicate rehabilitation efforts. Thus, spasticity negatively influences an individual's quality of life and novel therapeutic interventions are needed. We previously demonstrated in anaesthetized mice that a short period of trans-spinal subthreshold direct current stimulation (tsDCS) reduces spasticity. In the present study, the long-term effects of repeated tsDCS to attenuate abnormal muscle tone in awake female mice with spinal cord injuries were investigated. A motorized system was used to test velocity-dependent ankle resistance and associated electromyographical activity. Analysis of ground and skill locomotion was also performed, with electrophysiological, molecular and cellular studies being conducted to reveal a potential underlying mechanism of action. A 4 week reduction in spasticity was associated with an increase in rate-dependent depression of spinal reflexes, and ground and skill locomotion were improved following 7 days of anodal-tsDCS (a-tsDCS). Secondary molecular, cellular and pharmacological experiments further demonstrated that the expression of K-Cl co-transporter isoform 2 (KCC2) was not changed in animals with spasticity. However, Na-K-Cl cotransporter isoform 1 (NKCC1) was significantly up-regulated in mice that exhibited spasticity. When mice were treated with a-tsDCS, down regulation of NKCC1 was detected, and this level did not significantly differ from that in the non-injured control mice. Thus, long lasting reduction of spasticity by a-tsDCS via downregulation of NKCC1 may constitute a novel therapy for spasticity following spinal cord injury.
Collapse
Affiliation(s)
- Wagdy Mekhael
- Graduate CenterCity University of New YorkNew YorkNYUSA
| | - Sultana Begum
- Center for Developmental NeuroscienceThe College of Staten IslandStaten IslandNYUSA
| | - Sreyashi Samaddar
- Center for Developmental NeuroscienceThe College of Staten IslandStaten IslandNYUSA
- Department of Physical TherapyThe College of Staten IslandStaten IslandNYUSA
| | - Mazen Hassan
- Center for Developmental NeuroscienceThe College of Staten IslandStaten IslandNYUSA
| | - Pedro Toruno
- Center for Developmental NeuroscienceThe College of Staten IslandStaten IslandNYUSA
| | - Malik Ahmed
- Center for Developmental NeuroscienceThe College of Staten IslandStaten IslandNYUSA
| | - Alexis Gorin
- Center for Developmental NeuroscienceThe College of Staten IslandStaten IslandNYUSA
| | - Michael Maisano
- Center for Developmental NeuroscienceThe College of Staten IslandStaten IslandNYUSA
| | - Mark Ayad
- Center for Developmental NeuroscienceThe College of Staten IslandStaten IslandNYUSA
| | - Zaghloul Ahmed
- Graduate CenterCity University of New YorkNew YorkNYUSA
- Center for Developmental NeuroscienceThe College of Staten IslandStaten IslandNYUSA
- Department of Physical TherapyThe College of Staten IslandStaten IslandNYUSA
| |
Collapse
|
4
|
Ahmed Z. Effects of cathodal trans-spinal direct current stimulation on lower urinary tract function in normal and spinal cord injury mice with overactive bladder. J Neural Eng 2017; 14:056002. [DOI: 10.1088/1741-2552/aa76f2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Samaddar S, Vazquez K, Ponkia D, Toruno P, Sahbani K, Begum S, Abouelela A, Mekhael W, Ahmed Z. Transspinal direct current stimulation modulates migration and proliferation of adult newly born spinal cells in mice. J Appl Physiol (1985) 2017; 122:339-353. [DOI: 10.1152/japplphysiol.00834.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 12/02/2016] [Accepted: 12/04/2016] [Indexed: 11/22/2022] Open
Abstract
Direct current electrical fields have been shown to be a major factor in the regulation of cell proliferation, differentiation, migration, and survival, as well as in the maturation of dividing cells during development. During adulthood, spinal cord cells are continuously produced in both animals and humans, and they hold great potential for neural restoration following spinal cord injury. While the effects of direct current electrical fields on adult-born spinal cells cultured ex vivo have recently been reported, the effects of direct current electrical fields on adult-born spinal cells in vivo have not been characterized. Here, we provide convincing findings that a therapeutic form of transspinal direct current stimulation (tsDCS) affects the migration and proliferation of adult-born spinal cells in mice. Specifically, cathodal tsDCS attracted the adult-born spinal cells, while anodal tsDCS repulsed them. In addition, both tsDCS polarities caused a significant increase in cell number. Regarding the potential mechanisms involved, both cathodal and anodal tsDCS caused significant increases in expression of brain-derived neurotrophic factor, while expression of nerve growth factor increased and decreased, respectively. In the spinal cord, both anodal and cathodal tsDCS increased blood flow. Since blood flow and angiogenesis are associated with the proliferation of neural stem cells, increased blood flow may represent a major factor in the modulation of newly born spinal cells by tsDCS. Consequently, we propose that the method and novel findings presented in the current study have the potential to facilitate cellular, molecular, and/or bioengineering strategies to repair injured spinal cords. NEW & NOTEWORTHY Our results indicate that transspinal direct current stimulation (tsDCS) affects the migratory pattern and proliferation of adult newly born spinal cells, a cell population which has been implicated in learning and memory. In addition, our results suggest a potential mechanism of action regarding the functional effects of applying direct current. Thus tsDCS may represent a novel method by which to manipulate the migration and cell number of adult newly born cells and restore functions following brain or spinal cord injury.
Collapse
Affiliation(s)
- Sreyashi Samaddar
- Department of Physical Therapy, College of Staten Island Center for Developmental Neuroscience, Staten Island, New York; and
| | - Kizzy Vazquez
- Department of Physical Therapy, College of Staten Island Center for Developmental Neuroscience, Staten Island, New York; and
| | - Dipen Ponkia
- Department of Physical Therapy, College of Staten Island Center for Developmental Neuroscience, Staten Island, New York; and
| | - Pedro Toruno
- Department of Physical Therapy, College of Staten Island Center for Developmental Neuroscience, Staten Island, New York; and
| | - Karim Sahbani
- Department of Physical Therapy, College of Staten Island Center for Developmental Neuroscience, Staten Island, New York; and
| | - Sultana Begum
- Department of Physical Therapy, College of Staten Island Center for Developmental Neuroscience, Staten Island, New York; and
| | - Ahmed Abouelela
- Department of Physical Therapy, College of Staten Island Center for Developmental Neuroscience, Staten Island, New York; and
| | - Wagdy Mekhael
- Department of Physical Therapy, College of Staten Island Center for Developmental Neuroscience, Staten Island, New York; and
- The Graduate Center, The City University of New York, New York, New York
| | - Zaghloul Ahmed
- Department of Physical Therapy, College of Staten Island Center for Developmental Neuroscience, Staten Island, New York; and
- The Graduate Center, The City University of New York, New York, New York
| |
Collapse
|