1
|
Gao J, Li L, Zhou D, Sun X, Cui L, Yang D, Wang X, Du P, Yuan W. Effects of norepinephrine‑induced activation of rat vascular adventitial fibroblasts on proliferation and migration of BMSCs involved in vascular remodeling. Exp Ther Med 2023; 25:290. [PMID: 37206559 PMCID: PMC10189611 DOI: 10.3892/etm.2023.11989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/11/2023] [Indexed: 05/21/2023] Open
Abstract
Vascular remodeling caused by vascular injury such as hypertension and atherosclerosis is a complex process involving a variety of cells and factors, and the mechanism is unclear. A vascular injury model was simulated by adding norepinephrine (NE) to culture medium of vascular adventitial fibroblasts (AFs). NE induced activation and proliferation of AFs. To investigate the association between the AFs activation and bone marrow mesenchymal stem cells (BMSCs) differentiation in vascular remodeling. BMSCs were cultured with supernatant of the AFs culture medium. BMSC differentiation and migration were observed by immunostaining and Transwell assay, respectively, while cell proliferation was measured using the Cell Counting Kit-8. Expression levels of smooth muscle actin (α-SMA), TGF-β1 and SMAD3 were measured using western blot assay. The results indicated that compared with those in the control group, in which BMSCs were cultured in normal medium, expression levels of α-SMA, TGF-β1 and SMAD3 in BMSCs cultured in medium supplemented with supernatant of AFs, increased significantly (all P<0.05). Activated AFs induced the differentiation of BMSCs into vascular smooth muscle-like cells and promoted proliferation and migration. AFs activated by NE may induce BMSCs to participate in vascular remodeling. These findings may help design and develop new approaches and therapeutic strategies for vascular injury to prevent pathological remodeling.
Collapse
Affiliation(s)
- Jun Gao
- Medical Laboratory, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, P.R. China
| | - Li Li
- Pediatric Department, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, P.R. China
| | - Dongli Zhou
- Nurse's Office, Health School of Laiyang, Laiyang, Yantai, Shandong 265200, P.R. China
| | - Xuhong Sun
- Institute of Pathology and Pathophysiology, Basic Medical School, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Lilu Cui
- Institute of Pathology and Pathophysiology, Basic Medical School, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Donglin Yang
- Institute of Pathology and Pathophysiology, Basic Medical School, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Xiaohui Wang
- Institute of Pathology and Pathophysiology, Basic Medical School, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Pengchao Du
- Institute of Pathology and Pathophysiology, Basic Medical School, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
- Correspondence to: Professor Wendan Yuan or Professor Pengchao Du, Institute of Pathology and Pathophysiology, Basic Medical School, Binzhou Medical University, 346 Guanhai Road, Yantai, Shandong 264003, P.R. China E-mail: 981713509 @qq.com
| | - Wendan Yuan
- Institute of Pathology and Pathophysiology, Basic Medical School, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
- Correspondence to: Professor Wendan Yuan or Professor Pengchao Du, Institute of Pathology and Pathophysiology, Basic Medical School, Binzhou Medical University, 346 Guanhai Road, Yantai, Shandong 264003, P.R. China E-mail: 981713509 @qq.com
| |
Collapse
|
2
|
Xu J, Liu X, Zhao F, Zhang Y, Wang Z. HIF1α overexpression enhances diabetic wound closure in high glucose and low oxygen conditions by promoting adipose-derived stem cell paracrine function and survival. Stem Cell Res Ther 2020; 11:148. [PMID: 32248837 PMCID: PMC7132964 DOI: 10.1186/s13287-020-01654-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 03/11/2020] [Accepted: 03/17/2020] [Indexed: 12/31/2022] Open
Abstract
Background Adipose-derived stem cell (ADSC) transplantation is a promising strategy to promote wound healing because of the paracrine function of stem cells. However, glucose-associated effects on stem cell paracrine function and survival contribute to impaired wound closure in patients with diabetes, limiting the efficacy of ADSC transplantation. Hypoxia-inducible factor (HIF)1α plays important roles in wound healing, and in this study, we investigated the effects of HIF1α overexpression on ADSCs in high glucose and low oxygen conditions. Methods Adipose samples were obtained from BALB/C mice, and ADSCs were cultured in vitro by digestion. Control and HIF1α-overexpressing ADSCs were induced by transduction. The mRNA and protein levels of angiogenic growth factors in control and HIF1α-overexpressing ADSCs under high glucose and low oxygen conditions were analyzed by quantitative reverse transcription-polymerase chain reaction and western blotting. The effects of ADSC HIF1α overexpression on the proliferation and migration of mouse aortic endothelial cells (MAECs) under high glucose were evaluated using an in vitro coculture model. Intracellular reactive oxygen species (ROS) and 8-hydroxydeoxyguanosine (8-OHdG) levels in ADSCs were observed using 2,7-dichlorodihydrofluorescein diacetate staining and enzyme-linked immunosorbent assays, respectively. Apoptosis and cell cycle analysis assays were performed by flow cytometry. An in vivo full-thickness skin defect mouse model was used to evaluate the effects of transplanted ADSCs on diabetic wound closure. Results In vitro, HIF1α overexpression in ADSCs significantly increased the expression of vascular endothelial growth factor A, fibroblast growth factor 2, and C-X-C motif chemokine ligand 12, which were inhibited by high glucose. HIF1α overexpression in ADSCs alleviated high glucose-induced defects in MAEC proliferation and migration and significantly suppressed ADSC ROS and 8-OHdG levels, thereby decreasing apoptosis and enhancing survival. In vivo, HIF1α overexpression in ADSCs prior to transplantation significantly enhanced angiogenic growth factor expression, promoting wound closure in diabetic mice. Conclusions HIF1α overexpression in ADSCs efficiently alleviates high glucose-induced paracrine dysfunction, decreases oxidative stress and subsequent DNA damage, improves viability, and enhances the therapeutic effects of ADSCs on diabetic wound healing.
Collapse
Affiliation(s)
- Jin Xu
- Department of Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Xiaoyu Liu
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Feng Zhao
- Department of Stem Cells and Regenerative Medicine, Shenyang Key Laboratory for Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, No. 77 Puhe Street, Shenbei New District, Shenyang, 110122, China
| | - Ying Zhang
- Department of Pathology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Zhe Wang
- Department of Pathology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, China.
| |
Collapse
|
3
|
Kassem MM, Helkin A, Maier KG, Gahtan V. Thrombospondins Differentially Regulate Proteins Involved in Arterial Remodeling. Physiol Res 2019; 68:893-900. [PMID: 31647293 DOI: 10.33549/physiolres.934148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Thrombospondins (TSPs) are matricellular glycoproteins expressed in response to vascular injury. TSP-1 and TSP-2 are promotors of arterial remodeling while TSP-5 is believed to be protective. The current study assessed the differential effect of TSPs on protein expression in vascular smooth muscle cells (VSMCs). We hypothesized that TSP-1, TSP-2 and TSP-5 would regulate VSMC proteins involved in arterial remodeling. Human VSMCs were exposed to TSP-1, -2, -5 or serum free media (24 hours). Cell lysates were used to assess the targets TSP-1, TSP-2, TSP-5 and CD44), while the culture media was used to detect TGF-ß1, PDGF-BB, ANGPTL-4 and IL-8. Statistical analysis was performed by t-test and p< 0.05 was considered significant. All TSPs increased their own expression and TSP-5 increased TSP-2. TSP-1 and TSP-2 increased production of ANGPTL-4 and PDGF-BB, while TSP-5 only increased ANGPTL-4. TSP-1 increased exclusively TGF-ß1 and CD44 production. TSP-2 increased TSP-1 expression. All TSPs decreased IL-8. The findings suggest that TSP-1 and TSP-2 may promote vascular remodeling, in part, by increasing ANGPTL-4, PDGF-BB and their own expression. TSP-5 did not upregulate the inflammatory mediators TSP-1, PDGF-BB or TGF-ß1, but upregulated its own expression, which could be a protective mechanism against the response to vascular injury.
Collapse
Affiliation(s)
- M M Kassem
- SUNY Upstate Medical University, Division of Vascular Surgery and Endovascular Services, Syracuse, New York, USA.
| | | | | | | |
Collapse
|
4
|
Li N, Sanyour H, Remund T, Kelly P, Hong Z. Vascular extracellular matrix and fibroblasts-coculture directed differentiation of human mesenchymal stem cells toward smooth muscle-like cells for vascular tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 93:61-69. [PMID: 30274093 PMCID: PMC11264340 DOI: 10.1016/j.msec.2018.07.061] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 07/23/2018] [Indexed: 02/06/2023]
Abstract
Construction of an artificial vascular graft is widely considered a promising strategy in vascular tissue engineering. However, limited sources of functional vascular smooth muscle cells (VSMCs) remain a major obstacle in vascular tissue engineering. In this study, we innovatively developed an approach to obtain functional VSMCs by onsite differentiating human bone marrow-derived mesenchymal stem cells (MSCs) directed by decellularized extracellular matrix (ECM) and fibroblasts. The resulting cells and ECM-cells constructs were characterized by real time RT-PCR, immunofluorescence staining, cell contractile functions, and migration capacity. Our results showed both ECM and fibroblasts induced MSCs differentiation toward VSMC-like cells with increased transcription of marker genes, upregulated expression of contractile apparatus proteins, and enhanced functional activity of VSMC phenotype. Interestingly, our findings revealed that native ECM and fibroblasts-coculture had a higher potential to promote MSCs differentiation into VSMCs than growth factors cocktail (GFC) supplemented culture, thereby providing a potential source of VSMCs for blood vessel constitution.
Collapse
Affiliation(s)
- Na Li
- Department of Biomedical Engineering, University of South Dakota, SD, United States of America; BioSNTR, Sioux Falls, SD, United States of America
| | - Hanna Sanyour
- Department of Biomedical Engineering, University of South Dakota, SD, United States of America; BioSNTR, Sioux Falls, SD, United States of America
| | - Tyler Remund
- Sanford Health, Sioux Falls, SD, United States of America
| | - Patrick Kelly
- Sanford Health, Sioux Falls, SD, United States of America; School of Medicine, University of South Dakota, SD, United States of America
| | - Zhongkui Hong
- Department of Biomedical Engineering, University of South Dakota, SD, United States of America; BioSNTR, Sioux Falls, SD, United States of America.
| |
Collapse
|
5
|
Tesfamariam B. Periadventitial local drug delivery to target restenosis. Vascul Pharmacol 2017; 107:S1537-1891(17)30235-5. [PMID: 29247786 DOI: 10.1016/j.vph.2017.12.062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/18/2017] [Accepted: 12/07/2017] [Indexed: 10/18/2022]
Abstract
The adventitia functions as a dynamic compartment for cell trafficking into and out of the artery wall, and communicates with medial and intimal cells. The resident cells in the tunica adventitia play an integral role in the regulation of vessel wall structure, repair, tone, and remodeling. Following injury to the vascular wall, adventitial fibroblasts are activated, which proliferate and differentiate into migratory myofibroblasts, and initiate inflammation through the secretion of soluble factors such as chemokines, cytokines, and adhesion molecules. The secreted factors subsequently promote leukocyte recruitment and extravasation into the media and intima. The adventitia generates reactive oxygen species and growth factors that participate in cell proliferation, migration, and hypertrophy, resulting in intimal thickening. The adventitial vasa vasorum undergoes neovascularization and serves as a port of entry for the delivery of inflammatory cells and resident stem/progenitor cells into the intima, and thus facilitates vascular remodeling. This review highlights the contribution of multilineage cells in the adventitia along with de-differentiated smooth muscle-like cells to the formation of neointimal hyperplasia, and discusses the potential of periadventitial local drug delivery for the prevention of vascular restenosis.
Collapse
Affiliation(s)
- Belay Tesfamariam
- Division of Cardiovascular and Renal Products, Center for Drug Evaluation and Research, FDA, 10903 New Hampshire Ave, Bldg 22, Rm 4176, Silver Spring, MD, United States.
| |
Collapse
|