1
|
Corfield R, Allievi MC, Rivero R, López TA, Pérez OE, Salvatori D, Schebor C. An Apple and Acáchul Berry Snack Rich in Bioaccessible Antioxidants and Folic Acid: A Healthy Alternative for Prenatal Diets. Foods 2024; 13:692. [PMID: 38472805 DOI: 10.3390/foods13050692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
A fruit leather (apple and acáchul berry) oriented toward women of reproductive age was developed. The snack was supplemented with an ingredient composed of folic acid (FA) and whey proteins (WPI) to ensure the required vitamin intake to prevent fetal neural tube defects. In order to generate a low-calorie snack, alternative sweeteners were used (stevia and maltitol). The fruit leather composition was determined. Also, an in vitro digestion process was carried out to evaluate the bioaccessibility of compounds with antioxidant capacity (AC), total polyphenols (TPCs), total monomeric anthocyanins (ACY), and FA. The quantification of FA was conducted by a microbiological method and by HPLC. The leather contained carbohydrates (70%) and antioxidant compounds, mainly from fruits. Bioaccessibility was high for AC (50%) and TPCs (90%), and low for ACY (17%). Regarding FA, bioaccessibility was higher for WPI-FA (50%) than for FA alone (37%), suggesting that WPI effectively protected the vitamin from processing and digestion. Furthermore, the product was shown to be non-cytotoxic in a Caco-2 cell model. The developed snack is an interesting option due to its low energy intake, no added sugar, and high content of bioactive compounds. Also, the supplementation with WPI-FA improved the conservation and bioaccessibility of FA.
Collapse
Affiliation(s)
- Rocío Corfield
- Instituto de Tecnología de Alimentos y Procesos Químicos (UBA-CONICET), Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes, s/n, Ciudad Universitaria, Buenos Aires 1428, Argentina
| | - Mariana C Allievi
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (UBA-CONICET), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes, s/n, Ciudad Universitaria, Buenos Aires 1428, Argentina
| | - Roy Rivero
- Instituto de Ciencia y Tecnología de los Alimentos de Entre Ríos (UNER-CONICET), Facultad de Bromatología, Universidad Nacional de Entre Ríos, J. D. Perón 1154, Gualeguaychú 2820, Argentina
| | - Tamara A López
- Instituto de Ciencia y Tecnología de los Alimentos de Entre Ríos (UNER-CONICET), Facultad de Bromatología, Universidad Nacional de Entre Ríos, J. D. Perón 1154, Gualeguaychú 2820, Argentina
| | - Oscar E Pérez
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (UBA-CONICET), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes, s/n, Ciudad Universitaria, Buenos Aires 1428, Argentina
| | - Daniela Salvatori
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología, y Energías Alternativas (UNCO-CONICET), Universidad Nacional del Comahue, Buenos Aires 1400, Neuquén 8300, Argentina
| | - Carolina Schebor
- Instituto de Tecnología de Alimentos y Procesos Químicos (UBA-CONICET), Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes, s/n, Ciudad Universitaria, Buenos Aires 1428, Argentina
| |
Collapse
|
2
|
Bao T, Karim N, Ke H, Tangpong J, Chen W. Polysaccharide isolated from wax apple suppresses ethyl carbamate-induced oxidative damage in human hepatocytes. J Zhejiang Univ Sci B 2023; 24:574-586. [PMID: 37455135 PMCID: PMC10350369 DOI: 10.1631/jzus.b2200629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/27/2023] [Indexed: 06/27/2023]
Abstract
Wax apple (Syzygium samarangense) has received growing research interest for its high nutritional and medicinal value due to its constituents such as polysaccharide, organic acids, flavonoids, minerals, and other substances. In this study, wax apple polysaccharide (WAP) was isolated from this plant and its protective effect against ethyl carbamate (EC)-induced oxidative damage was evaluated in human hepatocytes (L02 cells). Firstly, a series of analyses such as high-performance liquid chromatography (HPLC), high-performance gel permeation chromatography (HPGPC), Fourier transform infrared spectroscopy (FT-IR), gas chromatography/mass spectrometry (GC/MS), and 1H and 13C nuclear magnetic resonance (NMR) were conducted to identify the structure of WAP. Thereafter, in vitro cell experiments were performed to verify the protective effects of WAP against EC-induced cytotoxicity, genotoxicity, and oxidative damage in L02 cells. Our results revealed that WAP is composed of mannose, rhamnose, glucuronic acid, galacturonic acid, glucose, galactose, arabinose, and fucose in a molar ratio of 2.20:3.94:4.45:8.56:8.86:30.82:39.78:1.48. Using a combination of methylation and NMR spectroscopic analysis, the primary structure of WAP was identified as Araf-(1→, Glcp-(1→, →2)-Araf-(1→, →3)-Galp-(1→, →3)-Araf-(1→, and →6)-Galp-(1→. Cell experiments indicated that WAP exhibited significant protective effects on EC-treated L02 cells via suppressing cytotoxicity and genotoxicity, reducing reactive oxygen species (ROS) and O2•- formation, as well as improving mitochondrial membrane potential (MMP) and glutathione (GSH). In a nutshell, WAP has the potential as an important therapeutic agent or supplement for hepatic oxidative damage. Meanwhile, further studies are needed to prove the above effects in vivo at the biological and clinical levels.
Collapse
Affiliation(s)
- Tao Bao
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Naymul Karim
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Huihui Ke
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Jitbanjong Tangpong
- Biomedical Sciences, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80161, Thailand
| | - Wei Chen
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China.
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China.
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China.
| |
Collapse
|
3
|
Deng H, Ji L, Han X, Wu T, Han B, Li C, Zhan J, Huang W, You Y. Research progress on the application of different controlling strategies to minimizing ethyl carbamate in grape wine. Compr Rev Food Sci Food Saf 2023; 22:1495-1516. [PMID: 36856535 DOI: 10.1111/1541-4337.13119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 01/15/2023] [Accepted: 01/22/2023] [Indexed: 03/02/2023]
Abstract
Ethyl carbamate (EC) is a probable carcinogenic compound commonly found in fermented foods and alcoholic beverages and has been classified as a category 2A carcinogen by the International Agency for Research on Cancer (IARC). Alcoholic beverages are one of the main sources of EC intake by humans. Therefore, many countries have introduced a standard EC limit in alcoholic beverages. Wine is the second largest alcoholic beverage in the world after beer and is loved by consumers for its rich taste. However, different survey results showed that the detection rate of EC in wine was almost 100%, while the maximum content was as high as 100 μg/L, necessitating EC content regulation in wine. The existing methods for controlling the EC level in wine mainly include optimizing raw fermentation materials and processes, using genetically engineered strains, and enzymatic methods (urease or urethanase). This review focused on introducing and comparing the advantages, disadvantages, and applicability of methods for controlling EC, and proposes two possible new techniques, that is, changing the fermentation strain and exogenously adding phenolic compounds. In the future, it is hoped that the feasibility of this prospect will be verified by pilot-scale or large-scale application to provide new insight into the regulation of EC during wine production. The formation mechanism and influencing factors of EC in wine were also introduced and the analytical methods of EC were summarized.
Collapse
Affiliation(s)
- Huan Deng
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Lin Ji
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Xiaoyu Han
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Tianyang Wu
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Bing Han
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Chenyu Li
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China.,School of Advanced Agricultural Sciences, Peking University, Beijing, China.,Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua, China
| | - Jicheng Zhan
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Weidong Huang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Yilin You
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Li J, Ge H, Xu Y, Xie J, Yan F, Chen W. Geniposide Alleviates Oxidative Damage in Hepatocytes through Regulating miR-27b-3p/Nrf2 Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11544-11553. [PMID: 36084288 DOI: 10.1021/acs.jafc.2c03856] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Geniposide (GEN), a main compound extracted from Gardenia jasminoides fruit, has various biological activities including anti-inflammation, cellular damage alleviation, neuroprotection, and others. However, the effect of GEN on oxidative stress in hepatic cells is yet to be investigated. Our study uncovered that GEN eliminated excess intracellular free radicals by activating the Nrf2/ARE signaling pathway in H2O2-treated hepatocytes, while the protective effect was blocked by ML385 (an inhibitor of Nrf2). Moreover, H2O2 led to upregulation of miR-27b-3p in L02 cells, which was restrained by GEN. Overexpression of miR-27b-3p greatly weakened the antioxidant capacity of GEN in hepatocytes via directly targeting the Nrf2 gene. Our findings indicated that GEN treatment recovered H2O2-induced oxidative stress via targeting miR-27b-3p and thereby enhanced the antioxidant capacity by stimulating nuclear translocation and accumulation of Nrf2. These findings suggest that inhibition of miR-27b-3p to activate the Nrf2/ARE pathway by GEN is a potential alternative for hepatic oxidative damage alleviation.
Collapse
Affiliation(s)
- Jiaxin Li
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Hengju Ge
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yang Xu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jiahong Xie
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Fujie Yan
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Wei Chen
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| |
Collapse
|
5
|
Bao T, Karim N, Xie L, Xie J, Chen W. Simulated gastrointestinal digestion and colonic fermentation of blue honeysuckle: Phenolic profile and protectivity on ethyl carbamate-induced oxidative damage. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Liović N, Čikeš‐Čulić V, Fredotović Ž, Krešić G, Bilušić T. The effect of processing techniques on the antiproliferative activity of blueberry phenolics before and after in vitro digestion. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nikolina Liović
- Department of Food and Nutrition Faculty of Tourism and Hospitality Management University of Rijeka Opatija Croatia
| | | | | | - Greta Krešić
- Department of Food and Nutrition Faculty of Tourism and Hospitality Management University of Rijeka Opatija Croatia
| | - Tea Bilušić
- Faculty of Chemistry and Technology University of Split Split Croatia
| |
Collapse
|
7
|
The complete chloroplast genome sequence of Rubus hirsutus Thunb. and a comparative analysis within Rubus species. Genetica 2021; 149:299-311. [PMID: 34546501 DOI: 10.1007/s10709-021-00131-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 08/18/2021] [Indexed: 11/27/2022]
Abstract
Rubus hirsutus is a type of tonifying kidney-essence herb that belongs to the Rosaceae family, and has been commonly used to treat multiple diseases, such as polyuria, impotence, and infertility. In this study, we determined the complete chloroplast sequence of R. hirsutus and conduced a comparative analysis within the genus Rubus. The assembled chloroplast (cp.) genome is 156,380 bp in length with a GC content of 37.0% and shares a conserved quadripartite structure within the other cp. genomes in this genus. A total of 132 unique genes were annotated in the cp. genome of R. hirsutus, which contained 87 protein-coding genes, 37 tRNAs, and eight rRNAs. Seventeen duplicated genes were identified in the inverted repeats region. Furthermore, 70 simple sequence repeats and 35 long repeats were detected in total in the R. hirsutus chloroplast genome. Eight mutational hotspots were identified in the cp. genome of this species with higher nucleotide variations in non-coding regions than those of coding regions. Furthermore, the gene order, codon usage, and repeat sequence distribution were highly consistent in Rubus according to the results of a comparative analysis. A phylogenetic analysis indicated that there was a sister relationship between R. hirsutus and R. chingii. Overall, the complete chloroplast genome of R. hirsutus and the comparative analysis will help to further the evolutionary study, conservation, phylogenetic reconstruction, and development of molecular barcodes for the genus Rubus.
Collapse
|
8
|
Rai DK, Tzima K. A Review on Chromatography-Mass Spectrometry Applications on Anthocyanin and Ellagitannin Metabolites of Blackberries and Raspberries. Foods 2021; 10:foods10092150. [PMID: 34574260 PMCID: PMC8467619 DOI: 10.3390/foods10092150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 12/18/2022] Open
Abstract
Berries have been widely assessed for their beneficial health effects, predominately due to their high (poly)phenol content of anthocyanins and ellagitannins. After ellagitannins and ellagic acid are metabolized by the gut microbiome, a class of compounds known as urolithins are produced, which exert potential advantageous health effects. Anthocyanins, on the other hand, undergo a complex metabolic pathway after their interaction with microbial and endogenous enzymes, forming a broad range of metabolites and catabolic products. In most cases, in vitro models and cell lines are used to generate metabolites, whereas their assessment in vivo is currently limited. Thus far, several analytical methods have been developed for the qualitative and quantitative analysis of phenolic metabolites in berries, including liquid chromatography, mass spectrometry, and other hyphenated techniques, and have been undoubtedly valuable tools for the detailed metabolite characterization and profiling. In this review, a compilation of studies providing information on the qualitative and quantitative analysis of (poly)phenol metabolites in blackberries and raspberries after the utilization of in vitro and in vivo methods is presented. The different analytical techniques employed are assessed, focusing on the fate of the produced metabolic compounds in order to provide evidence on their characteristics, formation, and beneficial effects.
Collapse
|
9
|
Li Y, Ye X, Zheng X, Chen W. Transcription factor EB (TFEB)-mediated autophagy protects against ethyl carbamate-induced cytotoxicity. JOURNAL OF HAZARDOUS MATERIALS 2019; 364:281-292. [PMID: 30384237 DOI: 10.1016/j.jhazmat.2018.10.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/07/2018] [Accepted: 10/12/2018] [Indexed: 06/08/2023]
Abstract
Ethyl carbamate (EC) is thought to be a toxicant that widely exists in cigarette smoke and polluted air, as well as fermented food and alcoholic beverages. However, the mechanism and approach to treat hepatic damage after EC exposure remain unclear. Here, we first found that EC caused decreased cell viability, reactive oxygen species (ROS) overproduction and glutathione (GSH) depletion in normal human hepatocytes L02 cells. Excessive ROS generation was found to be one of the major reasons for cell cytotoxicity of EC treatment. Furthermore, increased ROS levels also promoted autophagy, a lysosomal degradation process, which was confirmed by detection of LC3-II expression and puncta in GFP-RFP-LC3 transfection assay. Autophagy inhibitor chloroquine (CQ) pretreatment led to decreased cell viability and higher ROS levels compared with EC group, suggesting that autophagy protected EC-treated cells against oxidative stress and cytotoxicity. Notably, we observed increased lysosomal biogenesis and activation of transcription factor EB (TFEB), a master regulator of lysosomal generation, in the process of autophagy. Taken together, we unveiled a novel mechanism of hepatotoxicity and endogenous potent protection of TFEB-mediated autophagy against decreased cell viability and redox disturbance under EC exposure in normal human hepatocytes.
Collapse
Affiliation(s)
- Yuting Li
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Xiang Ye
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Wei Chen
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
10
|
Gowd V, Bao T, Wang L, Huang Y, Chen S, Zheng X, Cui S, Chen W. Antioxidant and antidiabetic activity of blackberry after gastrointestinal digestion and human gut microbiota fermentation. Food Chem 2018; 269:618-627. [DOI: 10.1016/j.foodchem.2018.07.020] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/13/2018] [Accepted: 07/02/2018] [Indexed: 01/04/2023]
|
11
|
Phytochemical Composition and Cytotoxic Effects on Liver Hepatocellular Carcinoma Cells of Different Berries Following a Simulated In Vitro Gastrointestinal Digestion. Molecules 2018; 23:molecules23081918. [PMID: 30071616 PMCID: PMC6222530 DOI: 10.3390/molecules23081918] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/23/2018] [Accepted: 07/26/2018] [Indexed: 01/10/2023] Open
Abstract
Berry fruits are rich in nutrients and polyphenols, providing potential health benefits. Understanding the factors that affect their bioavailability is becoming of utmost importance for evaluating their biological significance and efficacy as functional food. In this study, the phytochemical composition and the total antioxidant capacity of different varieties of five berries (blackberry, blackcurrant, blueberry, raspberry, and strawberry) were evaluated after an in vitro gastrointestinal digestion process. The cultivar of each berry that showed the higher content of total phenols and flavonoids was selected to study its cytotoxic effect on human hepatoma cells. Digestion resulted in a high reduction (p ˂ 0.05) of total phenolic, flavonoid and anthocyanin contents and total antioxidant capacity, in the “IN” samples compared to the “OUT” extracts, which represent the “serum-available” and the “colon-available” fractions, respectively. Incubation of the digested fraction for 24 h didn’t exert any effect on cellular viability, while a dose- and time-dependent cytotoxicity was observed after 48 h and 72 h of incubation for all the berries analyzed. Our results suggest that the approach proposed in this work may represent a rapid tool for evaluating and identifying new berries with increased phytochemical bioavailability, highlighting their antiproliferative agents after an in vitro digestion.
Collapse
|
12
|
An effective method for preparation of high-purity pelargonidin-3-O-glucoside from strawberry and its protective effect on cellular oxidative stress. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1072:211-220. [DOI: 10.1016/j.jchromb.2017.11.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 11/13/2017] [Accepted: 11/18/2017] [Indexed: 12/16/2022]
|
13
|
Ethyl carbamate: An emerging food and environmental toxicant. Food Chem 2017; 248:312-321. [PMID: 29329860 DOI: 10.1016/j.foodchem.2017.12.072] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 11/28/2017] [Accepted: 12/20/2017] [Indexed: 11/21/2022]
Abstract
Ethyl carbamate (EC), a chemical substance widely present in fermented food products and alcoholic beverages, has been classified as a Group 2A carcinogen by the International Agency for Research on Cancer (IARC). New evidence indicates that long-term exposure to EC may cause neurological disorders. Formation of EC in food and its metabolism have therefore been studied extensively and analytical methods for EC in various food matrices have been established. Due to the potential threat of EC to human health, mitigation strategies for EC in food products by physical, chemical, enzymatic, and genetic engineering methods have been developed. Natural products are suggested to provide protection against EC-induced toxicity through the modulation of oxidative stress. This review summarizes knowledge on the formation and metabolism of EC, detection of EC in food products, toxic effects of EC on various organs, and mitigation strategies including prevention of EC-induced tumorigenesis and genotoxicity by natural products.
Collapse
|
14
|
Systematic evaluation of bioactive components and antioxidant capacity of some new and common bayberry cultivars using an in vitro gastrointestinal digestion method. Food Res Int 2017; 103:326-334. [PMID: 29389622 DOI: 10.1016/j.foodres.2017.10.062] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/25/2017] [Accepted: 10/28/2017] [Indexed: 02/08/2023]
Abstract
This study was aimed to investigate the impact of in vitro gastrointestinal digestion on some common and new bayberry cultivars. The contents of total phenolics (246-669mg gallic acid equivalents/kg FW (fresh weight)), flavonoids (116-689mg quercetin-3-O-rutinoside equivalents/kg FW), procyanidins (28-133mg catechin equivalents/kg FW) and anthocyanins (1-7mg cyaniding-3-O-glucoside equivalents/kg FW) were detected in digested cultivars. HPLC-TOF-MS analysis identified 17 phenolic compounds in digested sample. Among all digested cultivars, the new cultivars Anhaizaomei (ABTS, IC50=2.95mg/mL; FRAP, 401.32mg vitamin C equivalents (VCE)/kg FW) and Yingsi (ABTS, IC50=3.28mg/mL; FRAP, 400.81mg VCE/kg FW) showed better in vitro antioxidant capacity. Further cellular assay indicated that the common cultivar Dongkui (2mg/mL) possessed the strongest ROS scavenging activity. The comprehensive evaluation of bioactive components and antioxidant properties using principal component analysis suggests that common cultivar Dongkui, new cultivars Yingsi and Anhaizaomei could be considered as dietary supplements.
Collapse
|
15
|
Gowd V, Jia Z, Chen W. Anthocyanins as promising molecules and dietary bioactive components against diabetes – A review of recent advances. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.07.015] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
16
|
|
17
|
Mulberry Fruit Extract Affords Protection against Ethyl Carbamate-Induced Cytotoxicity and Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1594963. [PMID: 28819542 PMCID: PMC5551560 DOI: 10.1155/2017/1594963] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/12/2017] [Indexed: 02/08/2023]
Abstract
Ethyl carbamate (EC) is a food and environmental toxicant and is a cause of concern for human exposure. Several studies indicated that EC-induced toxicity was associated with oxidative stress. Mulberry fruits are reported to have a wide range of bioactive compounds and pharmacological activities. The present study was therefore aimed to investigate the protective property of mulberry fruit extract (MFE) on EC-induced cytotoxicity and oxidative stress. Chemical composition analysis showed that total phenolic content and total flavonoid content in MFE were 502.43 ± 5.10 and 219.12 ± 4.45 mg QE/100 g FW. Cyanidin-3-O-glucoside and cyanidin-3-O-rutinoside were the major anthocyanins in MFE. In vitro antioxidant studies (DPPH, ABTS, and FRAP assays) jointly exhibited the potent antioxidant capacity of MFE. Further study indicated that MFE protected human liver HepG2 cells from EC-induced cytotoxicity by scavenging overproduced cellular ROS. EC treatment promoted intracellular glutathione (GSH) depletion and caused mitochondrial membrane potential (MMP) collapse, as well as mitochondrial membrane lipid peroxidation, whereas MFE pretreatment significantly inhibited GSH depletion and restored the mitochondrial membrane function. Overall, our study suggested that polyphenolic-rich MFE could afford a potent protection against EC-induced cytotoxicity and oxidative stress.
Collapse
|
18
|
Bao T, Wang Y, Li YT, Gowd V, Niu XH, Yang HY, Chen LS, Chen W, Sun CD. Antioxidant and antidiabetic properties of tartary buckwheat rice flavonoids after in vitro digestion. J Zhejiang Univ Sci B 2017; 17:941-951. [PMID: 27921399 DOI: 10.1631/jzus.b1600243] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Oxidative stress and diabetes have a tendency to alter protein, lipid, and DNA moieties. One of the strategic methods used to reduce diabetes-associated oxidative stress is to inhibit the carbohydrate-digesting enzymes, thereby decreasing gastrointestinal glucose production. Plant-derived natural antioxidant molecules are considered a therapeutic tool in the treatment of oxidative stress and diabetes. The objective of this study was to identify tartary buckwheat rice flavonoids and evaluate the effect of in vitro digestion on their antioxidant and antidiabetic properties. High performance liquid chromatography (HPLC) analysis indicated the presence of rutin as a major component and quercitrin as a minor component of both digested and non-digested flavonoids. Both extracts showed a significant antioxidant capacity, but digested flavonoids showed reduced activity compared to non-digested. There were some decreases of the antioxidant activities (2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt (ABTS), 2,2-diphenyl-1-picrylhydrazy (DPPH) radical, and ferric reducing antioxidant power (FRAP)) of digested tartary buckwheat rice flavonoids compared with non-digested. Flavonoids from both groups significantly inhibited reactive oxygen species (ROS) production and α-glucosidase activity. Both digested and non-digested flavonoids markedly increased glucose consumption and glycogen content in HepG2 cells. Tartary buckwheat rice flavonoids showed appreciable antioxidant and antidiabetic properties, even after digestion. Tartary buckwheat rice appears to be a promising functional food with potent antioxidant and antidiabetic properties.
Collapse
Affiliation(s)
- Tao Bao
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Ye Wang
- Nutrition and Health Research Institute, COFCO Ltd., Beijing 102209, China
| | - Yu-Ting Li
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Vemana Gowd
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Xin-He Niu
- Nutrition and Health Research Institute, COFCO Ltd., Beijing 102209, China
| | - Hai-Ying Yang
- Nutrition and Health Research Institute, COFCO Ltd., Beijing 102209, China
| | - Li-Shui Chen
- Nutrition and Health Research Institute, COFCO Ltd., Beijing 102209, China
| | - Wei Chen
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Chong-de Sun
- Laboratory of Fruit Quality Biology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, the State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
19
|
A recyclable protein resource derived from cauliflower by-products: Potential biological activities of protein hydrolysates. Food Chem 2017; 221:114-122. [DOI: 10.1016/j.foodchem.2016.10.053] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 10/07/2016] [Accepted: 10/12/2016] [Indexed: 01/18/2023]
|
20
|
Comparative study on phenolics and antioxidant property of some new and common bayberry cultivars in China. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
21
|
Chen W, Xu Y, Zhang L, Su H, Zheng X. Blackberry subjected to in vitro gastrointestinal digestion affords protection against Ethyl Carbamate-induced cytotoxicity. Food Chem 2016; 212:620-7. [DOI: 10.1016/j.foodchem.2016.06.031] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 06/03/2016] [Accepted: 06/11/2016] [Indexed: 12/30/2022]
|
22
|
Systematic study on phytochemicals and antioxidant activity of some new and common mulberry cultivars in China. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.07.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|