1
|
da Silva GMA, Wagner MJ, Hatami S, Hassanzadeh P, Wang X, Adam BA, Nagendran J, Freed DH. Evaluation of target temperature on effectiveness of myocardial preservation during hypothermic machine perfusion. JHLT OPEN 2025; 8:100234. [PMID: 40144719 PMCID: PMC11935436 DOI: 10.1016/j.jhlto.2025.100234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Background Ex-situ heart perfusion (ESHP) has been proposed as an optimal method for preserving donated hearts prior to transplantation. Hypothermic oxygenated perfusion (HOP) is a simple method from a device design perspective, with enhanced safety compared to normothermic perfusion in the event of device failure. However, the optimal temperature for cardiac HOP has yet to be determined. We evaluated the effectiveness of 12-hour HOP using University of Wisconsin Machine Perfusion Solution (UWMPS) in different temperatures compared to static cold storage (SCS) for 6 hours followed by simulated transplantation. Additionally, we sought to determine the impact of oxygen supplementation in hypothermic ESHP in the heart function preservation. Methods Hearts were procured from Yorkshire pigs (n = 35) randomized into 3 preservation therapies: 6 hours-SCS; 12 hours-HOP and 12 hours hypothermic non-oxygenated perfusion (HNOP-without oxygen supplementation). For either HOP or HNOP groups, 3 temperatures were tested (5°C; 10°C; 15°C). After the preservation period, hearts had their function assessed in a normothermic perfusion machine capable of working mode, simulating transplantation. Results All perfusion parameters were stable throughout (mean ± SD): aortic flow 65 ± 5.57 ml/min, aortic pressure: 11.51 ± 3.17 mm Hg. All HOP hearts presented a better cardiac index than SCS (p < 0.05). The HNOP hearts presented similar cardiac function results compared to SCS. Conclusions HOP for 12 hours had better heart function preservation than SCS for 6 hours. Even HNOP had similar results compared to SCS. Greater edema formation in ESHP hearts did not affect heart function. Hypothermic ESHP safely enhances function preservation compared to SCS.
Collapse
Affiliation(s)
| | - Mitchell J. Wagner
- Department of Surgery, Faculty of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Sanaz Hatami
- Department of Surgery, Faculty of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Parham Hassanzadeh
- Department of Surgery, Faculty of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Xiuhua Wang
- Department of Surgery, Faculty of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Benjamin A. Adam
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Jayan Nagendran
- Division of Cardiac Surgery, Department of Surgery, Faculty of Medicine, University of Alberta, Edmonton, Alberta, Canada
- Mazankowski Alberta Heart Institute, Edmonton, Alberta, Canada
- Alberta Transplant Institute, Edmonton, Alberta, Canada
- Canadian Donation and Transplantation Research Program, Edmonton, Alberta, Canada
| | - Darren H. Freed
- Division of Cardiac Surgery, Department of Surgery, Faculty of Medicine, University of Alberta, Edmonton, Alberta, Canada
- Mazankowski Alberta Heart Institute, Edmonton, Alberta, Canada
- Alberta Transplant Institute, Edmonton, Alberta, Canada
- Canadian Donation and Transplantation Research Program, Edmonton, Alberta, Canada
| |
Collapse
|
2
|
Anastasiadi AT, Stamoulis K, Kriebardis AG, Tzounakas VL. Molecular modifications to mitigate oxidative stress and improve red blood cell storability. Front Physiol 2024; 15:1499308. [PMID: 39539958 PMCID: PMC11557539 DOI: 10.3389/fphys.2024.1499308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
The development of red blood cell (RBC) storage lesion during hypothermic storage has long posed challenges for blood transfusion efficacy. These alterations are primarily driven by oxidative stress, concern both structural and biochemical aspects of RBCs, and affect their interactions with the recipient's tissues post-transfusion. Efforts to counteract these effects focus on improving the antioxidant capacity within stored RBCs, reducing oxygen exposure, and scavenging harmful molecules that accumulate during storage. Various supplements, such as ascorbic acid, N-acetylcysteine, polyphenolic compounds, and specific metabolites have shown the potential to improve RBC quality by reducing oxidative lesions and lysis phenomena, and enhancing antioxidant, energy, or proteostasis networks. Accordingly, anaerobic storage has emerged as a promising strategy, demonstrating improved RBC storability and recovery in both animal models and preliminary human studies. Finally, targeted scavenging of harmful storage-related phenotypes and molecules, like removal signals, oxidized proteins, and extracellular hemoglobin, while not so studied, also has the potential to benefit both the unit and the patient in need. Omics technologies have aided a lot in these endeavors by revealing biomarkers of superior storability and, thus, potential novel supplementation strategies. Nonetheless, while the so far examined storage modifications show significant promise, there are not many post-transfusion studies (either in vitro, in animal models, or humans) to evaluate RBC efficacy in the transfusion setting. Looking ahead, the future of blood storage and transfusion will likely depend on the optimization of these interventions to extend the shelf-life and quality of stored RBCs, as well as their therapeutic outcome.
Collapse
Affiliation(s)
| | | | - Anastasios G. Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health and Welfare Sciences, University of West Attica (UniWA), Egaleo, Greece
| | - Vassilis L. Tzounakas
- Department of Biochemistry, School of Medicine, University of Patras, Patras, Greece
| |
Collapse
|
3
|
Zhu K, Wang L, Xiao Y, Zhang X, You G, Chen Y, Wang Q, Zhao L, Zhou H, Chen G. Nanomaterial-related hemoglobin-based oxygen carriers, with emphasis on liposome and nano-capsules, for biomedical applications: current status and future perspectives. J Nanobiotechnology 2024; 22:336. [PMID: 38880905 PMCID: PMC11180412 DOI: 10.1186/s12951-024-02606-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024] Open
Abstract
Oxygen is necessary for life and plays a key pivotal in maintaining normal physiological functions and treat of diseases. Hemoglobin-based oxygen carriers (HBOCs) have been studied and developed as a replacement for red blood cells (RBCs) in oxygen transport due to their similar oxygen-carrying capacities. However, applications of HBOCs are hindered by vasoactivity, oxidative toxicity, and a relatively short circulatory half-life. With advancements in nanotechnology, Hb encapsulation, absorption, bioconjugation, entrapment, and attachment to nanomaterials have been used to prepare nanomaterial-related HBOCs to address these challenges and pend their application in several biomedical and therapeutic contexts. This review focuses on the progress of this class of nanomaterial-related HBOCs in the fields of hemorrhagic shock, ischemic stroke, cancer, and wound healing, and speculates on future research directions. The advancements in nanomaterial-related HBOCs are expected to lead significant breakthroughs in blood substitutes, enabling their widespread use in the treatment of clinical diseases.
Collapse
Affiliation(s)
- Kai Zhu
- Academy of Military Medical Sciences, Beijing, 100850, China
| | - Lijun Wang
- Academy of Military Medical Sciences, Beijing, 100850, China
- Department of Morphology Laboratory, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041, China
| | - Yao Xiao
- Academy of Military Medical Sciences, Beijing, 100850, China
| | - Xiaoyong Zhang
- Academy of Military Medical Sciences, Beijing, 100850, China
| | - Guoxing You
- Academy of Military Medical Sciences, Beijing, 100850, China
| | - Yuzhi Chen
- Academy of Military Medical Sciences, Beijing, 100850, China
| | - Quan Wang
- Academy of Military Medical Sciences, Beijing, 100850, China
| | - Lian Zhao
- Academy of Military Medical Sciences, Beijing, 100850, China.
| | - Hong Zhou
- Academy of Military Medical Sciences, Beijing, 100850, China.
| | - Gan Chen
- Academy of Military Medical Sciences, Beijing, 100850, China.
| |
Collapse
|
4
|
Zhou FQ. Advantages of pyruvate-based fluids in preclinical shock resuscitation-A narrative review. Front Physiol 2022; 13:1027440. [PMID: 36505043 PMCID: PMC9732738 DOI: 10.3389/fphys.2022.1027440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/02/2022] [Indexed: 11/22/2022] Open
Abstract
This review focuses on the innate beneficial effects of sodium pyruvate-based fluids, including pyruvate in intravenous solutions, oral rehydration solutions, and peritoneal dialysis solutions, on shock resuscitation with various animal models relative to current commercial fluids over the last two decades. Due to its superior pharmacological properties, pyruvate effectively sustains cytosolic glycolytic pathways and mitochondrial oxidative phosphorylation by restoration of redox potentials and reactivation of pyruvate dehydrogenase in hypoxia, even anoxia, and diabetes, reversing the Warburg effect and diabetic glucometabolic aberration. Pyruvate has been demonstrated to protect against multiorgan dysfunction and metabolic disturbance in numerous preclinical studies with various pathogenic injuries. The unique features of pyruvate potential clinical benefits encompass to efficiently correct lethal lactic acidosis via metabolically rapid consumption of intracellular [H+] and robustly protect multiorgan metabolism and function, particularly visceral organs in addition to the heart and brain, significantly prolonging survival in various animal models. Pyruvate protection of red blood cell function and preservation of the partial pressure of arterial oxygen should be highly concerned in further studies. Pyruvate is much advantageous over existing anions such as acetate, bicarbonate, chloride, and lactate in commercial fluids. Pyruvate-based fluids act as a therapeutic agent without causing iatrogenic resuscitation injury in addition to being a volume expander, indicating a potential novel generation of resuscitation fluids, including crystalloids and colloids. Pyruvate-based fluids have an enormous potential appeal for clinicians who face the ongoing fluid debate to readily select as the first resuscitation fluid. Clinical trials with pyruvate-based fluids in shock resuscitation are urgently warranted.
Collapse
Affiliation(s)
- Fang-Qiang Zhou
- Independent Researcher, Las Vegas, NV, United States,Fresenius Medical Care, Chicago, IL, United States,*Correspondence: Fang-Qiang Zhou,
| |
Collapse
|
5
|
Zhou FQ. Pyruvate as a Potential Beneficial Anion in Resuscitation Fluids. Front Med (Lausanne) 2022; 9:905978. [PMID: 35991638 PMCID: PMC9382911 DOI: 10.3389/fmed.2022.905978] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/15/2022] [Indexed: 12/02/2022] Open
Abstract
There have been ongoing debates about resuscitation fluids because each of the current fluids has its own disadvantages. The debates essentially reflect an embarrassing clinical status quo that all fluids are not quite ideal in most clinical settings. Therefore, a novel fluid that overcomes the limitations of most fluids is necessary for most patients, particularly diabetic and older patients. Pyruvate is a natural potent antioxidant/nitrosative and anti-inflammatory agent. Exogenous pyruvate as an alkalizer can increase cellular hypoxia and anoxia tolerance with the preservation of classic glycolytic pathways and the reactivation of pyruvate dehydrogenase activity to promote oxidative metabolism and reverse the Warburg effect, robustly preventing and treating hypoxic lactic acidosis, which is one of the fatal complications in critically ill patients. In animal studies and clinical reports, pyruvate has been shown to play a protective role in multi-organ functions, especially the heart, brain, kidney, and intestine, demonstrating a great potential to improve patient survival. Pyruvate-enriched fluids including crystalloids and colloids and oral rehydration solution (ORS) may be ideal due to the unique beneficial properties of pyruvate relative to anions in contemporary existing fluids, such as acetate, bicarbonate, chloride, citrate, lactate, and even malate. Preclinical studies have demonstrated that pyruvate-enriched saline is superior to 0.9% sodium chloride. Moreover, pyruvate-enriched Ringer’s solution is advantageous over lactated Ringer’s solution. Furthermore, pyruvate as a carrier in colloids, such as hydroxyethyl starch 130/0.4, is more beneficial than its commercial counterparts. Similarly, pyruvate-enriched ORS is more favorable than WHO-ORS in organ protection and shock resuscitation. It is critical that pay attention first to improving abnormal saline with pyruvate for ICU patients. Many clinical trials with a high dose of intravenous or oral pyruvate were conducted over the past half century, and results indicated its effectiveness and safety in humans. The long-term instability of pyruvate aqueous solutions and para-pyruvate cytotoxicity is not a barrier to the pharmaceutical manufacturing of pyruvate-enriched fluids for ICU patients. Clinical trials with sodium pyruvate-enriched solutions are urgently warranted.
Collapse
|
6
|
Ethanol Metabolism in the Liver, the Induction of Oxidant Stress, and the Antioxidant Defense System. Antioxidants (Basel) 2022; 11:antiox11071258. [PMID: 35883749 PMCID: PMC9312216 DOI: 10.3390/antiox11071258] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 12/12/2022] Open
Abstract
The liver metabolizes ethanol through three enzymatic pathways: alcohol dehydrogenase (ADH), cytochrome p450 (also called MEOS), and catalase. Alcohol dehydrogenase class I (ADH1) is considered the most important enzyme for the metabolism of ethanol, MEOS and catalase (CAT) are considered minor alternative pathways. However, contradicting experiments suggest that the non-ADH1 pathway may have a greater relevance for the metabolism of ethanol than previously thought. In some conditions, ethanol is predominately metabolized to acetaldehyde via cytochrome P450 family 2 (CYP2E1), which is involved in the generation of reactive oxygen species (ROS), mainly through electron leakage to oxygen to form the superoxide (O2•−) radical or in catalyzed lipid peroxidation. The CAT activity can also participate in the ethanol metabolism that produces ROS via ethanol directly reacting with the CAT-H2O2 complex, producing acetaldehyde and water and depending on the H2O2 availability, which is the rate-limiting component in ethanol peroxidation. We have shown that CAT actively participates in lactate-stimulated liver ethanol oxidation, where the addition of lactate generates H2O2, which is used by CAT to oxidize ethanol to acetaldehyde. Therefore, besides its known role as a catalytic antioxidant component, the primary role of CAT could be to function in the metabolism of xenobiotics in the liver.
Collapse
|
7
|
Pulliam KE, Joseph B, Makley AT, Caldwell CC, Lentsch AB, Goodman MD, Pritts TA. Improving packed red blood cell storage with a high-viscosity buffered storage solution. Surgery 2022; 171:833-842. [PMID: 34974917 PMCID: PMC8887606 DOI: 10.1016/j.surg.2021.11.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/17/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Massive transfusion with older packed red blood cells is associated with increased morbidity and mortality. As packed red blood cells age, they undergo biochemical and structural changes known as the storage lesion. We developed a novel solution to increase viscosity in stored packed red blood cells. We hypothesized that packed red blood cell storage in this solution would blunt storage lesion formation and mitigate the inflammatory response after resuscitation. METHODS Blood was obtained from 8- to 10-week-old C57BL/6 male donor mice or human volunteers and stored as packed red blood cell units for 14 days for mice or 42 days for humans in either standard AS-3 storage solution or EAS-1587, the novel packed red blood cell storage solution. Packed red blood cells were analyzed for microvesicles, cell-free hemoglobin, phosphatidylserine, band-3 protein, glucose utilization, and osmotic fragility. Additional mice underwent hemorrhage and resuscitation with packed red blood cells stored in either AS-3 or EAS-1587. Serum was analyzed for inflammatory markers. RESULTS Murine packed red blood cells stored in EAS-1587 demonstrated reductions in microvesicle and cell-free hemoglobin accumulation as well as preserved band-3 expression, increase glucose utilization, reductions in phosphatidylserine expression, and susceptibility to osmotic stress. Serum from mice resuscitated with packed red blood cells stored in EAS-1587 demonstrated reduced proinflammatory cytokines. Human packed red blood cells demonstrated a reduction in microvesicle and cell-free hemoglobin as well as an increase in glucose utilization. CONCLUSION Storage of packed red blood cells in a novel storage solution mitigated many aspects of the red blood cell storage lesion as well as the inflammatory response to resuscitation after hemorrhage. This modified storage solution may lead to improvement of packed red blood cell storage and reduce harm after massive transfusion.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Timothy A Pritts
- From the Section of General Surgery, Department of Surgery, University of Cincinnati, OH.
| |
Collapse
|
8
|
Zhou FQ. NAD +, Senolytics, or Pyruvate for Healthy Aging? Nutr Metab Insights 2021; 14:11786388211053407. [PMID: 34720589 PMCID: PMC8552375 DOI: 10.1177/11786388211053407] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 09/25/2021] [Indexed: 12/17/2022] Open
Abstract
In last decades, healthy aging has become one of research hotspots in life science. It is well known that the nicotinamide adenine dinucleotide oxidized form (NAD+) level in cells decreases with aging and aging-related diseases. Several years ago, one of NAD+ precursors was first demonstrated with its new role in DNA damage repairing in mice, restoring old mice to their physical state at young ones. The finding encourages extensive studies in animal models and patients. NAD+ and its precursors have been popular products in nutrition markets. Alternatively, it was also evidenced that clearance of cellular senescence by senolytics preserved multiorgan (kidney and heart) function and extended healthy lifespan in mice. Subsequent studies confirmed findings in elderly patients subjected with idiopathic pulmonary fibrosis. The senolytic therapy is now focused on various diseases in animal and clinical studies. However, pyruvate, as both a NAD+ substitute and a new senolytic, may be advantageous, on the equimolar basis, over current products above in preventing and treating diseases and aging. Pyruvate-enriched fluids, particularly pyruvate oral rehydration salt, may be a novel intervention for diseases and aging besides critical care. Albeit the direct evidence that benefits healthy aging is still limited to date, pyruvate, as both NAD+ provider and senolytic agent, warrants intensive research to compare NAD+ or senolytics for healthy aging, specifically on the equimolar basis, in effective blood levels. This review briefly discussed the recognition of healthy aging by comparing NAD+ and Senolytics with sodium pyruvate from the clinical point of view.
Collapse
|
9
|
Siman-Tov R, Zelikson N, Caspi M, Levi Y, Perry C, Khair F, Stauber H, Sznitman J, Rosin-Arbesfeld R. Circulating Wnt Ligands Activate the Wnt Signaling Pathway in Mature Erythrocytes. Arterioscler Thromb Vasc Biol 2021; 41:e243-e264. [PMID: 33626913 DOI: 10.1161/atvbaha.120.315413] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Ronen Siman-Tov
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Israel (R.S.-T., N.Z., M.C., Y.L., C.P., F.K., R.R.-A.)
| | - Natalie Zelikson
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Israel (R.S.-T., N.Z., M.C., Y.L., C.P., F.K., R.R.-A.)
| | - Michal Caspi
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Israel (R.S.-T., N.Z., M.C., Y.L., C.P., F.K., R.R.-A.)
| | - Yakir Levi
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Israel (R.S.-T., N.Z., M.C., Y.L., C.P., F.K., R.R.-A.)
| | - Chava Perry
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Israel (R.S.-T., N.Z., M.C., Y.L., C.P., F.K., R.R.-A.)
- BMT Unit, Institute of Hematology, Tel-Aviv Sourasky Medical Center, Israel (C.P.)
| | - Fayhaa Khair
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Israel (R.S.-T., N.Z., M.C., Y.L., C.P., F.K., R.R.-A.)
| | - Hagit Stauber
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa (H.S., J.S.)
| | - Josué Sznitman
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa (H.S., J.S.)
| | - Rina Rosin-Arbesfeld
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Israel (R.S.-T., N.Z., M.C., Y.L., C.P., F.K., R.R.-A.)
| |
Collapse
|
10
|
Abstract
Influenza A virus (IAV) causes seasonal epidemics annually and pandemics every few decades. Most antiviral treatments used for IAV are only effective if administered during the first 48 h of infection and antiviral resistance is possible. Therapies that can be initiated later during IAV infection and that are less likely to elicit resistance will significantly improve treatment options. Pyruvate, a key metabolite, and an end product of glycolysis, has been studied for many uses, including its anti-inflammatory capabilities. Sodium pyruvate was recently shown by us to decrease inflammasome activation during IAV infection. Here, we investigated sodium pyruvate’s effects on IAV in vivo. We found that nebulizing mice with sodium pyruvate decreased morbidity and weight loss during infection. Additionally, treated mice consumed more chow during infection, indicating improved symptoms. There were notable improvements in pro-inflammatory cytokine production (IL-1β) and lower virus titers on day 7 post-infection in mice treated with sodium pyruvate compared to control animals. As pyruvate acts on the host immune response and metabolic pathways and not directly on the virus, our data demonstrate that sodium pyruvate is a promising treatment option that is safe, effective, and unlikely to elicit antiviral resistance.
Collapse
|
11
|
Abusalamah H, Reel JM, Lupfer CR. Pyruvate affects inflammatory responses of macrophages during influenza A virus infection. Virus Res 2020; 286:198088. [PMID: 32634445 PMCID: PMC7345311 DOI: 10.1016/j.virusres.2020.198088] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/26/2020] [Accepted: 07/01/2020] [Indexed: 12/15/2022]
Abstract
Pyruvate is the end product of glycolysis and transported into the mitochondria for use in the tricarboxylic acid (TCA) cycle. It is also a common additive in cell culture media. We discovered that inclusion of sodium pyruvate in culture media during infection of mouse bone marrow derived macrophages with influenza A virus impaired cytokine production (IL-6, IL-1β, and TNF-α). Sodium pyruvate did not inhibit viral RNA replication. Instead, the addition of sodium pyruvate alters cellular metabolism and diminished mitochondrial reactive oxygen species (ROS) production and lowered immune signaling. Overall, sodium pyruvate affects the immune response produced by macrophages but does not inhibit virus replication.
Collapse
Affiliation(s)
- Hazar Abusalamah
- Department of Biology, Missouri State University, 901 S. National Ave. Springfield, MO, 65897, USA
| | - Jessica M Reel
- Department of Biology, Missouri State University, 901 S. National Ave. Springfield, MO, 65897, USA
| | - Christopher R Lupfer
- Department of Biology, Missouri State University, 901 S. National Ave. Springfield, MO, 65897, USA.
| |
Collapse
|
12
|
Zhao S, Sun H, Liu Q, Shen Y, Jiang Y, Li Y, Liu T, Liu T, Xu H, Shao M. Protective effect of seabuckthorn berry juice against acrylamide-induced oxidative damage in rats. J Food Sci 2020; 85:2245-2254. [PMID: 32579735 DOI: 10.1111/1750-3841.15313] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 04/20/2020] [Accepted: 05/11/2020] [Indexed: 12/16/2022]
Abstract
Acrylamide (AA), classified as a probable carcinogen, can be neurotoxic, genotoxic, and can damage DNA. This study explored the ability of seabuckthorn berries juice (SBJ) to alleviate AA-induced toxic injury in rats. Twenty-four adult male Sprague-Dawley (SD) rats were randomly divided into four groups: control group, AA group (40 mg/kg), AA + SBJ (40 mg/kg AA and 5 mL/kg SBJ), and AA + vitamin C (VC) group (positive control group, 40 mg/kg AA and 100 mg/kg VC). At the end of the experiment, rats in AA group showed a marked decrease in the rate of weight gain, hind extremity abduction, and ataxia. Obvious anomalies were seen in plasma biochemical parameters (P < 0.05), and different degrees of injury were observed upon histological examination of five tissues (hippocampus, cerebellum, liver, small intestine, and kidney). Compared to the control group, levels of superoxide dismutase, catalase, and glutathione were significantly decreased, while malondialdehyde was elevated (P < 0.05). SBJ treatment reduced the abnormal of behavior, hematological index, antioxidant enzyme, and tissue damage caused by AA in rats. PRACTICAL APPLICATION: Seabuckthorn berries are wild berries rich in vitamin C and polyphenols, which have good antioxidant properties. In this experiment, SBJ has a significant alleviating effect on AA-induced oxidative damage in rats. Therefore, we speculate that SBJ may relieve the oxidative damage caused by diet or other forms of AA exposure in the general population. At the same time, this experiment also provides new ideas for alleviating AA-induced in vivo toxicity.
Collapse
Affiliation(s)
- Sijia Zhao
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.,Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Hongyang Sun
- Author, Sun, is, with, China Institute to Veterinary Drug Control, Beijing, 100081, China
| | - Qingbo Liu
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.,Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yu Shen
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.,Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yujun Jiang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.,Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yanhua Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Tong Liu
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.,Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Tianxu Liu
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.,Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Honghua Xu
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.,Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Meili Shao
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.,Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
13
|
Xu Z, Dou W, Wang C, Sun Y. Stiffness and ATP recovery of stored red blood cells in serum. MICROSYSTEMS & NANOENGINEERING 2019; 5:51. [PMID: 31700671 PMCID: PMC6826049 DOI: 10.1038/s41378-019-0097-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/15/2019] [Accepted: 07/12/2019] [Indexed: 05/03/2023]
Abstract
In transfusion medicine, there has been a decades-long debate about whether the age of stored red blood cells (RBCs) is a factor in transfusion efficacy. Existing clinical studies investigating whether older RBCs cause worse clinical outcomes have provided conflicting information: some have shown that older blood is less effective, while others have shown no such difference. The controversial results could have been biased by the vastly different conditions of the patients involved in the clinical studies; however, another source of inconsistency is a lack of understanding of how well and quickly stored RBCs can recover their key parameters, such as stiffness and ATP concentration, after transfusion. In this work, we quantitatively studied the stiffness and ATP recovery of stored RBCs in 37 °C human serum. The results showed that in 37 °C human serum, stored RBCs are able to recover their stiffness and ATP concentration to varying extents depending on how long they have been stored. Fresher RBCs (1-3 weeks old) were found to have a significantly higher capacity for stiffness and ATP recovery in human serum than older RBCs (4-6 weeks old). For instance, for 1-week-old RBCs, although the shear modulus before recovery was 1.6 times that of fresh RBCs, 97% of the cells recovered in human serum to have 1.1 times the shear modulus of fresh RBCs, and the ATP concentration of 1-week-old RBCs after recovery showed no difference from that of fresh RBCs. However, for 6-week-old RBCs, only ~70% of the RBCs showed stiffness recovery in human serum; their shear modulus after recovery was still 2.1 times that of fresh RBCs; and their ATP concentration after recovery was 25% lower than that of fresh RBCs. Our experiments also revealed that the processes of stiffness recovery and ATP recovery took place on the scale of tens of minutes. We hope that this study will trigger the next steps of comprehensively characterizing the recovery behaviors of stored RBCs (e.g., recovery of normal 2,3-DPG [2,3-Diphosphoglycerate]and SNO [S-nitrosation] levels) and quantifying the in vivo recovery of stored RBCs in transfusion medicine.
Collapse
Affiliation(s)
- Zhensong Xu
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON Canada
| | - Wenkun Dou
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON Canada
| | - Chen Wang
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON Canada
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON Canada
| |
Collapse
|
14
|
Song X, Shang P, Sun Z, Lu M, You G, Yan S, Chen G, Zhou H. Therapeutic effect of yttrium oxide nanoparticles for the treatment of fulminant hepatic failure. Nanomedicine (Lond) 2019; 14:2519-2533. [PMID: 31317822 DOI: 10.2217/nnm-2019-0154] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aim: To explore the potential therapeutic effect of yttrium oxide nanoparticles (Y2O3 NPs) on fulminant hepatic failure. Materials & methods: RAW264.7 cells and a lipopolysaccharide/D-galactosamine-induced hepatic failure murine model were used to assess the effects of Y2O3 NPs. Results: Y2O3 NPs exhibited anti-inflammatory activity by scavenging cellular reactive oxygen species and dampening reactive oxygen species-mediated NF-κB activation in vitro. A single intraperitoneal administration of Y2O3 NPs (30 mg/kg) enhanced hepatic antioxidant status and reduced oxidative stress and inflammatory response in lipopolysaccharide/galactosamine-induced mice. Y2O3 NPs also attenuated hepatic NF-κB activation, cell apoptosis and liver injury. Conclusion: Y2O3 NP administration could be used as a novel therapeutic strategy for treating fulminant hepatic failure and oxidative stress-related diseases.
Collapse
Affiliation(s)
- Xiang Song
- Institute of Health Service & Transfusion Medicine, Academy of Military Medical Sciences, Hebei 100850, PR China
| | - Pan Shang
- Institute of Health Service & Transfusion Medicine, Academy of Military Medical Sciences, Hebei 100850, PR China
| | - Zhenwei Sun
- Department of Blood Transfusion, The 988 hospital of PLA, Henan 450042, PR China
| | - Mingzi Lu
- Beijing Biotechnology & new pharmaceutical Industry Promotion centre, Hebei 100176, PR China
| | - Guoxing You
- Institute of Health Service & Transfusion Medicine, Academy of Military Medical Sciences, Hebei 100850, PR China
| | - Shaoduo Yan
- Institute of Health Service & Transfusion Medicine, Academy of Military Medical Sciences, Hebei 100850, PR China
| | - Gan Chen
- Institute of Health Service & Transfusion Medicine, Academy of Military Medical Sciences, Hebei 100850, PR China
| | - Hong Zhou
- Institute of Health Service & Transfusion Medicine, Academy of Military Medical Sciences, Hebei 100850, PR China
| |
Collapse
|
15
|
Wang Y, Huang Y, Yang J, Zhou FQ, Zhao L, Zhou H. Pyruvate is a prospective alkalizer to correct hypoxic lactic acidosis. Mil Med Res 2018; 5:13. [PMID: 29695298 PMCID: PMC5918562 DOI: 10.1186/s40779-018-0160-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 04/05/2018] [Indexed: 12/12/2022] Open
Abstract
Type A lactic acidosis resulted from hypoxic mitochondrial dysfunction is an independent predictor of mortality for critically ill patients. However, current therapeutic agents are still in shortage and can even be harmful. This paper reviewed data regarding lactic acidosis treatment and recommended that pyruvate might be a potential alkalizer to correct type A lactic acidosis in future clinical practice. Pyruvate is a key energy metabolic substrate and a pyruvate dehydrogenase (PDH) activator with several unique beneficial biological properties, including anti-oxidant and anti-inflammatory effects and the ability to activate the hypoxia-inducible factor-1 (HIF-1α) - erythropoietin (EPO) signal pathway. Pyruvate preserves glucose metabolism and cellular energetics better than bicarbonate, lactate, acetate and malate in the efficient correction of hypoxic lactic acidosis and shows few side effects. Therefore, application of pyruvate may be promising and safe as a novel therapeutic strategy in hypoxic lactic acidosis correction accompanied with multi-organ protection in critical care patients.
Collapse
Affiliation(s)
- Ying Wang
- Institute of Transfusion Medicine, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Ya Huang
- Institute of Transfusion Medicine, Academy of Military Medical Sciences, Beijing, 100850, China.,Department of Transfusion, Hainan Branch of PLA General Hospital, Sanya, 572013, Hainan, China
| | - Jing Yang
- Institute of Transfusion Medicine, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Fang-Qiang Zhou
- Fresenius Dialysis Centers at Chicago, Rolling Meadows Facility, Chicago, IL, 60008, USA.,Shanghai Sandai Pharmaceutical R&D Co, Shanghai, 201203, China
| | - Lian Zhao
- Institute of Transfusion Medicine, Academy of Military Medical Sciences, Beijing, 100850, China.
| | - Hong Zhou
- Institute of Transfusion Medicine, Academy of Military Medical Sciences, Beijing, 100850, China.
| |
Collapse
|