Deep Learning-Based Diffusion-Weighted Magnetic Resonance Imaging in the Diagnosis of Ischemic Penumbra in Early Cerebral Infarction.
CONTRAST MEDIA & MOLECULAR IMAGING 2022;
2022:6270700. [PMID:
35291425 PMCID:
PMC8901298 DOI:
10.1155/2022/6270700]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 12/01/2022]
Abstract
The prefiltered image was imported into the local higher-order singular value decomposition (HOSVD) denoising algorithm (GL-HOSVD)-optimized diffusion-weighted imaging (DWI) image, which was compared with the deviation correction nonlocal mean (NL mean) and low-level edge algorithm (LR + edge). Regarding the peak signal-to-noise ratio (PSNR), root mean square error (RMSE), sensitivity, specificity, accuracy, and consistency, the application effect of the GL-HOSVD algorithm in DWI was investigated, and its adoption effect in the examination of ischemic penumbra (IP) of early acute cerebral infarction (ACI) patients was evaluated. A total of 210 patients with ACI were selected as the research subjects, who were randomly rolled into two groups. Those who were checked by conventional DWI were set as the control group, and those who used DWI based on the GL-HOSVD denoising algorithm were set as the observation group, with 105 people in each. Positron emission tomography (PET) test results were set as the gold standard to evaluate the application value of the two examination methods. It was found that under different noise levels, the peak signal-to-noise ratio (PSNR) of the GL-HOSVD algorithm and the root mean square error (RMSE) of the FA parameter were better than those of the nonlocal means (NL-means) of deviation correction and low-rank edge algorithm (LR + edge). The sensitivity, specificity, accuracy, and consistency (8.76%, 81.25%, 87.62%, and 0.52) of the observation group were higher than those of the control group (57.78%, 53.33%, 57.14%, and 0.35) (P < 0.05). Moreover, the apparent diffusion coefficient (ADC) of the DWI images of the observation group was basically consistent with that of the PET images, while the control group had a poor display effect and low definition. In summary, under different noise levels, the GL-HOSVD algorithm had a good denoising effect and greatly reduced fringe artifacts. DWI after denoising had high sensitivity, specificity, accuracy, and consistency in the detection of IP, which was worthy of clinical application and promotion.
Collapse