1
|
Yu Y, Zhang G, Chen Y, Bai Q, Gao C, Zeng L, Li Z, Cheng Y, Chen J, Sun X, Guo L, Xu J, Yan Z. Selection of Reference Genes for qPCR Analyses of Gene Expression in Ramie Leaves and Roots across Eleven Abiotic/Biotic Treatments. Sci Rep 2019; 9:20004. [PMID: 31882847 PMCID: PMC6934855 DOI: 10.1038/s41598-019-56640-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/16/2019] [Indexed: 12/25/2022] Open
Abstract
Quantitative real-time PCR (qPCR) is commonly used for deciphering gene functions. For effective qPCR analyses, suitable reference genes are needed for normalization. The objective of this study is to identify the appropriate reference gene(s) for qPCR analyses of the leaves and roots of ramie (Boehmeria nivea L.), an important natural fiber crop. To accomplish this goal, we investigated the expression patterns of eight common plant qPCR reference genes in ramie leaves and roots under five abiotic stresses, five hormonal treatments, and one biotic stress. The relative expression stabilities of the eight genes were evaluated using four common but different approaches: geNorm, NormFinder, BestKeeper, and RefFinder. Across the 11 tested conditions, ACT1 was the most stably expressed among the eight genes while GAPDH displayed the biggest variation. Overall, while variations in the suggested reference genes were found for different tissue x treatment combinations, our analyses revealed that together, genes ACT1, CYP2, and UBQ can provide robust references for gene expression studies of ramie leaves under most conditions, while genes EF-1α, TUB, and ACT1 can be used for similar studies of ramie roots. Our results should help future functional studies of the genes in ramie genome across tissues and environmental conditions.
Collapse
Affiliation(s)
- Yongting Yu
- Department of Plant Protection, Institute of Bast Fiber Crops and Center for Southern Economic Crops, Chinese Academy of Agricultural Science, Changsha, 410205, China
| | - Gang Zhang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712406, China
| | - Yikun Chen
- Department of Plant Protection, Institute of Bast Fiber Crops and Center for Southern Economic Crops, Chinese Academy of Agricultural Science, Changsha, 410205, China
| | - Qingqing Bai
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712406, China
| | - Chunsheng Gao
- Department of Plant Protection, Institute of Bast Fiber Crops and Center for Southern Economic Crops, Chinese Academy of Agricultural Science, Changsha, 410205, China
| | - Liangbin Zeng
- Department of Plant Protection, Institute of Bast Fiber Crops and Center for Southern Economic Crops, Chinese Academy of Agricultural Science, Changsha, 410205, China
| | - Zhimin Li
- Department of Plant Protection, Institute of Bast Fiber Crops and Center for Southern Economic Crops, Chinese Academy of Agricultural Science, Changsha, 410205, China
| | - Yi Cheng
- Department of Plant Protection, Institute of Bast Fiber Crops and Center for Southern Economic Crops, Chinese Academy of Agricultural Science, Changsha, 410205, China
| | - Jia Chen
- Department of Plant Protection, Institute of Bast Fiber Crops and Center for Southern Economic Crops, Chinese Academy of Agricultural Science, Changsha, 410205, China
| | - Xiangping Sun
- Department of Plant Protection, Institute of Bast Fiber Crops and Center for Southern Economic Crops, Chinese Academy of Agricultural Science, Changsha, 410205, China
| | - Litao Guo
- Department of Plant Protection, Institute of Bast Fiber Crops and Center for Southern Economic Crops, Chinese Academy of Agricultural Science, Changsha, 410205, China
| | - Jianping Xu
- Department of Plant Protection, Institute of Bast Fiber Crops and Center for Southern Economic Crops, Chinese Academy of Agricultural Science, Changsha, 410205, China. .,Department of Biology, McMaster University, Hamilton, Ontario, L8S 4K1, Canada.
| | - Zhun Yan
- Department of Plant Protection, Institute of Bast Fiber Crops and Center for Southern Economic Crops, Chinese Academy of Agricultural Science, Changsha, 410205, China
| |
Collapse
|
2
|
Wang Y, Zeng Z, Li F, Yang X, Gao X, Ma Y, Rao J, Wang H, Liu T. A genomic resource derived from the integration of genome sequences, expressed transcripts and genetic markers in ramie. BMC Genomics 2019; 20:476. [PMID: 31185891 PMCID: PMC6558782 DOI: 10.1186/s12864-019-5878-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 06/04/2019] [Indexed: 12/11/2022] Open
Abstract
Background The redundancy of genomic resources, including transcript and molecular markers, and their uncertain position in the genome have dramatically hindered the study of traits in ramie, an important natural fiber crop. Results We obtained a high-quality transcriptome consisting of 30,591 non-redundant transcripts using single-molecule long-read sequencing and proposed it as a universal ramie transcriptome. Additionally, 55,882 single nucleotide polymorphisms (SNPs) were identified and a high-density genetic map was developed. Based on this genetic map, 181.7 Mb ramie genome sequences were assembled into 14 chromosomes. For the convenient use of these resources, 29,286 (~ 95.7%) of the transcripts and all 55,882 SNPs, along with 1827 previously reported sequence repeat markers (SSRs), were mapped into the ramie genome, and 22,343 (~ 73.0%) transcripts, 50,154 (~ 89.7%) SNPs, and 1466 (~ 80.3%) SSRs were assigned to a specific location in the corresponding chromosome. Conclusion This is the first study to characterize the ramie transcriptome by long-read sequencing, and the substantial number of transcripts of significant length obtained will accelerate our understanding of ramie growth and development. This integration of genome sequences, expressed transcripts, and genetic markers will provide an extremely useful resource for genetic, molecular, and breeding studies of ramie. Electronic supplementary material The online version of this article (10.1186/s12864-019-5878-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yanzhou Wang
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Zheng Zeng
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Fu Li
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | | | - Xinyue Gao
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Yonghong Ma
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Jing Rao
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | | | - Touming Liu
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China.
| |
Collapse
|
3
|
Huang K, Zhu A, Chen X, Shi Y, Tang Q, Wang X, Sun Z, Luan M, Chen J. Comparative transcriptomics reveals the selection patterns of domesticated ramie. Ecol Evol 2019; 9:7057-7068. [PMID: 31380033 PMCID: PMC6662332 DOI: 10.1002/ece3.5271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 04/08/2019] [Accepted: 04/29/2019] [Indexed: 11/20/2022] Open
Abstract
Although domestication has dramatically altered the phenotype, physiology, and life history of ramie (Boehmeria nivea) plants, few studies have investigated the effects of domestication on the structure and expression pattern of genes in this fiber crop. To investigate the selective pattern and genetic relationships among a cultivated variety of ramie (BNZ: B. nivea, ZZ1) and four wild species, BNT (B. nivea var. tenacissima), BNN (B. nivea var. nipononivea), BNW (B. nivea var. nivea), and BAN (B. nivea var. viridula), in the section Tilocnide, we performed an RNA sequencing analysis of these ramie species. The de novo assembly of the "all-ramie" transcriptome yielded 119,114 unigenes with an average length of 633 bp, and a total of 7,084 orthologous gene pairs were identified. The phylogenetic tree showed that the cultivar BNZ clustered with BAN in one group, BNW was closely related to BNT, and BNN formed a separate group. Introgression analysis indicated that gene flow occurred from BNZ to BNN and BAN, and between BAN and BNN. Among these orthologs, 2,425 and 269 genes underwent significant purifying and positive selection, respectively. For these positively selected genes, oxidation-reduction process (GO:0055114) and stress response pathways (GO:0006950) were enriched, indicating that modulation of the cellular redox status was important during both ramie fiber evolution and improvement. Two genes related to the suppression of flowering and one gene annotated as a flowering-promoting factor were subjected to positive selection, probably caused by human manipulation. Additionally, five genes were homologs of those involved in abiotic stress tolerance and disease resistance, with higher expression levels in the cultivar BNZ than in the wild species. Collectively, the results of this study indicated that domestication has resulted in the upregulation of many genes involved in the abiotic and biotic stress responses, fiber yield, and plant growth of ramie.
Collapse
Affiliation(s)
- Kun‐Yong Huang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences/Key Laboratory of Stem‐Fiber Biomass and Engineering MicrobiologyMinistry of AgricultureChangshaChina
| | - Ai‐Guo Zhu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences/Key Laboratory of Stem‐Fiber Biomass and Engineering MicrobiologyMinistry of AgricultureChangshaChina
| | | | - Ya‐Liang Shi
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences/Key Laboratory of Stem‐Fiber Biomass and Engineering MicrobiologyMinistry of AgricultureChangshaChina
| | - Qing Tang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences/Key Laboratory of Stem‐Fiber Biomass and Engineering MicrobiologyMinistry of AgricultureChangshaChina
| | - Xiao‐Fei Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences/Key Laboratory of Stem‐Fiber Biomass and Engineering MicrobiologyMinistry of AgricultureChangshaChina
| | - Zhi‐Min Sun
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences/Key Laboratory of Stem‐Fiber Biomass and Engineering MicrobiologyMinistry of AgricultureChangshaChina
| | - Ming‐Bao Luan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences/Key Laboratory of Stem‐Fiber Biomass and Engineering MicrobiologyMinistry of AgricultureChangshaChina
| | - Jian‐Hua Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences/Key Laboratory of Stem‐Fiber Biomass and Engineering MicrobiologyMinistry of AgricultureChangshaChina
| |
Collapse
|
4
|
Genome-Wide Expression Profiles of Hemp ( Cannabis sativa L.) in Response to Drought Stress. Int J Genomics 2018; 2018:3057272. [PMID: 29862250 PMCID: PMC5976996 DOI: 10.1155/2018/3057272] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/07/2018] [Accepted: 04/05/2018] [Indexed: 11/18/2022] Open
Abstract
Drought is the main environmental factor impairing hemp growth and yield. In order to decipher the molecular responses of hemp to drought stress, transcriptome changes of drought-stressed hemp (DS1 and DS2), compared to well-watered control hemp (CK1 and CK2), were studied with RNA-Seq technology. RNA-Seq generated 9.83, 11.30, 11.66, and 11.31 M clean reads in the CK1, CK2, DS1, and DS2 libraries, respectively. A total of 1292 differentially expressed genes (DEGs), including 409 (31.66%) upregulated and 883 (68.34%) downregulated genes, were identified. The expression patterns of 12 selected genes were validated by qRT-PCR, and the results were accordant with Illumina analysis. Gene Ontology (GO) and KEGG analysis illuminated particular important biological processes and pathways, which enriched many candidate genes such as NAC, B3, peroxidase, expansin, and inositol oxygenase that may play important roles in hemp tolerance to drought. Eleven KEGG pathways were significantly influenced, the most influenced being the plant hormone signal transduction pathway with 15 differentially expressed genes. A similar expression pattern of genes involved in the abscisic acid (ABA) pathway under drought, and ABA induction, suggested that ABA is important in the drought stress response of hemp. These findings provide useful insights into the drought stress regulatory mechanism in hemp.
Collapse
|
5
|
Liu C, Zhu S, Tang S, Wang H, Zheng X, Chen X, Dai Q, Liu T. QTL analysis of four main stem bark traits using a GBS-SNP-based high-density genetic map in ramie. Sci Rep 2017; 7:13458. [PMID: 29044147 PMCID: PMC5647422 DOI: 10.1038/s41598-017-13762-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/29/2017] [Indexed: 11/09/2022] Open
Abstract
Ramie fiber extracted from ramie stem bark (RSB) is a highly important natural fiber, and therefore, RSB is an economically important plant organ. The genetic basis of RSB traits is poorly understood. In the present study, fiber yield and three RSB traits (bark thickness, bark weight, and fiber output ratio) were subject to quantitative trait locus (QTL) analysis using an F2 agamous line population derived from two ramie varieties (Qingdaye and Zhongzhu 1). A total of 4338 high-quality single nucleotide polymorphisms were identified using the genotyping-by-sequencing technique and were subsequently used to construct a high-density genetic map spanning 1942.9 cM. Thereafter, QTL analysis identified five, two, four, and four QTLs for bark thickness, bark weight, fiber output ratio, and fiber yield, respectively. A 5.1 cM region that corresponded to a QTL for bark thickness (qBT4a) contained 106 candidate genes, and the Zhongzhu 1 allele of one of the genes, a putative MYB gene (evm. MODEL scaffold7373.133_D1), included a 760-bp insertion that caused premature termination, thereby producing a protein that lacked part of the MYB domain. Because MYB transcription factors play central roles in regulating the development of secondary cellular walls and fiber biosynthesis, we propose evm. MODEL scaffold7373.133_D1 as a likely candidate gene for qBT4a.
Collapse
Affiliation(s)
- Chan Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Siyuan Zhu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Shouwei Tang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Hongwu Wang
- Xianning Agriculture Academy of sciences, Hubei, China
| | - Xia Zheng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Xiaorong Chen
- Yichun Institute of Agricultural Sciences, Jiangxi, China
| | - Qiuzhong Dai
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Touming Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China.
| |
Collapse
|