1
|
Galende SB, Paula MND, Fachi MM, Medeiros Araújo DCD, Chierrito D, Mello JCPD. Plants with Hair Growth Activity for Alopecia: A Scoping Review on Methodological Aspects. PLANTA MEDICA 2025. [PMID: 39622506 DOI: 10.1055/a-2494-9020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Alopecia is a common dermatological disorder of patchy hair loss with substantial patient burden. Phytotherapeutic compounds are increasingly used as a source of new therapeutic options. This review aimed to synthesize the evidence on plant species in hair growth and the methodological aspects of in vivo experimental models. The systematic scoping review was conducted following the PRISMA checklist, the Joanna Briggs Institute, and in accordance with Cochrane. A systematic search was carried out in the Pubmed, Scopus, Web of Science, and SciELO databases. In vivo experiments that evaluated hair growth activity using natural substances of plant origin were included. Data collection and analysis: a total of 1250 studies were identified, of which 175 were included for qualitative synthesis. Of these, 128 used mice, 37 rats, 10 rabbits, 1 guinea pig, and 1 sheep as animal models. The methodologies mapped were as follows: hair growth analysis, histological analysis, immunohistochemistry, gene expression analysis, Western blot, enzyme-linked immunosorbent assay, and biochemical analysis. Minoxidil and finasteride were the most commonly used positive controls. The studies evaluated plant species (166), algae (11), or isolated substances (31). Overall, 152 plant species and 37 isolated substances were identified. This is the first systematic scoping review on the methodological aspects of in vivo hair growth activity. We created a checklist to be completed by authors to allow data comparison and reproducibility, facilitate data interpretation by readers, and ensure better quality of evidence. This work may become a valuable tool for future research and contribute to significant advances in hair growth studies.
Collapse
Affiliation(s)
- Sharize Betoni Galende
- Department of Pharmacy, Laboratory of Pharmaceutical Biology, Palafito, Universidade Estadual de Maringá, Maringá, Brazil
| | - Mariana Nascimento de Paula
- Department of Pharmacy, Laboratory of Pharmaceutical Biology, Palafito, Universidade Estadual de Maringá, Maringá, Brazil
| | | | | | | | - João Carlos Palazzo de Mello
- Department of Pharmacy, Laboratory of Pharmaceutical Biology, Palafito, Universidade Estadual de Maringá, Maringá, Brazil
| |
Collapse
|
2
|
Tao N, Ying Y, Xu X, Sun Q, Shu Y, Hu S, Lou Z, Gao J. Th22 is the effector cell of thymosin β15-induced hair regeneration in mice. Inflamm Regen 2024; 44:3. [PMID: 38191481 PMCID: PMC10773137 DOI: 10.1186/s41232-023-00316-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/25/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Thymosin beta family has a significant role in promoting hair regeneration, but which type of T cells play a key role in this process has not been deeply studied. This research aimed to find out the subtypes of T cell that play key role in hair regeneration mediated by thymosin beta 15 (Tβ15). METHODS Ready-to-use adenovirus expressing mouse Tmsb15b (thymosin beta 15 overexpression, Tβ15 OX) and lentivirus-Tβ15 short hairpin RNA (Tβ15 sh) were used to evaluate the role of Tβ15 in hair regeneration and development. The effect of Th22 cells on hair regeneration was further studied by optimized Th22-skewing condition medium and IL-22 binding protein (IL-22BP, an endogenous antagonist of IL-22, also known as IL-22RA2) in both ex vivo culture C57BL/6J mouse skin and BALB/c nude mice transplanted with thymus organoid model. RESULTS The results show that Tβ15, the homologous of Tβ4, can promote hair regeneration by increasing the proliferation activity of hair follicle cells. In addition, high-level expression of Tβ15 can not only increase the number of Th22 cells around hair follicles but also accelerate the transformation of hair follicles to maturity. Consistent with the expected results, when the IL-22BP inhibitor was used to interfere with Th22, the process of hair regeneration was blocked. CONCLUSIONS In conclusion, Th22 is the key effector cell of Tβ15 inducing hair regeneration. Both Tβ15 and Th22 may be the potential drug targets for hair regeneration.
Collapse
Affiliation(s)
- Nana Tao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Yuyuan Ying
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Xie Xu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Qingru Sun
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Yaoying Shu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Shiyu Hu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Zhaohuan Lou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China.
| | - Jianli Gao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China.
| |
Collapse
|
3
|
Zhang Y, Zhang S, Long Y, Wang W, Du F, Li J, Jin F, Li Z. Stimulation of hair growth by Tianma Gouteng decoction: Identifying mechanisms based on chemical analysis, systems biology approach, and experimental evaluation. Front Pharmacol 2022; 13:1073392. [PMID: 36588691 PMCID: PMC9802907 DOI: 10.3389/fphar.2022.1073392] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Hair serves important physiological functions, including temperature regulation and scalp protection. However, excessive shedding not only impacts these functions but can also significantly affect mental health and quality of life. Tianma Gouteng decoction (TGD) is a traditional Chinese medicine used for the treatment of various conditions, including hair loss. However, the associated mechanism underlying its anti-alopecia effect remains unknown. Therefore, this study aims to elucidate these mechanisms by employing systematic biology approaches, as well as in vitro and in vivo experimental validation. The chemical constituents of Tianma Gouteng decoction were identified using UHPLC-MS/MS, from which 39 potential bioactive components were screened, while an additional 131 putative Tianma Gouteng decoction beneficial components were extracted from the Traditional Chinese Medicine Database and Analysis Platform (TCMSP) database. We then applied a dual-dimensional network pharmacology approach to analyze the data, followed by validation studies combining molecular docking techniques with in vivo and in vitro experiments. From the 39 bioactive components, including quercetin, luteolin, fisetin, wogonin, oroxylin A, boldine, tetrahydroalstonine, and galangin A, 782 corresponding targets were identified. In particular, GSK3β and β-catenin exhibited strong binding activity with the bioactive compounds. Hence, construction of a bioactive component-target network revealed that the mechanism underlying the anti-alopecia mechanism of Tianma Gouteng decoction primarily involved the Wnt/β-catenin signaling pathway. Moreover, C57BL/6J mice exhibited measurable improvements in hair follicle regeneration following treatment with Tianma Gouteng decoction. Additionally, β-catenin and p-GSK3β levels were upregulated, while GSK3β was downregulated in Tianma Gouteng decoction-treated animals and dermal papilla cells compared to control group. These in vivo and in vitro outcomes validated the targets and pathways predicted in the network pharmacology analysis of Tianma Gouteng decoction. This study provides a systematic analysis approach to identify the underlying anti-alopecia mechanisms of Tianma Gouteng decoction, further providing theoretical support for clinical assessment of Tianma Gouteng decoction.
Collapse
Affiliation(s)
- Yanyan Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China,Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Shiqian Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China,Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yunluan Long
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China,Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Wuji Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China,Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Fanpan Du
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China,Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jingjie Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China,Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Feng Jin
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China,Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Zheng Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China,Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China,*Correspondence: Zheng Li,
| |
Collapse
|
4
|
The Hair Growth-Promoting Effect of Gardenia florida Fruit Extract and Its Molecular Regulation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8498974. [PMID: 36193135 PMCID: PMC9526658 DOI: 10.1155/2022/8498974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/04/2022] [Accepted: 08/18/2022] [Indexed: 11/18/2022]
Abstract
As a herbal medicine, the extract from the fruits of Gardenia florida has been widely used for its antioxidative, hypoglycemic, and anti-inflammatory properties. However, whether G. florida fruit extract (GFFE) regulates hair growth has been rarely studied. This study was the first application of GFFE on hair growth both in vitro (human dermal papilla cells, hDPCs) and in vivo (C57BL/6 mice). The effects of GFFE on cell proliferation and hair growth-associated gene expression in hDPCs were examined. Moreover, GFFE was applied topically on the hair-shaved skin of male C57BL/6 mice, the hair length was measured, and the skin histological profile was investigated. GFFE promoted the proliferation of hDPCs and significantly stimulated hair growth-promoting genes, including vascular endothelial growth factor (VEGF) and Wnt/β-catenin signals, but suppressed the expression of the hair loss-related gene transforming growth factor-β1 (TGF-β). Furthermore, GFFE treatment resulted in a significant increase in the number, size, and depth of cultured hair follicles and stimulated the growth of hair with local effects in mice. In summary, the results provided the preclinical data to support the much potential use of the natural product GFFE as a promising agent for hair growth.
Collapse
|
5
|
Park DW, Lee HS, Shim MS, Yum KJ, Seo JT. Do Kimchi and Cheonggukjang Probiotics as a Functional Food Improve Androgenetic Alopecia? A Clinical Pilot Study. World J Mens Health 2019; 38:95-102. [PMID: 31385480 PMCID: PMC6920077 DOI: 10.5534/wjmh.180119] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 06/04/2019] [Accepted: 06/19/2019] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Probiotic supplementation demonstrates beneficial effects on serum lipid profiles. We hypothesized that probiotics could benefit patients presenting with alopecia, secondary to improved blood flow to the scalp. MATERIALS AND METHODS Our study included men with stage II to V patterns of hair loss based on the Hamilton-Norwood classification and women with stage I to III patterns of hair loss based on the Ludwig classification. All patients were administered 80 mL of Mogut® (a kimchi and cheonggukjang probiotic product) twice a day. Hair growth and numbers were measured using the Triple Scope System® (KC Technology, Korea) at baseline and after 1 and 4 months of administration of a kimchi and cheonggukjang probiotic product. RESULTS At baseline, the mean hair count was 85.98±20.54 hairs/cm² and the mean thickness was 0.062±0.011 mm in all patients (n=46). Hair count and thickness had significantly increased at 1 month (90.28±16.13 hairs/cm² and 0.068±0.008 mm, respectively) and at 4 months (91.54±16.29 hairs/cm² and 0.066±0.009 mm, respectively). In this study, we found that a kimchi and cheonggukjang probiotic product could promote hair growth and reverse hair loss without associated adverse effects such as diarrhea. CONCLUSIONS We suggest that the observed improvements in hair count and thickness resulted from initiation of the anagen phase in hair follicles in response to probiotics.
Collapse
Affiliation(s)
- Dong Wook Park
- Laboratory of Reproductive Medicine, Cheil General Hospital & Women's Healthcare Center, Dankook University College of Medicine, Seoul, Korea
| | - Hyo Serk Lee
- Department of Urology, Cheil General Hospital & Women's Healthcare Center, Dankook University College of Medicine, Seoul, Korea
| | | | | | - Ju Tae Seo
- Department of Urology, Cheil General Hospital & Women's Healthcare Center, Dankook University College of Medicine, Seoul, Korea.
| |
Collapse
|