1
|
Zhou H, Wu W, Zhang Q, Zhang T, Jiang S, Chang L, Xie Y, Zhu J, Zhou D, Zhang Y, Xu P. Proteome overview of exosome derived from plasma of cows infected with Mycobacterium bovis. Tuberculosis (Edinb) 2024; 148:102541. [PMID: 39002312 DOI: 10.1016/j.tube.2024.102541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
Bovine tuberculosis (bTB), primarily caused by Mycobacterium bovis (M. bovis), is a globally zoonotic disease with significant economic impacts. Plasma exosomes have been extensively used for investigating disease processes and exploring biomarkers. While mass spectrometry (MS)-based proteomic analysis of plasma exosomes has been employed for human tuberculosis (TB) studies, it has not yet been applied to bTB. Therefore, a comprehensive proteomic overview of plasma exosomes from M. bovis-infected cows is essential. In this study, we presented an extensive proteomic analysis of plasma exosomes from 89 M. bovis-infected cows across three farms, using data dependent acquisition (DDA) mode. Our analysis encompasses 239,894 spectra, 6,011 peptides and 835 proteins. The proteomic overview revealed both consistencies and differences among individual cows, supplements 595 proteins to the bovine exosome library, and enriches tuberculosis and related pathways. Additionally, six pathways were validated as immune response pathways, and three proteins (CATHL1, H1-1, and LCN2) were identified as potential indicators of bTB. This study is the first to investigate the exosome proteome of plasma from cows infected with M. bovis, providing a valuable dataset for exploring candidate bTB markers and understanding the mechanisms of host defense against M. bovis.
Collapse
Affiliation(s)
- Hangfan Zhou
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Wenhui Wu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, Beijing, 102206, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Second Clinical Medicine Collage, Guangzhou Higher Education Mega Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Qilong Zhang
- Beijing Center for Animal Disease Control and Prevention, Beijing, 102629, China
| | - Tao Zhang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Songhao Jiang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Lei Chang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Yuping Xie
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Jiaqiang Zhu
- Beijing Xinhui Purui Technology Development Co., Ltd, Beijing, 102200, China
| | - Degang Zhou
- Beijing Center for Animal Disease Control and Prevention, Beijing, 102629, China.
| | - Yao Zhang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, Beijing, 102206, China.
| | - Ping Xu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, Beijing, 102206, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Second Clinical Medicine Collage, Guangzhou Higher Education Mega Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China; School of Basic Medicine, Anhui Medical University, Hefei, 230032, China; Department of Biomedicine, Medical College, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
2
|
Cooke DM, Goosen WJ, Burgess T, Witte C, Miller MA. Mycobacterium tuberculosis complex detection in rural goat herds in South Africa using Bayesian latent class analysis. Vet Immunol Immunopathol 2023; 257:110559. [PMID: 36739737 DOI: 10.1016/j.vetimm.2023.110559] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Animal tuberculosis affects a wide range of domestic and wild animal species, including goats (Capra hircus). In South Africa, Mycobacterium tuberculosis complex (MTBC) testing and surveillance in domestic goats is not widely applied, potentially leading to under recognition of goats as a potential source of M. bovis spread to cattle as well as humans and wildlife. The aim of this study was to estimate diagnostic test performance for four assays and determine whether M. bovis infection was present in goats sharing communal pastures with M. bovis positive cattle in the Umkhanyakude district of Northern Zululand, KwaZulu Natal. In 2019, 137 M. bovis-exposed goats were screened for MTBC infection with four diagnostic tests: the in vivo single intradermal comparative cervical tuberculin test (SICCT), in vitro QuantiFERON®-TB Gold (QFT) bovine interferon-gamma release assay (IGRA), QFT bovine interferon gamma induced protein 10 (IP-10) release assay (IPRA), and nasal swabs tested with the Cepheid GeneXpert® MTB/RIF Ultra (GXU) assay for detection of MTBC DNA. A Bayesian latent class analysis was used to estimate MTBC prevalence and diagnostic test sensitivity and specificity. Among the 137 M. bovis-exposed goats, positive test results were identified in 15/136 (11.0%) goats by the SICCT; 4/128 (3.1%) goats by the IPRA; 2/128 (1.6%) goats by the IGRA; and 26/134 (19.4%) nasal swabs by the GXU. True prevalence was estimated by our model to be 1.1%, suggesting that goats in these communal herds are infected with MTBC at a low level. Estimated posterior means across the four evaluated assays ranged from 62.7% to 80.9% for diagnostic sensitivity and from 82.9% to 97.9% for diagnostic specificity, albeit estimates of the former (diagnostic sensitivity) were dependent on model assumptions. The application of a Bayesian latent class analysis and multiple ante-mortem test results may improve detection of MTBC, especially when prevalence is low. Our results provide a foundation for further investigation to confirm infection in communal goat herds and identify previously unrecognized sources of intra- and inter-species transmission of MTBC.
Collapse
Affiliation(s)
- Deborah M Cooke
- Division of Molecular Biology and Human Genetics, South Africa; South African Medical Research Council Centre for Tuberculosis Research 8000, South Africa; DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town 8000, South Africa.
| | - Wynand J Goosen
- Division of Molecular Biology and Human Genetics, South Africa; South African Medical Research Council Centre for Tuberculosis Research 8000, South Africa; DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town 8000, South Africa.
| | - Tristan Burgess
- Center for Wildlife Studies, P.O. Box 56 South Freeport, ME 04078, USA.
| | - Carmel Witte
- Division of Molecular Biology and Human Genetics, South Africa; South African Medical Research Council Centre for Tuberculosis Research 8000, South Africa; DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town 8000, South Africa; Center for Wildlife Studies, P.O. Box 56 South Freeport, ME 04078, USA.
| | - Michele A Miller
- Division of Molecular Biology and Human Genetics, South Africa; South African Medical Research Council Centre for Tuberculosis Research 8000, South Africa; DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town 8000, South Africa.
| |
Collapse
|
3
|
Cooke DM, Goosen WJ, Witte C, Miller MA. Field evaluation of the tuberculin skin test for the detection of Mycobacterium tuberculosis complex infection in communal goats (Capra hircus) in KwaZulu-Natal, South Africa. Vet Immunol Immunopathol 2022; 252:110486. [PMID: 36116328 DOI: 10.1016/j.vetimm.2022.110486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/15/2022] [Accepted: 09/10/2022] [Indexed: 11/30/2022]
Abstract
In South Africa, animal tuberculosis (TB) control programs predominantly focus on domestic cattle and African buffaloes (Syncerus caffer) despite increasing global reports of tuberculosis in goats (Capra hircus). Left undetected, Mycobacterium tuberculosis complex (MTBC) infected goats may hinder TB eradication efforts in cattle and increase zoonotic risk to humans. Since the publication of animal TB testing guidelines in 2018, prescribing the use of the tuberculin skin test (TST) for goats in South Africa by the Department of Agriculture, Land Reform, and Rural Development (DALRRD), there have been no published reports of any field application of the prescribed test criteria in goat herds. Therefore, this study aimed to evaluate the performance of these DALRRD guidelines using the single intradermal cervical tuberculin test (SICT) and the single intradermal comparative cervical tuberculin test (SICCT). Between October and December 2020, 495 goats from communal pastures of Kwa-Zulu Natal (KZN), where M. bovis infection has been identified in cattle and where cattle and goats cohabitate, were tested using the SICT and SICCT (M. bovis-exposed group). Additionally, 277 goats from a commercial Saanen dairy herd, with no history of M. bovis, were also tested (M. bovis-unexposed group). Estimated apparent prevalence of TST positive goats was determined based on published test interpretation criteria as described by DALRRD. When proportions of test-positive goats were compared between different DALRRD criteria, the ≥ 4 mm cut-off criterion for the SICCT resulted in the lowest proportion of positive results in the presumably uninfected group (1/277 positive in the unexposed group). The apparent prevalence of TB in the exposed group was estimated at 3.0% (95% CI: 1.7-4.9%), which is similar to previous reports of M. bovis prevalence in cattle from this area (6%). The detection of a significantly greater proportion of SICCT positive goats in the M. bovis-exposed group compared to the unexposed group suggests that MTBC infection is present in this population. Further investigations should be undertaken, in conjunction with confirmatory molecular tests, mycobacterial culture, and advanced pathogen sequencing to establish whether MTBC infection in domestic goats is a true under-recognized threat to the eradication of animal TB in South Africa.
Collapse
Affiliation(s)
- Deborah M Cooke
- Division of Molecular Biology and Human Genetics, South Africa; South African Medical Research Council Centre for Tuberculosis Research, South Africa; DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South Africa.
| | - Wynand J Goosen
- Division of Molecular Biology and Human Genetics, South Africa; South African Medical Research Council Centre for Tuberculosis Research, South Africa; DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South Africa.
| | - Carmel Witte
- Division of Molecular Biology and Human Genetics, South Africa; South African Medical Research Council Centre for Tuberculosis Research, South Africa; DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South Africa; Conservation Science Wildlife Health, San Diego Zoo Wildlife Alliance, San Diego, CA, United States.
| | - Michele A Miller
- Division of Molecular Biology and Human Genetics, South Africa; South African Medical Research Council Centre for Tuberculosis Research, South Africa; DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South Africa.
| |
Collapse
|
4
|
Hekal SHA, Dapgh AN, Abd-Elhafeez MBE, Sobhy HM, Khalifa FA. Comparative diagnosis of bovine tuberculosis using single intradermal cervical tuberculin technique, conventional methods, enzyme-linked immunosorbent assay, and the gamma-interferon assay. Vet World 2022; 15:1391-1397. [PMID: 35765492 PMCID: PMC9210844 DOI: 10.14202/vetworld.2022.1391-1397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim Bovine tuberculosis (TB) is a zoonotic disease that causes huge economic losses. This study aimed to compare the result obtained from the single intradermal test, conventional methods (culture and microscopy), gamma-interferon (IFN-γ) assay, and indirect enzyme-linked immunosorbent assay (ELISA) to diagnose bovine TB. Materials and Methods This study evaluated 2913 animals from milk farms in Cairo, El-Sharkia, and El-Qalyubia Governorates by single intradermal cervical tuberculin technique (SICTT), ELISA, and IFN-γ assay. Results Of the 2913 dairy cows surveyed, 3.7% yielded positive results. Culture prepared samples on Lowenstein-Jensen and Middlebrook 7H10 agar media yielded 52 (1.85%) isolates of Mycobacterium spp. from 2805 milk samples that yielded negative tuberculin reactions and 56 (51.85%) isolates of Mycobacterium spp. were recovered from 108 lymph node samples from positive cases. ELISA analysis of the sera of 108 positive SICTT reactors revealed that 94 (87.03%) and 97 (89.81%) animals were positive for bovine purified protein derivative (PPD-B) antigen and commercial polypeptide antigen, respectively. IFN-γ assays were performed on whole blood samples collected from positive SICTT reactors and showed that 103 (95.37%) animals were positive. Conclusion M. tuberculosis complex may be isolated from raw milk and not all infected animals shed mycobacterial bacilli in their milk. The use of polypeptide antigen in ELISA provides better diagnostic efficacy than PPD-B antigen. The IFN-γ assay is more sensitive than both SICTT and ELISA. It should be used in parallel with SICTT to allow the detection of more positive animals before they become a source of infection to other animals and humans.
Collapse
Affiliation(s)
| | - Amany N. Dapgh
- Department of Bacteriology, Animal Health Research Institute, Dokki, Giza, Egypt
| | - Mai Badr-Eldien Abd-Elhafeez
- Central Administration of Veterinary Quarantine, General Organization for Veterinary Services, Dokki, Giza, Egypt
| | - Hassan Mohamed Sobhy
- Department of Natural Resources, Faculty of African Postgraduate Studies, Cairo University, Giza, Egypt
| | - Fatma Ahmed Khalifa
- Department of Infectious Disease - Animal Medicine, South Valley University, Qena, Egypt
| |
Collapse
|
5
|
Lin HC, Chu C, Su Y, Lai JM. Evaluation of using comparative intradermal tuberculin test to diagnose bovine tuberculosis in dairy cattle in Taiwan. Trop Anim Health Prod 2022; 54:79. [DOI: 10.1007/s11250-021-03023-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 12/16/2021] [Indexed: 10/19/2022]
|
6
|
Smith K, Bernitz N, Cooper D, Kerr TJ, de Waal CR, Clarke C, Goldswain S, McCall W, McCall A, Cooke D, Rambert E, Kleynhans L, Warren RM, van Helden P, Parsons SDC, Goosen WJ, Miller MA. Optimisation of the tuberculin skin test for detection of Mycobacterium bovis in African buffaloes (Syncerus caffer). Prev Vet Med 2021; 188:105254. [PMID: 33465641 DOI: 10.1016/j.prevetmed.2020.105254] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/25/2020] [Accepted: 12/29/2020] [Indexed: 10/22/2022]
Abstract
Effective screening methods are critical for preventing the spread of bovine tuberculosis (bTB) among livestock and wildlife species. The tuberculin skin test (TST) remains the primary test for bTB globally, although performance is suboptimal. African buffaloes (Syncerus caffer) are a maintenance host of Mycobacterium bovis in South Africa, tested using the single intradermal tuberculin test (SITT) or comparative test (SICTT). The interpretation of these tests has been based on cattle thresholds due to the lack of species-specific cut-off values for African buffaloes. Therefore, the aims of this study were to calculate buffalo-specific thresholds for different TST criteria (SITT, SICTT, and SICTT72h that calculates the differential change at 72 h only) and compare performance using these cut-off values. The results confirm that 3 mm best discriminates M. bovis-infected from unexposed control buffaloes with sensitivities of 69 % (95 % CI 60-78; SITT and SICTT) and 76 % (95 % CI 65-83; SICTT72h), and specificities of 86 % (95 % CI 80-90; SITT), 96 % (95 % CI 92-98; SICTT72h) and 97 % (95 % CI 93-99; SICTT), respectively. A comparison between TST criteria using buffalo-specific thresholds demonstrates that the comparative TST performs better than the SITT, although sensitivity remains suboptimal. Therefore, further research and the addition of ancillary tests, such as cytokine release assays, are necessary to improve M. bovis detection in African buffaloes.
Collapse
Affiliation(s)
- Katrin Smith
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Netanya Bernitz
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - David Cooper
- Ezemvelo KwaZulu-Natal Wildlife, PO Box 25, Mtubatuba 3935, South Africa
| | - Tanya J Kerr
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Candice R de Waal
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Charlene Clarke
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Samantha Goldswain
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Warren McCall
- Hluhluwe State Veterinary Office, Hluhluwe, KZN, South Africa
| | - Alicia McCall
- Hluhluwe State Veterinary Office, Hluhluwe, KZN, South Africa
| | - Debbie Cooke
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Emma Rambert
- Vlakpan Animal Clinic, PO Box 134, Modderrivier 8700, South Africa
| | - Léanie Kleynhans
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Robin M Warren
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Paul van Helden
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Sven D C Parsons
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Wynand J Goosen
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Michele A Miller
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
| |
Collapse
|
7
|
Abakar MF, Yahyaoui Azami H, Justus Bless P, Crump L, Lohmann P, Laager M, Chitnis N, Zinsstag J. Transmission dynamics and elimination potential of zoonotic tuberculosis in morocco. PLoS Negl Trop Dis 2017; 11:e0005214. [PMID: 28152056 PMCID: PMC5289436 DOI: 10.1371/journal.pntd.0005214] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 11/28/2016] [Indexed: 11/19/2022] Open
Abstract
Bovine tuberculosis (BTB) is an endemic zoonosis in Morocco caused by Mycobacterium bovis, which infects many domestic animals and is transmitted to humans through consumption of raw milk or from contact with infected animals. The prevalence of BTB in Moroccan cattle is estimated at 18%, and 33% at the individual and the herd level respectively, but the human M. bovis burden needs further clarification. The current control strategy based on test and slaughter should be improved through local context adaptation taking into account a suitable compensation in order to reduce BTB prevalence in Morocco and decrease the disease burden in humans and animals. We established a simple compartmental deterministic mathematical model for BTB transmission in cattle and humans to provide a general understanding of BTB, in particular regarding transmission to humans. Differential equations were used to model the different pathways between the compartments for cattle and humans. Scenarios of test and slaughter were simulated to determine the effects of varying the proportion of tested animals (p) on the time to elimination of BTB (individual animal prevalence of less than one in a thousand) in cattle and humans. The time to freedom from disease ranged from 75 years for p = 20% to 12 years for p = 100%. For p > 60% the time to elimination was less than 20 years. The cumulated cost was largely stable: for p values higher than 40%, cost ranged from 1.47 to 1.60 billion euros with a time frame of 12 to 32 years to reach freedom from disease. The model simulations also suggest that using a 2mm cut off instead of a 4mm cut off in the Single Intradermal Comparative Cervical Tuberculin skin test (SICCT) would result in cheaper and quicker elimination programs. This analysis informs Moroccan bovine tuberculosis control policy regarding time frame, range of cost and levels of intervention. However, further research is needed to clarify the national human-bovine tuberculosis ratio in Morocco.
Collapse
Affiliation(s)
- Mahamat Fayiz Abakar
- Institut de Recherches en Elevage pour le Développement, N’Djaména, Chad
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Hind Yahyaoui Azami
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Institut Agronomique et Vétérinaire Hassan II, Rabat, Morocco
| | - Philipp Justus Bless
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Lisa Crump
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Petra Lohmann
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Mirjam Laager
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Nakul Chitnis
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Jakob Zinsstag
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|