1
|
Li Z, Ran Z, Xiao X, Yan C, Xu J, Tang M, An M. Comparative analysis of the whole mitochondrial genomes of four species in sect. Chrysantha (Camellia L.), endemic taxa in China. BMC PLANT BIOLOGY 2024; 24:955. [PMID: 39395971 PMCID: PMC11475203 DOI: 10.1186/s12870-024-05673-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024]
Abstract
BACKGROUND The sect. Chrysantha Chang of plants with yellow flowers of Camellia species as the "Queen of the Tea Family", most of these species are narrowly distributed endemics of China and are currently listed Grde-II in National Key Protected Wild Plant of China. They are commercially important plants with horticultural medicinal and scientific research value. However, the study of the sect. Chrysantha species genetics are still in its infancy, to date, the mitochondrial genome in sect. Chrysantha has been still unexplored. RESULTS In this study, we provide a comprehensive assembly and annotation of the mitochondrial genomes for four species within the sect. Chrysantha. The results showed that the mitochondrial genomes were composed of closed-loop DNA molecules with sizes ranging from 850,836 bp (C. nitidissima) to 1,098,121 bp (C. tianeensis) with GC content of 45.71-45.78% and contained 48-58 genes, including 28-37 protein-coding genes, 17-20 tRNA genes and 2 rRNA genes. We also examined codon usage, sequence repeats, RNA editing and selective pressure in the four species. Then, we performed a comprehensive comparison of their basic structures, GC contents, codon preferences, repetitive sequences, RNA editing sites, Ka/Ks ratios, haplotypes, and RNA editing sites. The results showed that these plants differ little in gene type and number. C. nitidissima has the greatest variety of genes, while C. tianeensis has the greatest loss of genes. The Ka/Ks values of the atp6 gene in all four plants were greater than 1, indicating positive selection. And the codons ending in A and T were highly used. In addition, the RNA editing sites differed greatly in number, type, location, and efficiency. Twelve, six, five, and twelve horizontal gene transfer (HGT) fragments were found in C. tianeensis, Camellia huana, Camellia liberofilamenta, and C. nitidissima, respectively. The phylogenetic tree clusters the four species of sect. Chrysantha plants into one group, and C. huana and C. liberofilamenta have closer affinities. CONCLUSIONS In this study, the mitochondrial genomes of four sect. Chrysantha plants were assembled and annotated, and these results contribute to the development of new genetic markers, DNA barcode databases, genetic improvement and breeding, and provide important references for scientific research, population genetics, and kinship identification of sect. Chrysantha plants.
Collapse
Affiliation(s)
- Zhi Li
- College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Zhaohui Ran
- College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Xu Xiao
- College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Chao Yan
- College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Jian Xu
- Guizhou Botanical Garden, Guiyang, 550000, China
| | - Ming Tang
- Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Jiangxi Agricultural University, Nanchang, 330045, China.
- Jiangxi Provincial Key Laboratory of Conservation Biology, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Mingtai An
- College of Forestry, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
2
|
Xiao W, Wu X, Zhou X, Zhang J, Huang J, Dai X, Ren H, Xu D. Assembly and comparative analysis of the first complete mitochondrial genome of zicaitai ( Brassica rapa var. Purpuraria): insights into its genetic architecture and evolutionary relationships. FRONTIERS IN PLANT SCIENCE 2024; 15:1475064. [PMID: 39450086 PMCID: PMC11499134 DOI: 10.3389/fpls.2024.1475064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024]
Abstract
Introduction Zicaitai (Brassica rapa var. purpuraria) is a Brassica variety renowned for its distinctive taste and rich nutritional profile. In recent years, the mitochondrial genomes of several Brassica species have been documented, but the mitogenome of Zicaitai remains unreported. Methods In this study, we characterized the Zicaitai mitogenome achieved through the assembly of sequencing reads derived from both the Oxford Nanopore and Illumina platforms. A detailed comparative analysis was carried out with other Brassica species to draw comparisons and contrasts. In-depth analyses of codon usage patterns, instances of RNA editing, and the prevalence of sequence repeats within the mitogenome were also conducted to gain a more nuanced understanding of its genetic architecture. A phylogenetic analysis was performed, utilizing the coding sequences (CDS) from the mitochondrial genome of Zicaitai and that of 20 closely related species/varieties to trace evolutionary connections. Results The Zicaitai mitogenome is characterized by a circular structure spanning 219,779 base pairs, and it encompasses a total of 59 genes. This gene set includes 33 protein-coding genes, 23 tRNA genes, and 3 rRNA genes, providing a rich foundation for further genomic study. An analysis of the Ka/Ks ratios for 30 protein-coding genes shared by the mitogenomes of Zicaitai and seven other Brassica species revealed that most of these genes had undergone purifying selection. Additionally, the study explored the migration of genes between the chloroplast and nuclear genomes and the mitogenome, offering insights into the dynamics of genetic exchange within the Brassica genus. Discussion The collective results in this study will serve as a foundational resource, aiding future evolutionary studies focused on B. rapa, and contributing to a broader understanding of the complexities of plant evolution.
Collapse
Affiliation(s)
- Wanyu Xiao
- Guangzhou Municipal Crop Seed Quality Inspection Center, Guangzhou Academy of Agricultural and Rural Sciences, Guangzhou, China
| | - Xian Wu
- Northeast Agricultural University, Harbin, China
| | - Xianyu Zhou
- Guangzhou Municipal Crop Seed Quality Inspection Center, Guangzhou Academy of Agricultural and Rural Sciences, Guangzhou, China
| | - Jing Zhang
- Guangzhou Municipal Crop Seed Quality Inspection Center, Guangzhou Academy of Agricultural and Rural Sciences, Guangzhou, China
| | - Jianghua Huang
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xiuchun Dai
- Guangzhou Municipal Crop Seed Quality Inspection Center, Guangzhou Academy of Agricultural and Rural Sciences, Guangzhou, China
| | - Hailong Ren
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Donglin Xu
- Guangzhou Municipal Crop Seed Quality Inspection Center, Guangzhou Academy of Agricultural and Rural Sciences, Guangzhou, China
| |
Collapse
|
3
|
Qiao H, Chen Y, Wang R, Zhang W, Zhang Z, Yu F, Yang H, Liu G, Zhang J. Assembly and comparative analysis of the first complete mitochondrial genome of Salix psammophila, a good windbreak and sand fixation shrub. FRONTIERS IN PLANT SCIENCE 2024; 15:1411289. [PMID: 39416477 PMCID: PMC11479937 DOI: 10.3389/fpls.2024.1411289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/02/2024] [Indexed: 10/19/2024]
Abstract
Salix psammophila, commonly known as the sandlive willow, is a vital shrub species within the Salicaceae family, particularly significant for its ecological role in regions susceptible to desertification and sandy soils. In this study, we assembled the complete S. psammophila mitochondrial genome using Pacbio HiFi third-generation sequencing data. The genome was found to be a typical single circular structure, with a total length of 715,555 bp and a GC content of 44.89%. We annotated 33 unique protein-coding genes (PCGs), which included 24 core mitochondrial genes and 9 variable genes, as well as 18 tRNA genes (5 of which were multicopy genes) and 3 rRNA genes. Comparative analysis of the PCGs from the mitochondrial genomes of S. psammophila, Populus deltoides, Populus simonii, Salix wilsonii, and Salix suchowensis revealed that these genes are relatively conserved within the Salicaceae family, with variability primarily occurring in the ribosomal protein genes. The absence of the rps14, which encodes a ribosomal protein, may have played a role in the evolution of stress tolerance in Salicaceae plants. Additionally, we identified 232 SSRs, 19 tandem repeat sequences, and 236 dispersed repeat sequences in the S. psammophila mitochondrial genome, with palindromic and forward repeats being the most abundant. The longest palindromic repeat measured 260 bp, while the longest forward repeat was 86,068 bp. Furthermore, 324 potential RNA editing sites were discovered, all involving C-to-U edits, with the nad4 having the highest number of edits. These findings provide valuable insights into the phylogenetic and genetic research of Salicaceae plants.
Collapse
Affiliation(s)
- Hongxia Qiao
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing, China
- College of Forestry, Inner Mongolia Agricultural University, Hohhot, China
| | - Yajuan Chen
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing, China
| | - Ruiping Wang
- Ordos Forestry and Grassland Development Center, Ordos, China
| | - Wei Zhang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Zhang Zhang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing, China
| | - Fengqiang Yu
- Ordos Forestry and Grassland Development Center, Ordos, China
| | - Haifeng Yang
- College of Forestry, Inner Mongolia Agricultural University, Hohhot, China
| | - Guiming Liu
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing, China
| | - Jiewei Zhang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing, China
| |
Collapse
|
4
|
Ye H, Liu H, Li H, Lei D, Gao Z, Zhou H, Zhao P. Complete mitochondrial genome assembly of Juglans regia unveiled its molecular characteristics, genome evolution, and phylogenetic implications. BMC Genomics 2024; 25:894. [PMID: 39342114 PMCID: PMC11439326 DOI: 10.1186/s12864-024-10818-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND The Persian walnut (Juglans regia), an economically vital species within the Juglandaceae family, has seen its mitochondrial genome sequenced and assembled in the current study using advanced Illumina and Nanopore sequencing technology. RESULTS The 1,007,576 bp mitogenome of J. regia consisted of three circular chromosomes with a 44.52% GC content encoding 39 PCGs, 47 tRNA, and five rRNA genes. Extensive repetitive sequences, including 320 SSRs, 512 interspersed, and 83 tandem repeats, were identified, contributing to genomic complexity. The protein-coding sequences (PCGs) favored A/T-ending codons, and the codon usage bias was primarily shaped by selective pressure. Intracellular gene transfer occurred among the mitogenome, chloroplast, and nuclear genomes. Comparative genomic analysis unveiled abundant structure and sequence variation among J. regia and related species. The results of selective pressure analysis indicated that most PCGs underwent purifying selection, whereas the atp4 and ccmB genes had experienced positive selection between many species pairs. In addition, the phylogenetic examination, grounded in mitochondrial genome data, precisely delineated the evolutionary and taxonomic relationships of J. regia and its relatives. We identified a total of 539 RNA editing sites, among which 288 were corroborated by transcriptome sequencing data. Furthermore, expression profiling under temperature stress highlighted the complex regulation pattern of 28 differently expressed PCGs, wherein NADH dehydrogenase and ATP synthase genes might be critical in the mitochondria response to cold stress. CONCLUSIONS Our results provided valuable molecular resources for understanding the genetic characteristics of J. regia and offered novel perspectives for population genetics and evolutionary studies in Juglans and related woody species.
Collapse
Affiliation(s)
- Hang Ye
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Hengzhao Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Haochen Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Dingfan Lei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Zhimei Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Huijuan Zhou
- Xi'an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Shaanxi Academy of Science, Xi'an, Shaanxi, 710061, China
| | - Peng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
5
|
Ou T, Wu Z, Tian C, Yang Y, Li Z. Complete mitochondrial genome of Agropyron cristatum reveals gene transfer and RNA editing events. BMC PLANT BIOLOGY 2024; 24:830. [PMID: 39232676 PMCID: PMC11373303 DOI: 10.1186/s12870-024-05558-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND As an important forage in arid and semi-arid regions, Agropyron cristatum provides livestock with exceptionally high nutritional value. Additionally, A. cristatum exhibits outstanding genetic characteristics to endure drought and disease. Therefore, rich genetic diversity serves as a cornerstone for the improvement of major food crops. The purposes of this study were to systematically describe mitogenome of A.cristatum and preliminarily analyze its internal variations. RESULT The A. cristatum mitogenome was a single-ring molecular structure of 381,065 bp that comprised 52 genes, including 35 protein-coding, 3 rRNA and 14 tRNA genes. Among these, two pseudoprotein-coding genes and multiple copies of tRNA genes were observed. A total of 320 repetitive sequences was found to cover more than 10% of the mitogenome (105 simple sequences, 185 dispersed and 30 tandem repeats), which led to a large number of fragment rearrangements in the mitogenome of A. cristatum. Leucine was the most frequent amino acid (n = 1087,10.8%) in the protein-coding genes of A. cristatum mitogenome, and the highest usage codon was ATG (initiation codon). The number of A/T changes at the third base of the codon was much higher than that of G/C. Among 23 PCGs, the range of Pi values is from 0.0021 to 0.0539, with an average of 0.013. Additionally, 81 RNA editing sites were predicted, which were considerably fewer than those reported in other plant mitogenomes. Most of the RNA editing site base positions were concentrated at the first and second codon bases, which were C to T transitions. Moreover, we identified 95 sequence fragments (total length of 34, 343 bp) that were transferred from the chloroplast to mitochondria genes, introns, and intergenic regions. The stability of the tRNA genes was maintained during this process. Selection pressure analysis of 23 protein-coding genes shared by 15 Poaceae plants, showed that most genes were subjected to purifying selection during evolution, whereas rps4, cob, mttB, and ccmB underwent positive selection in different plants. Finally, a phylogenetic tree was constructed based on 22 plant mitogenomes, which showed that Agropyron plants have a high degree of independent heritability in Triticeae. CONCLUSION The findings of this study provide new data for a better understanding of A. cristatum genes, and demonstrate that mitogenomes are suitable for the study of plant classifications, such as those of Agropyron. Moreover, it provides a reference for further exploration of the phylogenetic relationships within Agropyron species, and establishes a theoretical basis for the subsequent development and utilization of A. cristatum plant germplasm resources.
Collapse
Affiliation(s)
- Taiyou Ou
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Hohhot, China
| | - Zinian Wu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China.
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Hohhot, China.
| | - Chunyu Tian
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Hohhot, China
| | - Yanting Yang
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Hohhot, China
| | - Zhiyong Li
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Hohhot, China
| |
Collapse
|
6
|
Chu L, Du Q, Zuo S, Liu G, Wang H, Liu G, Zhao L, Xu G. Assembly and comparative analysis of the complete mitochondrial genome of Vaccinium carlesii Dunn. Genomics 2024; 116:110897. [PMID: 39032617 DOI: 10.1016/j.ygeno.2024.110897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Vaccinium L. is an important fruit tree with nutritional, medicinal, and ornamental values. However, the mitochondrial (mt) genome of Vaccinium L. remains largely unexplored. Vaccinium carlesii Dunn is an endemic wild resource in China, which is crucial for blueberry breeding. The V. carlesii mt genomes were sequenced using Illumina and Nanopore, which total length was 636,904 bp with 37 protein coding genes, 20 tRNA genes, and three rRNA genes. We found four pairs of long repeat fragments homologous recombination mediated the generation of substructures in the V. carlesii mt genome. We predicted 383 RNA editing sites, all converting cytosine (C) to uracil (U). According to the phylogenetic analysis, V. carlesii and V. macrocarpon of the Ericaceae exhibited the closest genetic relationship. This study provides a theoretical basis for understanding the evolution of higher plants, species classification and identification, and will also be useful for further utilization of Vaccinium germplasm resources.
Collapse
Affiliation(s)
- Liwei Chu
- College of Life and Health, Dalian University, Dalian 116622, China; Key Laboratory of Saccharide and Lipid Metabolism Research in Liaoning Province, Dalian University, Dalian 116622, China
| | - Qianhui Du
- College of Life and Health, Dalian University, Dalian 116622, China
| | - Siyu Zuo
- College of Life and Health, Dalian University, Dalian 116622, China
| | - Guiting Liu
- College of Life and Health, Dalian University, Dalian 116622, China
| | - Hexin Wang
- College of Life and Health, Dalian University, Dalian 116622, China
| | - Guoling Liu
- Dalian Senmao Modern Agriculture Co., Ltd., Dalian 116622, China
| | - Lina Zhao
- Dalian Senmao Modern Agriculture Co., Ltd., Dalian 116622, China
| | - Guohui Xu
- College of Life and Health, Dalian University, Dalian 116622, China.
| |
Collapse
|
7
|
Luo X, Gu C, Gao S, Li M, Zhang H, Zhu S. Complete mitochondrial genome assembly of Zizania latifolia and comparative genome analysis. FRONTIERS IN PLANT SCIENCE 2024; 15:1381089. [PMID: 39184575 PMCID: PMC11341417 DOI: 10.3389/fpls.2024.1381089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/26/2024] [Indexed: 08/27/2024]
Abstract
Zizania latifolia (Griseb.) Turcz. ex Stapf has been cultivated as a popular aquatic vegetable in China due to its important nutritional, medicinal, ecological, and economic values. The complete mitochondrial genome (mitogenome) of Z. latifolia has not been previously studied and reported, which has hindered its molecular systematics and understanding of evolutionary processes. Here, we assembled the complete mitogenome of Z. latifolia and performed a comprehensive analysis including genome organization, repetitive sequences, RNA editing event, intercellular gene transfer, phylogenetic analysis, and comparative mitogenome analysis. The mitogenome of Z. latifolia was estimated to have a circular molecule of 392,219 bp and 58 genes consisting of three rRNA genes, 20 tRNA genes, and 35 protein-coding genes (PCGs). There were 46 and 20 simple sequence repeats (SSRs) with different motifs identified from the mitogenome and chloroplast genome of Z. latifolia, respectively. Furthermore, 49 homologous fragments were observed to transfer from the chloroplast genome to the mitogenome of Z. latifolia, accounting for 47,500 bp, presenting 12.1% of the whole mitogenome. In addition, there were 11 gene-containing homologous regions between the mitogenome and chloroplast genome of Z. latifolia. Also, approximately 85% of fragments from the mitogenome were duplicated in the Z. latifolia nuclear genome. Selection pressure analysis revealed that most of the mitochondrial genes were highly conserved except for ccmFc, ccmFn, matR, rps1, and rps3. A total of 93 RNA editing sites were found in the PCGs of the mitogenome. Z. latifolia and Oryza minuta are the most closely related, as shown by collinear analysis and the phylogenetic analysis. We found that repeat sequences and foreign sequences in the mitogenomes of Oryzoideae plants were associated with genome rearrangements. In general, the availability of the Z. latifolia mitogenome will contribute valuable information to our understanding of the molecular and genomic aspects of Zizania.
Collapse
Affiliation(s)
| | | | | | | | | | - Shidong Zhu
- College of Horticulture, Anhui Agricultural University, Hefei, China
| |
Collapse
|
8
|
Xie P, Wu J, Lu M, Tian T, Wang D, Luo Z, Yang D, Li L, Yang X, Liu D, Cheng H, Tan J, Yang H, Zhu D. Assembly and comparative analysis of the complete mitochondrial genome of Fritillaria ussuriensis Maxim. (Liliales: Liliaceae), an endangered medicinal plant. BMC Genomics 2024; 25:773. [PMID: 39118028 PMCID: PMC11312713 DOI: 10.1186/s12864-024-10680-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Fritillaria ussuriensis is an endangered medicinal plant known for its notable therapeutic properties. Unfortunately, its population has drastically declined due to the destruction of forest habitats. Thus, effectively protecting F. ussuriensis from extinction poses a significant challenge. A profound understanding of its genetic foundation is crucial. To date, research on the complete mitochondrial genome of F. ussuriensis has not yet been reported. RESULTS The complete mitochondrial genome of F. ussuriensis was sequenced and assembled by integrating PacBio and Illumina sequencing technologies, revealing 13 circular chromosomes totaling 737,569 bp with an average GC content of 45.41%. A total of 55 genes were annotated in this mitogenome, including 2 rRNA genes, 12 tRNA genes, and 41 PCGs. The mitochondrial genome of F. ussuriensis contained 192 SSRs and 4,027 dispersed repeats. In the PCGs of F. ussuriensis mitogenome, 90.00% of the RSCU values exceeding 1 exhibited a preference for A-ended or U-ended codons. In addition, 505 RNA editing sites were predicted across these PCGs. Selective pressure analysis suggested negative selection on most PCGs to preserve mitochondrial functionality, as the notable exception of the gene nad3 showed positive selection. Comparison between the mitochondrial and chloroplast genomes of F. ussuriensis revealed 20 homologous fragments totaling 8,954 bp. Nucleotide diversity analysis revealed the variation among genes, and gene atp9 was the most notable. Despite the conservation of GC content, mitogenome sizes varied significantly among six closely related species, and colinear analysis confirmed the lack of conservation in their genomic structures. Phylogenetic analysis indicated a close relationship between F. ussuriensis and Lilium tsingtauense. CONCLUSIONS In this study, we sequenced and annotated the mitogenome of F. ussuriensis and compared it with the mitogenomes of other closely related species. In addition to genomic features and evolutionary position, this study also provides valuable genomic resources to further understand and utilize this medicinal plant.
Collapse
Affiliation(s)
- Ping Xie
- College of Biology and Agriculture, Jiamusi University, Jiamusi, 154007, Heilongjiang, China
| | - Jingru Wu
- Affiliated Stomatological Hospital, Jiamusi University, Jiamusi, 154002, Heilongjiang, China
| | - Mengyue Lu
- College of Biology and Agriculture, Jiamusi University, Jiamusi, 154007, Heilongjiang, China
| | - Tongxin Tian
- College of Biology and Agriculture, Jiamusi University, Jiamusi, 154007, Heilongjiang, China
| | - Dongmei Wang
- College of Biology and Agriculture, Jiamusi University, Jiamusi, 154007, Heilongjiang, China
| | - Zhiwen Luo
- College of Biology and Agriculture, Jiamusi University, Jiamusi, 154007, Heilongjiang, China
| | - Donghong Yang
- Affiliated Stomatological Hospital, Jiamusi University, Jiamusi, 154002, Heilongjiang, China
| | - Lili Li
- College of Biology and Agriculture, Jiamusi University, Jiamusi, 154007, Heilongjiang, China
| | - Xuewen Yang
- College of Biology and Agriculture, Jiamusi University, Jiamusi, 154007, Heilongjiang, China
| | - Decai Liu
- College of Biology and Agriculture, Jiamusi University, Jiamusi, 154007, Heilongjiang, China
| | - Haitao Cheng
- College of Biology and Agriculture, Jiamusi University, Jiamusi, 154007, Heilongjiang, China
| | - Jiaxin Tan
- College of Biology and Agriculture, Jiamusi University, Jiamusi, 154007, Heilongjiang, China
| | - Hongsheng Yang
- College of Biology and Agriculture, Jiamusi University, Jiamusi, 154007, Heilongjiang, China.
| | - Dequan Zhu
- School of Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
9
|
Gong Y, Xie X, Zhou G, Chen M, Chen Z, Li P, Huang H. Assembly and comparative analysis of the complete mitochondrial genome of Brassica rapa var. Purpuraria. BMC Genomics 2024; 25:546. [PMID: 38824587 PMCID: PMC11143693 DOI: 10.1186/s12864-024-10457-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/26/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Purple flowering stalk (Brassica rapa var. purpuraria) is a widely cultivated plant with high nutritional and medicinal value and exhibiting strong adaptability during growing. Mitochondrial (mt) play important role in plant cells for energy production, developing with an independent genetic system. Therefore, it is meaningful to assemble and annotate the functions for the mt genome of plants independently. Though there have been several reports referring the mt genome of in Brassica species, the genome of mt in B. rapa var. purpuraria and its functional gene variations when compared to its closely related species has not yet been addressed. RESULTS The mt genome of B. rapa var. purpuraria was assembled through the Illumina and Nanopore sequencing platforms, which revealed a length of 219,775 bp with a typical circular structure. The base composition of the whole B. rapa var. purpuraria mt genome revealed A (27.45%), T (27.31%), C (22.91%), and G (22.32%). 59 functional genes, composing of 33 protein-coding genes (PCGs), 23 tRNA genes, and 3 rRNA genes, were annotated. The sequence repeats, codon usage, RNA editing, nucleotide diversity and gene transfer between the cp genome and mt genome were examined in the B. rapa var. purpuraria mt genome. Phylogenetic analysis show that B. rapa var. Purpuraria was closely related to B. rapa subsp. Oleifera and B. juncea. Ka/Ks analysis reflected that most of the PCGs in the B. rapa var. Purpuraria were negatively selected, illustrating that those mt genes were conserved during evolution. CONCLUSIONS The results of our findings provide valuable information on the B.rapa var. Purpuraria genome, which might facilitate molecular breeding, genetic variation and evolutionary researches for Brassica species in the future.
Collapse
Affiliation(s)
- Yihui Gong
- Development and Utilization and Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan, College of Agriculture and Biotechnology , Hunan University of Humanities, Science and Technology, Loudi, 417000, China.
| | - Xin Xie
- Development and Utilization and Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan, College of Agriculture and Biotechnology , Hunan University of Humanities, Science and Technology, Loudi, 417000, China
| | - Guihua Zhou
- Development and Utilization and Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan, College of Agriculture and Biotechnology , Hunan University of Humanities, Science and Technology, Loudi, 417000, China
| | - Meiyu Chen
- Development and Utilization and Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan, College of Agriculture and Biotechnology , Hunan University of Humanities, Science and Technology, Loudi, 417000, China
| | - Zhiyin Chen
- Development and Utilization and Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan, College of Agriculture and Biotechnology , Hunan University of Humanities, Science and Technology, Loudi, 417000, China
| | - Peng Li
- Xiangtan Agricultural Science Research Institute, Xiangtan, 411100, China
| | - Hua Huang
- Institute of Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| |
Collapse
|
10
|
Li Z, Liu J, Liang M, Guo Y, Chen X, Wu H, Jin S. De novo assembly of the complete mitochondrial genome of pepino (Solanum muricatum) using PacBio HiFi sequencing: insights into structure, phylogenetic implications, and RNA editing. BMC PLANT BIOLOGY 2024; 24:361. [PMID: 38702620 PMCID: PMC11069145 DOI: 10.1186/s12870-024-04978-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 04/02/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND Solanum muricatum is an emerging horticultural fruit crop with rich nutritional and antioxidant properties. Although the chromosome-scale genome of this species has been sequenced, its mitochondrial genome sequence has not been reported to date. RESULTS PacBio HiFi sequencing was used to assemble the circular mitogenome of S. muricatum, which was 433,466 bp in length. In total, 38 protein-coding, 19 tRNA, and 3 rRNA genes were annotated. The reticulate mitochondrial conformations with multiple junctions were verified by polymerase chain reaction, and codon usage, sequence repeats, and gene migration from chloroplast to mitochondrial genome were determined. A collinearity analysis of eight Solanum mitogenomes revealed high structural variability. Overall, 585 RNA editing sites in protein coding genes were identified based on RNA-seq data. Among them, mttB was the most frequently edited (52 times), followed by ccmB (46 times). A phylogenetic analysis based on the S. muricatum mitogenome and those of 39 other taxa (including 25 Solanaceae species) revealed the evolutionary and taxonomic status of S. muricatum. CONCLUSIONS We provide the first report of the assembled and annotated S. muricatum mitogenome. This information will help to lay the groundwork for future research on the evolutionary biology of Solanaceae species. Furthermore, the results will assist the development of molecular breeding strategies for S. muricatum based on the most beneficial agronomic traits of this species.
Collapse
Affiliation(s)
- Ziwei Li
- Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Jiaxun Liu
- Horticultural Research Institute Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, 650205, China
| | - Mingtai Liang
- Horticultural Research Institute Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, 650205, China
| | - Yanbing Guo
- Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Xia Chen
- Horticultural Research Institute Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, 650205, China
| | - Hongzhi Wu
- Yunnan Agricultural University, Kunming, Yunnan, 650201, China.
| | - Shoulin Jin
- Yunnan Agricultural University, Kunming, Yunnan, 650201, China.
| |
Collapse
|
11
|
Niu Y, Gao C, Liu J. Mitochondrial genome variation and intergenomic sequence transfers in Hevea species. FRONTIERS IN PLANT SCIENCE 2024; 15:1234643. [PMID: 38660449 PMCID: PMC11039855 DOI: 10.3389/fpls.2024.1234643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 03/25/2024] [Indexed: 04/26/2024]
Abstract
Among the Hevea species, rubber tree (Hevea brasiliensis) is the most important source of natural rubber. In previous studies, we sequenced the complete nuclear and chloroplast genomes of Hevea species, providing an invaluable resource for studying their phylogeny, disease resistance, and breeding. However, given that plant mitochondrial genomes are more complex and more difficult to assemble than that of the other organelles, little is known about their mitochondrial genome, which limits the comprehensive understanding of Hevea genomic evolution. In this study, we sequenced and assembled the mitochondrial genomes of four Hevea species. The four mitochondrial genomes had consistent GC contents, codon usages and AT skews. However, there were significant differences in the genome lengths and sequence repeats. Specifically, the circular mitochondrial genomes of the four Hevea species ranged from 935,732 to 1,402,206 bp, with 34-35 unique protein-coding genes, 35-38 tRNA genes, and 6-13 rRNA genes. In addition, there were 17,294-46,552 bp intergenomic transfer fragments between the chloroplast and mitochondrial genomes, consisting of eight intact genes (psaA, rrn16S, tRNA-Val, rrn5S, rrn4.5S, tRNA-Arg, tRNA-Asp, and tRNA-Asn), intergenic spacer regions and partial gene sequences. The evolutionary position of Hevea species, crucial for understanding its adaptive strategies and relation to other species, was verified by phylogenetic analysis based on the protein-coding genes in the mitochondrial genomes of 21 Malpighiales species. The findings from this study not only provide valuable insights into the structure and evolution of the Hevea mitochondrial genome but also lay the foundation for further molecular, evolutionary studies, and genomic breeding studies on rubber tree and other Hevea species, thereby potentially informing conservation and utilization strategies.
Collapse
Affiliation(s)
- Yingfeng Niu
- Yunnan Institute of Tropical Crops, National Key Laboratory for Biological Breeding of Tropical Crops, Yunnan Key Laboratory of Sustainable Utilization Research on Rubber Tree, Xishuangbanna, China
| | - Chengwen Gao
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jin Liu
- Yunnan Institute of Tropical Crops, National Key Laboratory for Biological Breeding of Tropical Crops, Yunnan Key Laboratory of Sustainable Utilization Research on Rubber Tree, Xishuangbanna, China
| |
Collapse
|
12
|
Chen L, Dong X, Huang H, Xu H, Rono PC, Cai X, Hu G. Assembly and comparative analysis of the initial complete mitochondrial genome of Primulina hunanensis (Gesneriaceae): a cave-dwelling endangered plant. BMC Genomics 2024; 25:322. [PMID: 38561677 PMCID: PMC10983754 DOI: 10.1186/s12864-024-10247-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/22/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Primulina hunanensis, a troglobitic plant within the Primulina genus of Gesneriaceae family, exhibits robust resilience to arid conditions and holds great horticultural potential as an ornamental plant. The work of chloroplast genome (cpDNA) has been recently accomplished, however, the mitochondrial genome (mtDNA) that is crucial for plant evolution has not been reported. RESULTS In this study, we sequenced and assembled the P. hunanensis complete mtDNA, and elucidated its evolutionary and phylogenetic relationships. The assembled mtDNA spans 575,242 bp with 43.54% GC content, encompassing 60 genes, including 37 protein-coding genes (PCGs), 20 tRNA genes, and 3 rRNA genes. Notably, high number of repetitive sequences in the mtDNA and substantial sequence translocation from chloroplasts to mitochondria were observed. To determine the evolutionary and taxonomic positioning of P. hunanensis, a phylogenetic tree was constructed using mitochondrial PCGs from P. hunanensis and 32 other taxa. Furthermore, an exploration of PCGs relative synonymous codon usage, identification of RNA editing events, and an investigation of collinearity with closely related species were conducted. CONCLUSIONS This study reports the initial assembly and annotation of P. hunanensis mtDNA, contributing to the limited mtDNA repository for Gesneriaceae plants and advancing our understanding of their evolution for improved utilization and conservation.
Collapse
Affiliation(s)
- Lingling Chen
- Department of Botany, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Xiang Dong
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hang Huang
- Department of Botany, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Haixia Xu
- Department of Botany, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Peninah Cheptoo Rono
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Xiuzhen Cai
- Department of Botany, College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
| | - Guangwan Hu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Hubei Jiangxia Laboratory, Wuhan, 430200, China.
| |
Collapse
|
13
|
Yang Y, Duan C. Mitochondrial genome features and systematic evolution of diospyros kaki thunb 'Taishuu'. BMC Genomics 2024; 25:285. [PMID: 38500026 PMCID: PMC10946091 DOI: 10.1186/s12864-024-10199-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 03/08/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND 'Taishuu' has a crisp texture, abundant juice, and sweet flavor with hints of cantaloupe. The availability of mitochondrial genome data of Diospyros species is far from the known number of species. RESULTS The sequencing data were assembled into a closed circular mitochondrial chromosome with a 421,308 bp length and a 45.79% GC content. The mitochondrial genome comprised 40 protein-coding, 24 tRNA, and three rRNA genes. The most common codons for arginine (Arg), proline (Pro), glycine (Gly), tryptophan (Trp), valine (Val), alanine (Ala), and leucine (Leu) were AGA, CCA, GGA, UGG, GUA, GCA, and CUA, respectively. The start codon for cox1 and nad4L protein-coding genes was ACG (ATG), whereas the remaining protein-coding genes started with ATG. There are four types of stop codons: CGA, TAA, TAG, and TGA, with TAA being the most frequently used stop codon (45.24%). In the D. kaki Thunb. 'Taishuu' mitochondrial genome, a total of 645 repeat sequences were identified, including 125 SSRs, 7 tandem repeats, and 513 dispersed repeats. Collinearity analysis revealed a close relationship between D. kaki Thunb. 'Taishuu' and Diospyros oleifera, with conserved homologous gene fragments shared among these species in large regions of the mitochondrial genome. The protein-coding genes ccmB and nad4L were observed to undergo positive selection. Analysis of homologous sequences between chloroplasts and mitochondria identified 28 homologous segments, with a total length of 24,075 bp, accounting for 5.71% of the mitochondrial genome. These homologous segments contain 8 annotated genes, including 6 tRNA genes and 2 protein-coding genes (rrn18 and ccmC). There are 23 homologous genes between chloroplasts and nuclei. Mitochondria, chloroplasts, and nuclei share two homologous genes, which are trnV-GAC and trnW-CCA. CONCLUSION In conclusion, a high-quality chromosome-level draft genome for D. kaki was generated in this study, which will contribute to further studies of major economic traits in the genus Diospyros.
Collapse
Affiliation(s)
- Yunliang Yang
- Cotton Research Institute of Shanxi Agricultural University, Yuncheng, 044000, China
| | - Chao Duan
- Cotton Research Institute of Shanxi Agricultural University, Yuncheng, 044000, China.
| |
Collapse
|
14
|
Feng G, Jiao Y, Ma H, Bian H, Nie G, Huang L, Xie Z, Ran Q, Fan W, He W, Zhang X. The first two whole mitochondrial genomes for the genus Dactylis species: assembly and comparative genomics analysis. BMC Genomics 2024; 25:235. [PMID: 38438835 PMCID: PMC10910808 DOI: 10.1186/s12864-024-10145-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 02/19/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Orchardgrass (Dactylis glomerata L.), a perennial forage, has the advantages of rich leaves, high yield, and good quality and is one of the most significant forage for grassland animal husbandry and ecological management in southwest China. Mitochondrial (mt) genome is one of the major genetic systems in plants. Studying the mt genome of the genus Dactylis could provide more genetic information in addition to the nuclear genome project of the genus. RESULTS In this study, we sequenced and assembled two mitochondrial genomes of Dactylis species of D. glomerata (597, 281 bp) and D. aschersoniana (613, 769 bp), based on a combination of PacBio and Illumina. The gene content in the mitochondrial genome of D. aschersoniana is almost identical to the mitochondrial genome of D. glomerata, which contains 22-23 protein-coding genes (PCGs), 8 ribosomal RNAs (rRNAs) and 30 transfer RNAs (tRNAs), while D. glomerata lacks the gene encoding the Ribosomal protein (rps1) and D. aschersoniana contains one pseudo gene (atp8). Twenty-three introns were found among eight of the 30 protein-coding genes, and introns of three genes (nad 1, nad2, and nad5) were trans-spliced in Dactylis aschersoniana. Further, our mitochondrial genome characteristics investigation of the genus Dactylis included codon usage, sequences repeats, RNA editing and selective pressure. The results showed that a large number of short repetitive sequences existed in the mitochondrial genome of D. aschersoniana, the size variation of two mitochondrial genomes is due largely to the presence of a large number of short repetitive sequences. We also identified 52-53 large fragments that were transferred from the chloroplast genome to the mitochondrial genome, and found that the similarity was more than 70%. ML and BI methods used in phylogenetic analysis revealed that the evolutionary status of the genus Dactylis. CONCLUSIONS Thus, this study reveals the significant rearrangements in the mt genomes of Pooideae species. The sequenced Dactylis mt genome can provide more genetic information and improve our evolutionary understanding of the mt genomes of gramineous plants.
Collapse
Affiliation(s)
- Guangyan Feng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yongjuan Jiao
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huizhen Ma
- Grassland Research Institute, Chongqing Academy of Animal Science, Chongqing, 402460, China
| | - Haoyang Bian
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Gang Nie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zheni Xie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qifan Ran
- Grassland Research Institute, Chongqing Academy of Animal Science, Chongqing, 402460, China
| | - Wenwen Fan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei He
- Grassland Research Institute, Chongqing Academy of Animal Science, Chongqing, 402460, China.
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
15
|
Liu X, You Q, Liu M, Bo C, Zhu Y, Duan Y, Xue J, Wang D, Xue T. Assembly and comparative analysis of the complete mitochondrial genome of Pinellia ternata. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23256. [PMID: 38316513 DOI: 10.1071/fp23256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/12/2024] [Indexed: 02/07/2024]
Abstract
Pinellia ternata is an important natural medicinal herb in China. However, it is susceptible to withering when exposed to high temperatures during growth, which limits its tuber production. Mitochondria usually function in stress response. The P . ternata mitochondrial (mt) genome has yet to be explored. Therefore, we integrated PacBio and Illumina sequencing reads to assemble and annotate the mt genome of P . ternata . The circular mt genome of P . ternata is 876 608bp in length and contains 38 protein-coding genes (PCGs), 20 tRNA genes and three rRNA genes. Codon usage, sequence repeats, RNA editing and gene migration from chloroplast (cp) to mt were also examined. Phylogenetic analysis based on the mt genomes of P . ternata and 36 other taxa revealed the taxonomic and evolutionary status of P . ternata . Furthermore, we investigated the mt genome size and GC content by comparing P . ternata with the other 35 species. An evaluation of non-synonymous substitutions and synonymous substitutions indicated that most PCGs in the mt genome underwent negative selection. Our results provide comprehensive information on the P . ternata mt genome, which may facilitate future research on the high-temperature response of P . ternata and provide new molecular insights on the Araceae family.
Collapse
Affiliation(s)
- Xiao Liu
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
| | - Qian You
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
| | - Mengmeng Liu
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
| | - Chen Bo
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
| | - Yanfang Zhu
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
| | - Yongbo Duan
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
| | - Jianping Xue
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
| | - Dexin Wang
- College of Agriculture and Engineering, Heze University, Heze, Shandong, China
| | - Tao Xue
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
| |
Collapse
|
16
|
Liu X, Zhang D, Yu Z, Zeng B. Assembly and analysis of the complete mitochondrial genome of the Chinese wild dwarf almond ( Prunus tenella). Front Genet 2024; 14:1329060. [PMID: 38283144 PMCID: PMC10811783 DOI: 10.3389/fgene.2023.1329060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/18/2023] [Indexed: 01/30/2024] Open
Abstract
Background: The wild dwarf almond (Prunus tenella) is one of the national key grade II-protected wild plants in China. It is a relic deciduous forest species from the middle Eocene of the ancient Mediterranean Sea and is also known as a "living fossil of plants." It is distributed in Southeast Europe, West Asia, Central Asia, Siberia, and Xinjiang (Tacheng) and other areas of China. The plant grows on arid slopes, steppes, depressions, and valleys at an altitude of 1,200 m. The seeds of wild dwarf almonds are frost resistant and contain oil and bitter lentil glycosides, which possess medicinal value. Additionally, the seeds of wild dwarf almonds can be used as the original material for breeding new varieties of almonds and obtain ornamental flowers and trees. Results: The complete mitochondrial genome of P. tenella was sequenced and assembled using two sequencing platforms, namely, Illumina Novaseq6000 and Oxford Nanopore PromethION. The assembled genome was 452,158-bp long with a typical loop structure. The total number of A, T, C, and G bases in the genome was 122,066 (26.99%), 124,114 (27.45%), 103,285 (22.84%), and 102,693 (22.71%), respectively, with a GC content of 45.55%. A total of 63 unique genes, including 36 protein-coding genes, 24 tRNA genes, and 3 rRNA genes, were identified in the genome. Furthermore, codon usage, sequence duplication, RNA editing, and mitochondrial and chloroplast DNA fragment transfer events in the genome were analyzed. A phylogenetic tree was also constructed using 30 protein-coding genes that are common to the mitochondrial genomes of 24 species, which indicated that the genome of wild lentils is highly conserved with those of apples and pears belonging to Rosaceae. Conclusion: Assembly and annotation of the P. tenella mitochondrial genome provided comprehensive information about the mitochondrial genome of wild dwarf almonds, This study provides information on the mitochondrial genome of Prunus species and serves as a reference for further evolutionary studies on wild dwarf almonds.
Collapse
Affiliation(s)
| | | | | | - Bin Zeng
- College of Horticulture, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
17
|
Zhang F, Kang H, Gao L. Complete Mitochondrial Genome Assembly of an Upland Wild Rice Species, Oryza granulata and Comparative Mitochondrial Genomic Analyses of the Genus Oryza. Life (Basel) 2023; 13:2114. [PMID: 38004254 PMCID: PMC10672236 DOI: 10.3390/life13112114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/15/2023] [Accepted: 10/18/2023] [Indexed: 11/26/2023] Open
Abstract
Wild upland rice species, including Oryza granulata, possess unique characteristics that distinguish them from other Oryza species. For instance, O. granulata characteristically has a GG genome and is accordingly classified as a basal lineage of the genus Oryza. Here, we deployed a versatile hybrid approach by integrating Illumina and PacBio sequencing data to generate a high-quality mitochondrial genome (mitogenome) assembly for O. granulata. The mitogenome of O. granulata was 509,311 base pairs (bp) with sixty-seven genes comprising two circular chromosomes, five ribosomal RNA (rRNA) coding genes, twenty-five transfer RNA (tRNA) coding genes, and thirty-seven genes coding for proteins. We identified a total of 378 simple sequence repeats (SSRs). The genome also contained 643 pairs of dispersed repeats comprising 340 palindromic and 303 forward. In the O. granulata mitogenome, the length of 57 homologous fragments in the chloroplast genome occupied 5.96% of the mitogenome length. Collinearity analysis of three Oryza mitogenomes revealed high structural variability and frequent rearrangements. Phylogenetic analysis showed that, compared to other related genera, O. granulata had the closest genetic relationship with mitogenomes reported for all members of Oryza, and occupies a position at the base of the Oryza phylogeny. Comparative analysis of complete mitochondrial genome assemblies for Oryza species revealed high levels of mitogenomic diversity, providing a foundation for future conservation and utilization of wild rice biodiversity.
Collapse
Affiliation(s)
- Fen Zhang
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China;
| | - Haiqi Kang
- Tropical Biodiversity and Genomics Research Center, Engineering Research Center for Selecting and Breeding New Tropical Crop Varieties, Ministry of Education, Hainan University, Haikou 570228, China;
| | - Lizhi Gao
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China;
- Tropical Biodiversity and Genomics Research Center, Engineering Research Center for Selecting and Breeding New Tropical Crop Varieties, Ministry of Education, Hainan University, Haikou 570228, China;
| |
Collapse
|
18
|
Yisilam G, Liu Z, Turdi R, Chu Z, Luo W, Tian X. Assembly and comparative analysis of the complete mitochondrial genome of Isopyrum anemonoides (Ranunculaceae). PLoS One 2023; 18:e0286628. [PMID: 37796878 PMCID: PMC10553351 DOI: 10.1371/journal.pone.0286628] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 05/19/2023] [Indexed: 10/07/2023] Open
Abstract
Ranunculaceae is a large family of angiosperms comprising 2500 known species-a few with medicinal and ornamental values. Despite this, only two mitochondrial genomes (mitogenomes) of the family have been released in GenBank. Isopyrum anemonoides is a medicinal plant belonging to the family Ranunculaceae, and its chloroplast genome has recently been reported; however, its mitogenome remains unexplored. In this study, we assembled and analyzed the complete mitochondrial genome of I. anemonoides and performed a comparative analysis against different Ranunculaceae species, reconstructing the phylogenetic framework of Isopyrum. The circular mitogenome of I. anemonoides has a length of 206,722 bp, with a nucleotide composition of A (26.4%), T (26.4%), C (23.6%), and G (23.6%), and contains 62 genes, comprising 37 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, and three ribosomal RNA (rRNA) genes. Abundantly interspersed repetitive and simple sequence repeat (SSR) loci were detected in the I. anemonoides mitogenome, with tetranucleotide repeats accounting for the highest proportion of SSRs. By detecting gene migration, we observed gene exchange between the chloroplast and mitogenome in I. anemonoides, including six intact tRNA genes, six PCG fragments, and fragments from two rRNA genes. Comparative mitogenome analysis of three Ranunculaceae species indicated that the PCG contents were conserved and the GC contents were similar. Selective pressure analysis revealed that only two genes (nad1 and rpl5) were under positive selection during their evolution in Ranunculales, and two specific RNA editing sites (atp6 and mttB) were detected in the I. anemonoides mitogenome. Moreover, a phylogenetic analysis based on the mitogenomes of I. anemonoides and the other 15 taxa accurately reflected the evolutionary and taxonomic status of I. anemonoides. Overall, this study provides new insights into the genetics, systematics, and evolution of mitochondrial evolution in Ranunculaceae, particularly I. anemonoides.
Collapse
Affiliation(s)
- Gulbar Yisilam
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Zhiyou Liu
- City Management and Service Centre of Tiemenguan, Xinjiang, China
| | - Rayhangul Turdi
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Zhenzhou Chu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Wei Luo
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Xinmin Tian
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life science and Technology, Xinjiang University, Urumqi, Xinjiang, China
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, College of Life Science, Guangxi Normal University, Ministry of Education, Guilin, 541004, China
| |
Collapse
|
19
|
Li X, Li M, Li W, Zhou J, Han Q, Lu W, Luo Q, Zhu S, Xiong A, Tan G, Zheng Y. Comparative Analysis of the Complete Mitochondrial Genomes of Apium graveolens and Apium leptophyllum Provide Insights into Evolution and Phylogeny Relationships. Int J Mol Sci 2023; 24:14615. [PMID: 37834070 PMCID: PMC10572446 DOI: 10.3390/ijms241914615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
The genus Apium, belonging to the family Apiaceae, comprises roughly 20 species. Only two species, Apium graveolens and Apium leptophyllum, are available in China and are both rich in nutrients and have favorable medicinal properties. However, the lack of genomic data has severely constrained the study of genetics and evolution in Apium plants. In this study, Illumina NovaSeq 6000 and Nanopore sequencing platforms were employed to identify the mitochondrial genomes of A. graveolens and A. leptophyllum. The complete lengths of the mitochondrial genomes of A. graveolens and A. leptophyllum were 263,017 bp and 260,164 bp, respectively, and contained 39 and 36 protein-coding genes, five and six rRNA genes, and 19 and 20 tRNA genes. Consistent with most angiosperms, both A. graveolens and A. leptophyllum showed a preference for codons encoding leucine (Leu). In the mitochondrial genome of A. graveolens, 335 SSRs were detected, which is higher than the 196 SSRs found in the mitochondrial genome of A. leptophyllum. Studies have shown that the most common RNA editing type is C-to-U, but, in our study, both A. graveolens and A. leptophyllum exhibited the U-C editing type. Furthermore, the transfer of the mitochondrial genomes of A. graveolens and A. leptophyllum into the chloroplast genomes revealed homologous sequences, accounting for 8.14% and 4.89% of the mitochondrial genome, respectively. Lastly, in comparing the mitochondrial genomes of 29 species, it was found that A. graveolens, A. leptophyllum, and Daucus carota form a sister group with a support rate of 100%. Overall, this investigation furnishes extensive insights into the mitochondrial genomes of A. graveolens and A. leptophyllum, thereby enhancing comprehension of the traits and evolutionary patterns within the Apium genus. Additionally, it offers supplementary data for evolutionary and comparative genomic analyses of other species within the Apiaceae family.
Collapse
Affiliation(s)
- Xiaoyan Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (X.L.); (M.L.); (W.L.); (J.Z.); (Q.H.); (W.L.)
| | - Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (X.L.); (M.L.); (W.L.); (J.Z.); (Q.H.); (W.L.)
| | - Weilong Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (X.L.); (M.L.); (W.L.); (J.Z.); (Q.H.); (W.L.)
| | - Jin Zhou
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (X.L.); (M.L.); (W.L.); (J.Z.); (Q.H.); (W.L.)
| | - Qiuju Han
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (X.L.); (M.L.); (W.L.); (J.Z.); (Q.H.); (W.L.)
| | - Wei Lu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (X.L.); (M.L.); (W.L.); (J.Z.); (Q.H.); (W.L.)
| | - Qin Luo
- Institute of Horticulture, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China; (Q.L.); (S.Z.)
| | - Shunhua Zhu
- Institute of Horticulture, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China; (Q.L.); (S.Z.)
| | - Aisheng Xiong
- College of Horticulture, Nanjing Agricultural University, Nanjing 611130, China;
| | - Guofei Tan
- Institute of Horticulture, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China; (Q.L.); (S.Z.)
| | - Yangxia Zheng
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (X.L.); (M.L.); (W.L.); (J.Z.); (Q.H.); (W.L.)
| |
Collapse
|
20
|
Li J, Chen Y, Liu Y, Wang C, Li L, Chao Y. Complete mitochondrial genome of Agrostis stolonifera: insights into structure, Codon usage, repeats, and RNA editing. BMC Genomics 2023; 24:466. [PMID: 37596544 PMCID: PMC10439588 DOI: 10.1186/s12864-023-09573-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/10/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND Plants possess mitochondrial genomes that are large and complex compared to animals. Despite their size, plant mitochondrial genomes do not contain significantly more genes than their animal counterparts. Studies into the sequence and structure of plant mitochondrial genomes heavily imply that the main mechanism driving replication of plant mtDNA, and offer valuable insights into plant evolution, energy production, and environmental adaptation. RESULTS This study presents the first comprehensive analysis of Agrostis stolonifera's mitochondrial genome, characterized by a branched structure comprising three contiguous chromosomes, totaling 560,800 bp with a GC content of 44.07%. Annotations reveal 33 unique protein-coding genes (PCGs), 19 tRNA genes, and 3 rRNA genes. The predominant codons for alanine and glutamine are GCU and CAA, respectively, while cysteine and phenylalanine exhibit weaker codon usage biases. The mitogenome contains 73, 34, and 23 simple sequence repeats (SSRs) on chromosomes 1, 2, and 3, respectively. Chromosome 1 exhibits the most frequent A-repeat monomeric SSR, whereas chromosome 2 displays the most common U-repeat monomeric SSR. DNA transformation analysis identifies 48 homologous fragments between the mitogenome and chloroplast genome, representing 3.41% of the mitogenome's total length. The PREP suite detects 460 C-U RNA editing events across 33 mitochondrial PCGs, with the highest count in the ccmFn gene and the lowest in the rps7 gene. Phylogenetic analysis confirms A. stolonifera's placement within the Pooideae subfamily, showing a close relationship to Lolium perenne, consistent with the APG IV classification system. Numerous homologous co-linear blocks are observed in A. stolonifera's mitogenomes and those of related species, while certain regions lack homology. CONCLUSIONS The unique features and complexities of the A. stolonifera mitochondrial genome, along with its similarities and differences to related species, provide valuable insights into plant evolution, energy production, and environmental adaptation. The findings from this study significantly contribute to the growing body of knowledge on plant mitochondrial genomes and their role in plant biology.
Collapse
Affiliation(s)
- Jiaxing Li
- School of Grassland Science, Beijing Forestry University, Beijing, 100083, China
| | - Yinglong Chen
- UWA School of Agriculture and Environment, The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia
| | - Yaling Liu
- Inner Mongolia M-Grass Ecology And Environment (Group) Co., Ltd, Hohhot, 010010, China
| | - Chen Wang
- Mentougou District Bureau of Ecological and Environment of Beijing Municipality, Beijing, 102300, China
| | - Ling Li
- Mentougou District Bureau of Ecological and Environment of Beijing Municipality, Beijing, 102300, China
| | - Yuehui Chao
- School of Grassland Science, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
21
|
Zhou P, Zhang Q, Li F, Huang J, Zhang M. Assembly and comparative analysis of the complete mitochondrial genome of Ilex metabaptista (Aquifoliaceae), a Chinese endemic species with a narrow distribution. BMC PLANT BIOLOGY 2023; 23:393. [PMID: 37580695 PMCID: PMC10424370 DOI: 10.1186/s12870-023-04377-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/12/2023] [Indexed: 08/16/2023]
Abstract
BACKGROUND Ilex metabaptista is a woody tree species with strong waterlogging tolerance and is also admired as a landscape plant with high development prospects and scientific research value. Unfortunately, populations of this species have declined due to habitat loss. Thus, it is a great challenge for us to efficiently protect I. metabaptista resources from extinction. Molecular biology research can provide the scientific basis for the conservation of species. However, the study of I. metabaptista genetics is still in its infancy. To date, no mitochondrial genome (mitogenome) in the genus Ilex has been analysed in detail. RESULTS The mitogenome of I. metabaptista was assembled based on the reads from Illumina and Nanopore sequencing platforms; it was a typical circular DNA molecule of 529,560 bp with a GC content of 45.61% and contained 67 genes, including 42 protein-coding genes, 22 tRNA genes, and 3 rRNA genes. Repeat sequence analysis and prediction of RNA editing sites revealed a total of 286 dispersed repeats, 140 simple repeats, 18 tandem repeats, and 543 RNA editing sites. Analysis of codon usage showed that codons ending in A/T were preferred. Gene migration was observed to occur between the mitogenome and chloroplast genome via the detection of homologous fragments. In addition, Ka/Ks analysis revealed that most of the protein-coding genes in the mitogenome had undergone negative selection, and only the ccmB gene had undergone potential positive selection in most asterids. Nucleotide polymorphism analysis revealed the variation in each gene, with atp9 being the most notable. Furthermore, comparative analysis showed that the GC contents were conserved, but the sizes and structure of mitogenomes varied greatly among asterids. Phylogenetic analysis based on the mitogenomes reflected the exact evolutionary and taxonomic status of I. metabaptista. CONCLUSION In this study, we sequenced and annotated the mitogenome of I. metabaptista and compared it with the mitogenomes of other asterids, which provided essential background information for further understanding of the genetics of this plant and helped lay the foundation for future studies on molecular breeding of I. metabaptista.
Collapse
Affiliation(s)
- Peng Zhou
- Jiangsu Academy of Forestry, 109 Danyang Road, Dongshanqiao, Nanjing, 211153, China
| | - Qiang Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, 210037, Nanjing, China.
| | - Fei Li
- Jiangsu Academy of Forestry, 109 Danyang Road, Dongshanqiao, Nanjing, 211153, China
| | - Jing Huang
- Jiangsu Academy of Forestry, 109 Danyang Road, Dongshanqiao, Nanjing, 211153, China
| | - Min Zhang
- Jiangsu Academy of Forestry, 109 Danyang Road, Dongshanqiao, Nanjing, 211153, China.
| |
Collapse
|
22
|
Lee HJ, Lee Y, Lee SC, Kim CK, Kang JN, Kwon SJ, Kang SH. Comparative analysis of mitochondrial genomes of Schisandra repanda and Kadsura japonica. FRONTIERS IN PLANT SCIENCE 2023; 14:1183406. [PMID: 37469771 PMCID: PMC10352487 DOI: 10.3389/fpls.2023.1183406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/09/2023] [Indexed: 07/21/2023]
Abstract
The family Schisandraceae is a basal angiosperm plant group distributed in East and Southeast Asia and includes many medicinal plant species such as Schisandra chinensis. In this study, mitochondrial genomes (mitogenomes) of two species, Schisandra repanda and Kadsura japonica, in the family were characterized through de novo assembly using sequencing data obtained with Oxford Nanopore and Illumina sequencing technologies. The mitogenomes of S. repanda were assembled into one circular contig (571,107 bp) and four linear contigs (10,898-607,430 bp), with a total of 60 genes: 38 protein-coding genes (PCGs), 19 tRNA genes, and 3 rRNA genes. The mitogenomes of K. japonica were assembled into five circular contigs (211,474-973,503 bp) and three linear contigs (8,010-72,712 bp), with a total of 66 genes: 44 PCGs, 19 tRNA genes, and 3 rRNA genes. The mitogenomes of the two species had complex structural features with high repeat numbers and chloroplast-derived sequences, as observed in other plant mitogenomes. Phylogenetic analysis based on PCGs revealed the taxonomical relationships of S. repanda and K. japonica with other species from Schisandraceae. Finally, molecular markers were developed to distinguish between S. repanda, K. japonica, and S. chinensis on the basis of InDel polymorphisms present in the mitogenomes. The mitogenomes of S. repanda and K. japonica will be valuable resources for molecular and taxonomic studies of plant species that belong to the family Schisandraceae.
Collapse
Affiliation(s)
- Hyo Ju Lee
- Genomics Division, National Institute of Agricultural Sciences, Jeonju, Republic of Korea
| | - Yi Lee
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju, Republic of Korea
| | | | - Chang-Kug Kim
- Genomics Division, National Institute of Agricultural Sciences, Jeonju, Republic of Korea
| | - Ji-Nam Kang
- Genomics Division, National Institute of Agricultural Sciences, Jeonju, Republic of Korea
| | - Soo-Jin Kwon
- Genomics Division, National Institute of Agricultural Sciences, Jeonju, Republic of Korea
| | - Sang-Ho Kang
- Genomics Division, National Institute of Agricultural Sciences, Jeonju, Republic of Korea
| |
Collapse
|
23
|
Ke SJ, Liu DK, Tu XD, He X, Zhang MM, Zhu MJ, Zhang DY, Zhang CL, Lan SR, Liu ZJ. Apostasia Mitochondrial Genome Analysis and Monocot Mitochondria Phylogenomics. Int J Mol Sci 2023; 24:ijms24097837. [PMID: 37175542 PMCID: PMC10178136 DOI: 10.3390/ijms24097837] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Apostasia shenzhenica belongs to the subfamily Apostasioideae and is a primitive group located at the base of the Orchidaceae phylogenetic tree. However, the A. shenzhenica mitochondrial genome (mitogenome) is still unexplored, and the phylogenetic relationships between monocots mitogenomes remain unexplored. In this study, we discussed the genetic diversity of A. shenzhenica and the phylogenetic relationships within its monocotyledon mitogenome. We sequenced and assembled the complete mitogenome of A. shenzhenica, resulting in a circular mitochondrial draft of 672,872 bp, with an average read coverage of 122× and a GC content of 44.4%. A. shenzhenica mitogenome contained 36 protein-coding genes, 16 tRNAs, two rRNAs, and two copies of nad4L. Repeat sequence analysis revealed a large number of medium and small repeats, accounting for 1.28% of the mitogenome sequence. Selection pressure analysis indicated high mitogenome conservation in related species. RNA editing identified 416 sites in the protein-coding region. Furthermore, we found 44 chloroplast genomic DNA fragments that were transferred from the chloroplast to the mitogenome of A. shenzhenica, with five plastid-derived genes remaining intact in the mitogenome. Finally, the phylogenetic analysis of the mitogenomes from A. shenzhenica and 28 other monocots showed that the evolution and classification of most monocots were well determined. These findings enrich the genetic resources of orchids and provide valuable information on the taxonomic classification and molecular evolution of monocots.
Collapse
Affiliation(s)
- Shi-Jie Ke
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ding-Kun Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiong-De Tu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xin He
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meng-Meng Zhang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meng-Jia Zhu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Di-Yang Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Cui-Li Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Si-Ren Lan
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
24
|
Sheng W, Deng J, Wang C, Kuang Q. The garden asparagus ( Asparagus officinalis L.) mitochondrial genome revealed rich sequence variation throughout whole sequencing data. FRONTIERS IN PLANT SCIENCE 2023; 14:1140043. [PMID: 37051082 PMCID: PMC10084930 DOI: 10.3389/fpls.2023.1140043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
Garden asparagus (Asparagus officinalis L.) is a horticultural crop with high nutritional and medical value, considered an ideal plant for sex determination research among many dioecious plants, whose genomic information can support genetic analysis and breeding programs. In this research, the entire mitochondrial genome of A. officinalis was sequenced, annotated and assembled using a mixed Illumina and PacBio data. The garden asparagus circular mitochondrial genome measures 492,062 bp with a GC value of 45.9%. Thirty-six protein-coding genes, 17 tRNA and 6 rRNA genes were annotated, among which 8 protein-coding genes contained 16 introns. In addition, 254 SSRs with 10 complete tandem repeats and 293 non-tandem repeats were identified. It was found that the codons of edited sites located in the amino acids showed a leucine-formation trend, and RNA editing sites mainly caused the mutual transformation of amino acids with the same properties. Furthermore, 72 sequence fragments accounting for 20,240 bp, presentating 4.11% of the whole mitochondrial genome, were observed to migrate from chloroplast to mitochondrial genome of A. officinalis. The phylogenetic analysis showed that the closest genetic relationship between A. officinalis with onion (Allium cepa) inside the Liliaceae family. Our results demonstrated that high percentage of protein-coding genes had evolutionary conservative properties, with Ka/Ks values less than 1. Therefore, this study provides a high-quality garden asparagus mitochondrial genome, useful to promote better understanding of gene exchange between organelle genomes.
Collapse
Affiliation(s)
- Wentao Sheng
- Department of Biological Technology, Nanchang Normal University, Nanchang, Jiangxi, China
| | - Jianlan Deng
- School of Foreign Language, Nanchang Normal University, Nanchang, Jiangxi, China
| | - Chao Wang
- Department of Biological Technology, Nanchang Normal University, Nanchang, Jiangxi, China
| | - Quan Kuang
- Department of Biological Technology, Nanchang Normal University, Nanchang, Jiangxi, China
| |
Collapse
|
25
|
Cao P, Huang Y, Zong M, Xu Z. De Novo Assembly and Comparative Analysis of the Complete Mitochondrial Genome of Chaenomeles speciosa (Sweet) Nakai Revealed the Existence of Two Structural Isomers. Genes (Basel) 2023; 14:526. [PMID: 36833452 PMCID: PMC9957484 DOI: 10.3390/genes14020526] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/01/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
As a valuable Chinese traditional medicinal species, Chaenomeles speciosa (Sweet) Nakai (C. speciosa) is a natural resource with significant economic and ornamental value. However, its genetic information is not well understood. In this study, the complete mitochondrial genome of C. speciosa was assembled and characterized to explore the repeat sequences, recombination events, rearrangements, and IGT, to predict RNA editing sites, and to clarify the phylogenetic and evolutionary relationship. The C. speciosa mitochondrial genome was found to have two circular chromosomes as its major conformation, with a total length of 436,464 bp and 45.2% GC content. The mitochondrial genome contained 54 genes, including 33 unique protein-coding genes, 18 tRNAs, and 3 rRNA genes. Seven pairs of repeat sequences involving recombination events were analyzed. Both the repeat pairs, R1 and R2, played significant roles in mediating the major and minor conformations. In total, 18 MTPTs were identified, 6 of which were complete tRNA genes. There were 454 RNA editing sites in the 33 protein-coding sequences predicted by the PREPACT3 program. A phylogenetic analysis based on 22 species of mitochondrial genomes was constructed and indicated highly conserved PCG sequences. Synteny analyses showed extensive genomic rearrangements in the mitochondrial genome of C. speciosa and closely related species. This work is the first to report the C. speciosa mitochondrial genome, which is of great significance for conducting additional genetic studies on this organism.
Collapse
Affiliation(s)
- Pei Cao
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yuan Huang
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Mei Zong
- College of Life Sciences, Anqing Normal University, Anqing 246133, China
| | - Zilong Xu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
26
|
Liu J, Ni Y, Liu C. Polymeric structure of the Cannabis sativa L. mitochondrial genome identified with an assembly graph model. Gene 2023; 853:147081. [PMID: 36470482 DOI: 10.1016/j.gene.2022.147081] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/14/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
Cannabis sativa L. belongs to the family Cannabaceae in Rosales. It has been widely used as medicines, building materials, and textiles. Elucidating its genome is critical for molecular breeding and synthetic biology study. Many studies have shown that the mitochondrial genomes (mitogenomes) and even chloroplast genomes (plastomes) had complex polymeric structures. Using the Nanopore sequencing platform, we sequenced, assembled, and analyzed its mitogenome and plastome. The resulting unitig graph suggested that the mitogenome had a complex polymeric structure. However, a gap-free, circular sequence was further assembled from the unitig graph. In contrast, a circular sequence representing the plastome was obtained. The mitogenome major conformation was 415,837 bp long, and the plastome was 153,927 bp long. To test if the repeat sequences promote recombination, which corresponds to the branch points in the structure, we tested the sequences around repeats by long-read mapping. Among 208 pairs of predicted repeats, the mapping results supported the presence of cross-over around 25 pairs of repeats. Subsequent PCR amplification confirmed the presence of cross-over around 15 of the 25 repeats. By comparing the mitogenome and plastome sequences, we identified 19 mitochondria plastid DNAs, including seven complete genes (trnW-CCA, trnP-UGG, psbJ, trnN-GUU, trnD-GUC, trnH-GUG, trnM-CAU) and nine gene fragments. Furthermore, the selective pressure analysis results showed that five genes (atp1, ccmB, ccmC, cox1, nad7) had 19 positively selected sites. Lastly, we predicted 28 RNA editing sites. A total of 8 RNA editing sites located in the coding regions were successfully validated by PCR amplification and Sanger sequencing, of which four were synonymous, and four were nonsynonymous. In particular, the RNA editing events appeared to be tissue-specific in C. sativa mitogenome. In summary, we have confirmed the major confirmation of C. sativa mitogenome and characterized its structural features in detail. These results provide critical information for future variety breeding and resource development for C. sativa.
Collapse
Affiliation(s)
- Jingting Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China
| | - Yang Ni
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China
| | - Chang Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China.
| |
Collapse
|
27
|
Tang D, Huang S, Quan C, Huang Y, Miao J, Wei F. Mitochondrial genome characteristics and phylogenetic analysis of the medicinal and edible plant Mesona chinensis Benth. Front Genet 2023; 13:1056389. [PMID: 36712846 PMCID: PMC9878300 DOI: 10.3389/fgene.2022.1056389] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/15/2022] [Indexed: 01/15/2023] Open
Abstract
Mesona chinensis Benth (MCB) (or Platostoma palustre or Platostoma chinense) is an important edible and medicinal plant in China. However, the mitochondrial genome (mitogenome, or mtDNA) of MCB has not been characterized or reported yet. In this study, we first sequenced and characterized the complete mitogenome of MCB. The MCB mitogenome was 494,599 bp in length and encoded 59 genes containing 37 protein-coding genes (PCGs), 19 tRNAs, and 3 rRNAs. Gene transfer analysis revealed that a total of 12 transfer segments with more than 93% identity (total length of 25,427 bp) were detected in the MCB mitogenome. Simple sequence repeats (SSR) analysis showed that 212 simple sequence repeats (SSR) were identified. Repeat sequence analysis revealed 305 repeat sequences (158 forward and 147 palindromic repeats) ranging from 30 bp to 48,383 bp and the 30-39 bp repeats were the majority type. Relative synonymous codon usage (RSCU) analysis uncovered that in total, 9,947 codons were encoding the protein-coding genes (PCGs). Serine (909, 9.1%) and leucine (879, 8.8%) were the two most abundant amino acids, while terminator (32, .3%) was the least abundant amino acid. Ka/Ks analysis indicated that almost all genes were subject to purification selection, except ccmB. Analysis of Lamiaceae mitogenomes constitution revealed that atpB and atpE were unique to the Rotheca serrata and Salvia miltiorrhiza mitogenomes. mttB gene loss was unique to the Boea hygrometrica mitogenome. The core fragments of the Lamiaceae mitogenomes harbored a higher GC content than the specific and variable fragments. In addition, phylogenetic analysis revealed that MCB was closely related to Salvia miltiorrhiza based on the mitogenomes. The current study provided valuable genomic resources for understanding and utilizing this important medicinal plant in the future.
Collapse
Affiliation(s)
- Danfeng Tang
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China,Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Suhua Huang
- College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Changqian Quan
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China,Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Yuan Huang
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China,Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Jianhua Miao
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China,Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China,*Correspondence: Fan Wei, ; Jianhua Miao,
| | - Fan Wei
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China,Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China,*Correspondence: Fan Wei, ; Jianhua Miao,
| |
Collapse
|
28
|
Liu H, Qin L, Chen Y, Xu S, Zhou X, Zhu Y, Li B. The complete mitochondrial genome of Camellia nitidissima (Theaceae). Mitochondrial DNA B Resour 2023; 8:565-569. [PMID: 37200681 PMCID: PMC10187084 DOI: 10.1080/23802359.2023.2209211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/26/2023] [Indexed: 05/20/2023] Open
Abstract
The mitochondrial genome of Camellia nitidissima was sequenced by Illumina and Pacbio sequencing. The results of sequences showed that a total length was 949,915 bp, and the GC content was 45.7% in assembled mitochondrial genome of C. nitidissima. 71 unigenes had been found, including 36 coding proteins and 35 non-coding proteins. Subsequently, the phylogenetic tree was built on 24 plants with the maximum-likelihood method, which had high bootstrap value and fited to the angiosperm phylogeny group classification (APG IV). The study's findings unravel the taxonomic status of C. nitidissima and benefit the evolution study.
Collapse
Affiliation(s)
- Hexia Liu
- College of Biology and Pharmacy, Yulin Normal University, Yulin, China
| | - Liu Qin
- College of Biology and Pharmacy, Yulin Normal University, Yulin, China
- Key Laboratory for Conservation and Utilization of subtropical Bio-Resources, Yulin Normal University, Yulin, China
| | - Yuling Chen
- College of Biology and Pharmacy, Yulin Normal University, Yulin, China
| | - Saiying Xu
- College of Biology and Pharmacy, Yulin Normal University, Yulin, China
| | - Xingwen Zhou
- College of Architecture and Planning, Fujian University of Technology, Fuzhou, China
| | - Yulin Zhu
- College of Biology and Pharmacy, Yulin Normal University, Yulin, China
- Key Laboratory for Conservation and Utilization of subtropical Bio-Resources, Yulin Normal University, Yulin, China
- Yulin Zhu College of Biology and Pharmacy, Yulin Normal University, Yulin, China
| | - Bo Li
- College of Biology and Pharmacy, Yulin Normal University, Yulin, China
- Key Laboratory for Conservation and Utilization of subtropical Bio-Resources, Yulin Normal University, Yulin, China
- CONTACT Bo Li
| |
Collapse
|
29
|
Han F, Qu Y, Chen Y, Xu L, Bi C. Assembly and comparative analysis of the complete mitochondrial genome of Salix wilsonii using PacBio HiFi sequencing. FRONTIERS IN PLANT SCIENCE 2022; 13:1031769. [PMID: 36466227 PMCID: PMC9709322 DOI: 10.3389/fpls.2022.1031769] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/17/2022] [Indexed: 06/01/2023]
Abstract
Salix L. (willows) is one of the most taxonomically complex genera of flowering plants, including shrubs, tall trees, bushes, and prostrate plants. Despite the high species diversity, only five mitochondrial genomes (mitogenomes) have been released in this genus. Salix wilsonii is an important ornamental and economic willow tree in section Wilsonia of the genus Salix. In this study, the S. wilsonii mitogenome was assembled into a typical circular structure with a size of 711,456 bp using PacBio HiFi sequencing. A total of 58 genes were annotated in the S. wilsonii mitogenome, including 33 protein-coding genes (PCGs), 22 tRNAs, and 3 rRNAs. In the S. wilsonii mitogenome, four genes (mttB, nad3, nad4, and sdh4) were found to play important roles in its evolution through selection pressure analysis. Collinearity analysis of six Salix mitogenomes revealed high structural variability. To determine the evolutionary position of S. wilsonii, we conducted a phylogenetic analysis of the mitogenomes of S. wilsonii and 12 other species in the order Malpighiales. Results strongly supported the segregation of S. wilsonii and other five Salix species with 100% bootstrap support. The comparative analysis of the S. wilsonii mitogenome not only sheds light on the functional and structural features of S. wilsonii but also provides essential information for genetic studies of the genus Salix.
Collapse
Affiliation(s)
- Fuchuan Han
- Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Yanshu Qu
- Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yicun Chen
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Li’an Xu
- Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Changwei Bi
- Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Information Science and Technology, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
30
|
Yang J, Ling C, Zhang H, Hussain Q, Lyu S, Zheng G, Liu Y. A Comparative Genomics Approach for Analysis of Complete Mitogenomes of Five Actinidiaceae Plants. Genes (Basel) 2022; 13:genes13101827. [PMID: 36292711 PMCID: PMC9601400 DOI: 10.3390/genes13101827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/01/2022] [Accepted: 10/01/2022] [Indexed: 11/04/2022] Open
Abstract
Actinidiaceae, an economically important plant family, includes the Actinidia, Clematoclethra and Saurauia genus. Kiwifruit, with remarkably high vitamin C content, is an endemic species widely distributed in China with high economic value. Although many Actinidiaceae chloroplast genomes have been reported, few complete mitogenomes of Actinidiaceae have been studied. Here, complete circular mitogenomes of the four kiwifruit species and Saurauia tristyla were assembled. Codon usage, sequence repeats, RNA editing, gene transfers, selective pressure, and phylogenetic relationships in the four kiwifruit species and S. tristyla were comparatively analyzed. This research will contribute to the study of phylogenetic relationships within Actiniaceae and molecular barcoding in kiwifruit.
Collapse
Affiliation(s)
- Jun Yang
- College of Horticulture, Anhui Agriculture University, Hefei 350002, China
| | - Chengcheng Ling
- College of Horticulture, Anhui Agriculture University, Hefei 350002, China
| | - Huamin Zhang
- College of Horticulture, Anhui Agriculture University, Hefei 350002, China
| | - Quaid Hussain
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Hangzhou 311300, China
| | - Shiheng Lyu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Hangzhou 311300, China
| | - Guohua Zheng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (G.Z.); (Y.L.)
| | - Yongsheng Liu
- College of Horticulture, Anhui Agriculture University, Hefei 350002, China
- Correspondence: (G.Z.); (Y.L.)
| |
Collapse
|
31
|
Qiao Y, Zhang X, Li Z, Song Y, Sun Z. Assembly and comparative analysis of the complete mitochondrial genome of Bupleurum chinense DC. BMC Genomics 2022; 23:664. [PMID: 36131243 PMCID: PMC9490909 DOI: 10.1186/s12864-022-08892-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 09/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bupleurum chinense(B. chinense) is a plant that is widely distributed globally and has strong pharmacological effects. Though the chloroplast(cp) genome of B. chinense has been studied, no reports regarding the mitochondrial(mt) genome of B. chinense have been published yet. RESULTS The mt genome of B.chinense was assembled and functionally annotated. The circular mt genome of B. chinense was 435,023 bp in length, and 78 genes, including 39 protein-coding genes, 35 tRNA genes, and 4 rRNA genes, were annotated. Repeat sequences were analyzed and sites at which RNA editing would occur were predicted. Gene migration was observed to occur between the mt and cp genomes of B. chinense via the detection of homologous gene fragments. In addition, the sizes of plant mt genomes and their GC content were analyzed and compared. The sizes of mt genomes of plants varied greatly, but their GC content was conserved to a greater extent during evolution. Ka/Ks analysis was based on code substitutions, and the results showed that most of the coding genes were negatively selected. This indicates that mt genes were conserved during evolution. CONCLUSION In this study, we assembled and annotated the mt genome of the medicinal plant B. chinense. Our findings provide extensive information regarding the mt genome of B. chinense, and help lay the foundation for future studies on the genetic variations, phylogeny, and breeding of B. chinense via an analysis of the mt genome.
Collapse
Affiliation(s)
- Yonggang Qiao
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Xinrui Zhang
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Zheng Li
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Yun Song
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Zhe Sun
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| |
Collapse
|
32
|
Ren W, Si J, Chen L, Fang Z, Zhuang M, Lv H, Wang Y, Ji J, Yu H, Zhang Y. Mechanism and Utilization of Ogura Cytoplasmic Male Sterility in Cruciferae Crops. Int J Mol Sci 2022; 23:ijms23169099. [PMID: 36012365 PMCID: PMC9409259 DOI: 10.3390/ijms23169099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 12/11/2022] Open
Abstract
Hybrid production using lines with cytoplasmic male sterility (CMS) has become an important way to utilize heterosis in vegetables. Ogura CMS, with the advantages of complete pollen abortion, ease of transfer and a progeny sterility rate reaching 100%, is widely used in cruciferous crop breeding. The mapping, cloning, mechanism and application of Ogura CMS and fertility restorer genes in Brassica napus, Brassica rapa, Brassica oleracea and other cruciferous crops are reviewed herein, and the existing problems and future research directions in the application of Ogura CMS are discussed.
Collapse
Affiliation(s)
- Wenjing Ren
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinchao Si
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
| | - Li Chen
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhiyuan Fang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
| | - Mu Zhuang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
| | - Honghao Lv
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
| | - Yong Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
| | - Jialei Ji
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
| | - Hailong Yu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
- Correspondence: (H.Y.); (Y.Z.)
| | - Yangyong Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
- Correspondence: (H.Y.); (Y.Z.)
| |
Collapse
|
33
|
Complex Physical Structure of Complete Mitochondrial Genome of Quercus acutissima (Fagaceae): A Significant Energy Plant. Genes (Basel) 2022; 13:genes13081321. [PMID: 35893058 PMCID: PMC9331829 DOI: 10.3390/genes13081321] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 02/06/2023] Open
Abstract
Quercus acutissima Carruth. is a Chinese important energy plant with high ecological and economic values. While the species chloroplast genome has been reported, its mitochondrial genome (mitogenome) is still unexplored. Here, we assembled and annotated the Q. acutissima mitogenome, and we compared its characteristic differences with several closely related species. The Q. acutissima mitogenome’s main structure is branched with three distinguished contigs (linear molecule 1, circular molecule 2, and circular molecule 3) with 448,982 bp total length and 45.72% GC content. The mitogenome contained 51 genes, including 32 protein-coding, 16 tRNA and 3 rRNA genes. We examined codon usage, repeated sequences, genome recombination, chloroplast to mitochondrion DNA transformation, RNA editing, and synteny in the Q. acutissima mitogenome. Phylogenetic trees based on 29 species mitogenomes clarified the species classification. Our results provided comprehensive information of Q. acutissima mitogenome, and they are expected to provide valuable information for Fagaceae evolutionary biology and to promote the species germplasm utilization.
Collapse
|
34
|
Bi C, Qu Y, Hou J, Wu K, Ye N, Yin T. Deciphering the Multi-Chromosomal Mitochondrial Genome of Populus simonii. FRONTIERS IN PLANT SCIENCE 2022; 13:914635. [PMID: 35783945 PMCID: PMC9240471 DOI: 10.3389/fpls.2022.914635] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 04/29/2022] [Indexed: 06/01/2023]
Abstract
Mitochondria, inherited maternally, are energy metabolism organelles that generate most of the chemical energy needed to power cellular various biochemical reactions. Deciphering mitochondrial genome (mitogenome) is important for elucidating vital activities of species. The complete chloroplast (cp) and nuclear genome sequences of Populus simonii (P. simonii) have been reported, but there has been little progress in its mitogenome. Here, we assemble the complete P. simonii mitogenome into three circular-mapping molecules (lengths 312.5, 283, and 186 kb) with the total length of 781.5 kb. All three molecules of the P. simonii mitogenome had protein-coding capability. Whole-genome alignment analyses of four Populus species revealed the fission of poplar mitogenome in P. simonii. Comparative repeat analyses of four Populus mitogenomes showed that there were no repeats longer than 350 bp in Populus mitogenomes, contributing to the stability of genome sizes and gene contents in the genus Populus. As the first reported multi-circular mitogenome in Populus, this study of P. simonii mitogenome are imperative for better elucidating their biological functions, replication and recombination mechanisms, and their unique evolutionary trajectories in Populus.
Collapse
Affiliation(s)
- Changwei Bi
- Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of Tree Genetics and Sivilcultural Sciences of Jiangsu Province, College of Forestry, Nanjing Forestry University, Nanjing, China
- College of Information Science and Technology, Nanjing Forestry University, Nanjing, China
| | - Yanshu Qu
- Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of Tree Genetics and Sivilcultural Sciences of Jiangsu Province, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Jing Hou
- Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of Tree Genetics and Sivilcultural Sciences of Jiangsu Province, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Kai Wu
- Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of Tree Genetics and Sivilcultural Sciences of Jiangsu Province, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Ning Ye
- College of Information Science and Technology, Nanjing Forestry University, Nanjing, China
| | - Tongming Yin
- Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of Tree Genetics and Sivilcultural Sciences of Jiangsu Province, College of Forestry, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
35
|
Cho KS, Lee HO, Lee SC, Park HJ, Seo JH, Cho JH, Park YE, Choi JG, Yang TJ. Mitochondrial genome recombination in somatic hybrids of Solanum commersonii and S. tuberosum. Sci Rep 2022; 12:8659. [PMID: 35606486 PMCID: PMC9127095 DOI: 10.1038/s41598-022-12661-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/12/2022] [Indexed: 11/19/2022] Open
Abstract
Interspecific somatic hybridization has been performed in potato breeding experiments to increase plant resistance against biotic and abiotic stress conditions. We analyzed the mitochondrial and plastid genomes and 45S nuclear ribosomal DNA (45S rDNA) for the cultivated potato (S. tuberosum, St), wild potato (S. commersonii, Sc), and their somatic hybrid (StSc). Complex genome components and structure, such as the hybrid form of 45S rDNA in StSc, unique plastome in Sc, and recombinant mitogenome were identified. However, the mitogenome exhibited dynamic multipartite structures in both species as well as in the somatic hybrid. In St, the mitogenome is 756,058 bp and is composed of five subgenomes ranging from 297,014 to 49,171 bp. In Sc, it is 552,103 bp long and is composed of two sub-genomes of 338,427 and 213,676 bp length. StSc has 447,645 bp long mitogenome with two subgenomes of length 398,439 and 49,206 bp. The mitogenome structure exhibited dynamic recombination mediated by tandem repeats; however, it contained highly conserved genes in the three species. Among the 35 protein-coding genes of the StSc mitogenome, 21 were identical for all the three species, and 12 and 2 were unique in Sc and St, respectively. The recombinant mitogenome might be derived from homologous recombination between both species during somatic hybrid development.
Collapse
Affiliation(s)
- Kwang-Soo Cho
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, 50424, Republic of Korea.
| | - Hyun-Oh Lee
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.,Phyzen Genomics Institute, Baekgoong Plaza 1, Bundang-gu, Seongnam, 13558, Republic of Korea
| | - Sang-Choon Lee
- Phyzen Genomics Institute, Baekgoong Plaza 1, Bundang-gu, Seongnam, 13558, Republic of Korea
| | - Hyun-Jin Park
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration, Pyeongchang, 25342, Republic of Korea
| | - Jin-Hee Seo
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration, Pyeongchang, 25342, Republic of Korea
| | - Ji-Hong Cho
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration, Pyeongchang, 25342, Republic of Korea
| | - Young-Eun Park
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration, Pyeongchang, 25342, Republic of Korea
| | - Jang-Gyu Choi
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration, Pyeongchang, 25342, Republic of Korea
| | - Tae-Jin Yang
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
36
|
Characterization of the mitochondrial genome of Cucumis hystrix and comparison with other cucurbit crops. Gene 2022; 823:146342. [PMID: 35219813 DOI: 10.1016/j.gene.2022.146342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/28/2022] [Accepted: 02/14/2022] [Indexed: 11/20/2022]
Abstract
The mitochondria ofCucumis genus contain several intriguing features such as paternal inheritance and three-ring genome structure. However, the evolutionary relationships of mitochondria inCucumisremain elusive. Here, we assembled the mitochondrial genome ofC. hystrixand performed a comparative genomic analysis with other crops inthe Cucurbitaceae. The mitochondrial genome ofC. hystrixhas three circular-mapping chromosomes of lengths 1,113,461 bp, 110,683 bp, and 92,288 bp, which contain 73 genes including 38 protein-coding genes, 31tRNAgenes, and 4rRNAgenes. Repeat sequences, RNA editing, and horizontal gene transfer events were identified. The results of phylogenetic analyses, collinearity and gene clusters revealed thatC. hystrixis closer toC. sativus than to C. melo. Meanwhile, wedemonstrated mitochondrial paternal inheritance inC. hystrixbymolecular markers. In comparison with other cucurbitcrops, wefound amarker foridentification of germplasm resources ofCucumis. Collectively, our findings provide a tool to help clarify the paternal lineage within that genus in the evolution of Cucumis.
Collapse
|
37
|
Khan A, Kong X, Liao X, Zheng J, You J, Li M, Hussain RM, Raza H, Zhou R. Mitochondrial gene expression analysis reveals aberrant transcription of cox3 in Gossypium barbadense CMS line H276A. Dev Genes Evol 2022; 232:15-23. [DOI: 10.1007/s00427-022-00685-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/10/2022] [Indexed: 11/03/2022]
|
38
|
Ma Q, Wang Y, Li S, Wen J, Zhu L, Yan K, Du Y, Ren J, Li S, Chen Z, Bi C, Li Q. Assembly and comparative analysis of the first complete mitochondrial genome of Acer truncatum Bunge: a woody oil-tree species producing nervonic acid. BMC PLANT BIOLOGY 2022; 22:29. [PMID: 35026989 PMCID: PMC8756732 DOI: 10.1186/s12870-021-03416-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 12/27/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND Acer truncatum (purpleblow maple) is a woody tree species that produces seeds with high levels of valuable fatty acids (especially nervonic acid). The species is admired as a landscape plant with high developmental prospects and scientific research value. The A. truncatum chloroplast genome has recently been reported; however, the mitochondrial genome (mitogenome) is still unexplored. RESULTS We characterized the A. truncatum mitogenome, which was assembled using reads from PacBio and Illumina sequencing platforms, performed a comparative analysis against different species of Acer. The circular mitogenome of A. truncatum has a length of 791,052 bp, with a base composition of 27.11% A, 27.21% T, 22.79% G, and 22.89% C. The A. truncatum mitogenome contains 62 genes, including 35 protein-coding genes, 23 tRNA genes and 4 rRNA genes. We also examined codon usage, sequence repeats, RNA editing and selective pressure in the A. truncatum mitogenome. To determine the evolutionary and taxonomic status of A. truncatum, we conducted a phylogenetic analysis based on the mitogenomes of A. truncatum and 25 other taxa. In addition, the gene migration from chloroplast and nuclear genomes to the mitogenome were analyzed. Finally, we developed a novel NAD1 intron indel marker for distinguishing several Acer species. CONCLUSIONS In this study, we assembled and annotated the mitogenome of A. truncatum, a woody oil-tree species producing nervonic acid. The results of our analyses provide comprehensive information on the A. truncatum mitogenome, which would facilitate evolutionary research and molecular barcoding in Acer.
Collapse
Affiliation(s)
- Qiuyue Ma
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China
| | - Yuxiao Wang
- Nanjing Forestry University, Nanjing, 210037 China
| | - Shushun Li
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China
| | - Jing Wen
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China
| | - Lu Zhu
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China
| | - Kunyuan Yan
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China
| | - Yiming Du
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China
| | - Jie Ren
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, 40 Nongkenanlu, Hefei, 230031 Anhui China
| | - Shuxian Li
- Nanjing Forestry University, Nanjing, 210037 China
| | - Zhu Chen
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, 40 Nongkenanlu, Hefei, 230031 Anhui China
| | - Changwei Bi
- Nanjing Forestry University, Nanjing, 210037 China
| | - Qianzhong Li
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China
| |
Collapse
|
39
|
Cheng Y, He X, Priyadarshani SVGN, Wang Y, Ye L, Shi C, Ye K, Zhou Q, Luo Z, Deng F, Cao L, Zheng P, Aslam M, Qin Y. Assembly and comparative analysis of the complete mitochondrial genome of Suaeda glauca. BMC Genomics 2021; 22:167. [PMID: 33750312 PMCID: PMC7941912 DOI: 10.1186/s12864-021-07490-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 02/26/2021] [Indexed: 01/30/2023] Open
Abstract
Background Suaeda glauca (S. glauca) is a halophyte widely distributed in saline and sandy beaches, with strong saline-alkali tolerance. It is also admired as a landscape plant with high development prospects and scientific research value. The S. glauca chloroplast (cp) genome has recently been reported; however, the mitochondria (mt) genome is still unexplored. Results The mt genome of S. glauca were assembled based on the reads from Pacbio and Illumina sequencing platforms. The circular mt genome of S. glauca has a length of 474,330 bp. The base composition of the S. glauca mt genome showed A (28.00%), T (27.93%), C (21.62%), and G (22.45%). S. glauca mt genome contains 61 genes, including 27 protein-coding genes, 29 tRNA genes, and 5 rRNA genes. The sequence repeats, RNA editing, and gene migration from cp to mt were observed in S. glauca mt genome. Phylogenetic analysis based on the mt genomes of S. glauca and other 28 taxa reflects an exact evolutionary and taxonomic status of S. glauca. Furthermore, the investigation on mt genome characteristics, including genome size, GC contents, genome organization, and gene repeats of S. gulaca genome, was investigated compared to other land plants, indicating the variation of the mt genome in plants. However, the subsequently Ka/Ks analysis revealed that most of the protein-coding genes in mt genome had undergone negative selections, reflecting the importance of those genes in the mt genomes. Conclusions In this study, we reported the mt genome assembly and annotation of a halophytic model plant S. glauca. The subsequent analysis provided us a comprehensive understanding of the S. glauca mt genome, which might facilitate the research on the salt-tolerant plant species. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07490-9.
Collapse
Affiliation(s)
- Yan Cheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaoxue He
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - S V G N Priyadarshani
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yu Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Li Ye
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chao Shi
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kangzhuo Ye
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qiao Zhou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ziqiang Luo
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Fang Deng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ling Cao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ping Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mohammad Aslam
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Yuan Qin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China.
| |
Collapse
|
40
|
Bi C, Lu N, Xu Y, He C, Lu Z. Characterization and Analysis of the Mitochondrial Genome of Common Bean ( Phaseolus vulgaris) by Comparative Genomic Approaches. Int J Mol Sci 2020; 21:E3778. [PMID: 32471098 PMCID: PMC7312688 DOI: 10.3390/ijms21113778] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 12/16/2022] Open
Abstract
The common bean (Phaseolus vulgaris) is a major source of protein and essential nutrients for humans. To explore the genetic diversity and phylogenetic relationships of P. vulgaris, its complete mitochondrial genome (mitogenome) was sequenced and assembled. The mitogenome is 395,516 bp in length, including 31 unique protein-coding genes (PCGs), 15 transfer RNA (tRNA) genes, and 3 ribosomal RNA (rRNA) genes. Among the 31 PCGs, four genes (mttB, nad1, nad4L, and rps10) use ACG as initiation codons, which are altered to standard initiation codons by RNA editing. In addition, the termination codon CGA in the ccmFC gene is converted to UGA. Selective pressure analysis indicates that the ccmB, ccmFC, rps1, rps10, and rps14 genes were under evolutionary positive selection. The proportions of five amino acids (Phe, Leu, Pro, Arg, and Ser) in the whole amino acid profile of the proteins in each mitogenome can be used to distinguish angiosperms from gymnosperms. Phylogenetic analyses show that P. vulgaris is evolutionarily closer to the Glycininae than other leguminous plants. The results of the present study not only provide an important opportunity to conduct further genomic breeding studies in the common bean, they also provide valuable information for future evolutionary and molecular studies of leguminous plants.
Collapse
Affiliation(s)
- Changwei Bi
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, Jiangsu, China; (C.B.); (N.L.)
| | - Na Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, Jiangsu, China; (C.B.); (N.L.)
| | - Yiqing Xu
- School of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, Jiangsu, China;
| | - Chunpeng He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, Jiangsu, China; (C.B.); (N.L.)
| | - Zuhong Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, Jiangsu, China; (C.B.); (N.L.)
| |
Collapse
|
41
|
Wang R, Cai X, Hu S, Li Y, Fan Y, Tan S, Liu Q, Zhou W. Comparative Analysis of the Mitochondrial Genomes of Nicotiana tabacum: Hints Toward the Key Factors Closely Related to the Cytoplasmic Male Sterility Mechanism. Front Genet 2020; 11:257. [PMID: 32265988 PMCID: PMC7100274 DOI: 10.3389/fgene.2020.00257] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/03/2020] [Indexed: 02/02/2023] Open
Abstract
Background Cytoplasmic male sterility (CMS) is a complex phenomenon of plant sterility that can produce non-functional pollen. It is caused by mutation, rearrangement or recombination in the mitochondrial genome. So far, the systematic structural characteristics of the changes in the mitochondrial genome from the maintainer lines to the CMS lines have not been reported in tobacco. Results The mitochondrial genomes of the flower buds from both CMS lines and maintainer lines of two Nicotiana tabacum cultivars (YY85, sYY85, ZY90, and sZY90) were sequenced using the PacBio and Illumina Hiseq technology, and several findings were produced by comparative analysis based on the de novo sequencing. (1) The genomes of the CMS lines were larger, and the different areas were mostly non-coding regions. (2) A large number of rearrangement regions were detected in the CMS lines, with many translocation regions. (3) Thirteen gene clusters were shared by the four mitochondrial genomes, among which two of the gene clusters, nad2-sdh3 and nad6-rps4, were far from each other in the CMS lines. (4) Thirty-three protein-coding genes were conserved in four mitochondrial genomes. However, nad3 was detected one additional copy in the maintainer lines, and sequence differences were revealed in the four candidate genes (atp6, cox2, nad2, and sdh3). Importantly, the evolutionary tree based on the four genes could be used to distinguish the CMS lines and the maintainer lines well for the sequenced mitochondrial genomes of the tobacco. (5) Sixteen CMS-specific open reading frames (ORFs) were found, three of which (orf91, orf115b, and orf100) were previously reported. (6) The differences in intensity of the protein–protein (PPI) interaction in ATP6 were further verified using the yeast two-hybrid analysis. Conclusion Although the majority of the sequences, genes and gene clusters were shared by the mitochondrial genomes of the maintainer and the CMS lines in tobacco, extensive structural variations identified with comprehensive analysis based on the mitochondrial genomes, including rearrangement, gene order, the mitochondrial genome expansion and shrinkage events, might be related to CMS. Additionally, the candidate protein-coding genes and CMS-specific ORFs were closely associated with the CMS mechanism. Verification experiments of one of the candidate genes were performed, and the validity of our research results was supported.
Collapse
Affiliation(s)
- Ruyi Wang
- Hunan Engineering and Technology Research Center for Agricultural Big Data Analysis and Decision-Making, Changsha, China.,Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Xunhui Cai
- School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, China
| | - Shengnan Hu
- Hunan Engineering and Technology Research Center for Agricultural Big Data Analysis and Decision-Making, Changsha, China.,Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Ying Li
- Hunan Engineering and Technology Research Center for Agricultural Big Data Analysis and Decision-Making, Changsha, China.,Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Yanjun Fan
- Hunan Engineering and Technology Research Center for Agricultural Big Data Analysis and Decision-Making, Changsha, China.,Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Siqiao Tan
- Hunan Engineering and Technology Research Center for Agricultural Big Data Analysis and Decision-Making, Changsha, China.,Hunan Engineer Research Center for Information Technology in Agriculture, Changsha, China
| | - Qiyuan Liu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Wei Zhou
- Hunan Engineering and Technology Research Center for Agricultural Big Data Analysis and Decision-Making, Changsha, China.,Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| |
Collapse
|
42
|
Cao L, Li J, Fan Z, Yin H, Li X. Characterization and phylogenetic significance of the complete chloroplast genome of Camellia Kissii, an economic crop for producing oil. MITOCHONDRIAL DNA PART B-RESOURCES 2020; 5:362-363. [PMID: 33366557 PMCID: PMC7748572 DOI: 10.1080/23802359.2019.1703569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Camellia kissii is cultivated for a long time as an oil crop for edible and industrial oils, and has the functions of high oil production rate and unique health care. The complete chloroplast (cp) genome sequence of C. kissii is 156,961 bp in length with GC content of 39.29%. It presents a quadrate structure, including a large single-copy (LSC) region (86,640 bp), a small single-copy (SSC) region (18,399 bp), and a pair of inverted repeats (IRs) (25,961 bp). Meanwhile, 15 complete chloroplast genome of Camellia was aligned to explore the phylogenetic significance of Camellia. And the genetic relationship between Camellia kissii and Camellia huana was found to be closest.
Collapse
Affiliation(s)
- Lei Cao
- College of Information Science and Technology, Nanjing Forestry University, Nanjing, China.,State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical, Forestry, Chinese Academy of Forestry, Hangzhou, China.,Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical, Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Jiyuan Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical, Forestry, Chinese Academy of Forestry, Hangzhou, China.,Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical, Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Zhengqi Fan
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical, Forestry, Chinese Academy of Forestry, Hangzhou, China.,Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical, Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Hengfu Yin
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical, Forestry, Chinese Academy of Forestry, Hangzhou, China.,Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical, Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Xinlei Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical, Forestry, Chinese Academy of Forestry, Hangzhou, China.,Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical, Forestry, Chinese Academy of Forestry, Hangzhou, China
| |
Collapse
|
43
|
Methods and Tools for Plant Organelle Genome Sequencing, Assembly, and Downstream Analysis. Methods Mol Biol 2020; 2107:49-98. [PMID: 31893443 DOI: 10.1007/978-1-0716-0235-5_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Organelles play an important role in a eukaryotic cell. Among them, the two organelles, chloroplast and mitochondria, are responsible for the critical function of photosynthesis and aerobic respiration. Organellar genomes are also very important for plant systematic studies. Here we have described the methods for isolation of the mitochondrial and plastid DNA and its subsequent sequencing with the help of NGS technology. We have also discussed in detail the various tools available for assembly, annotation, and visualization of the organelle genome sequence.
Collapse
|
44
|
Varré JS, D'Agostino N, Touzet P, Gallina S, Tamburino R, Cantarella C, Ubrig E, Cardi T, Drouard L, Gualberto JM, Scotti N. Complete Sequence, Multichromosomal Architecture and Transcriptome Analysis of the Solanum tuberosum Mitochondrial Genome. Int J Mol Sci 2019; 20:E4788. [PMID: 31561566 PMCID: PMC6801519 DOI: 10.3390/ijms20194788] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 12/01/2022] Open
Abstract
Mitochondrial genomes (mitogenomes) in higher plants can induce cytoplasmic male sterility and be somehow involved in nuclear-cytoplasmic interactions affecting plant growth and agronomic performance. They are larger and more complex than in other eukaryotes, due to their recombinogenic nature. For most plants, the mitochondrial DNA (mtDNA) can be represented as a single circular chromosome, the so-called master molecule, which includes repeated sequences that recombine frequently, generating sub-genomic molecules in various proportions. Based on the relevance of the potato crop worldwide, herewith we report the complete mtDNA sequence of two S. tuberosum cultivars, namely Cicero and Désirée, and a comprehensive study of its expression, based on high-coverage RNA sequencing data. We found that the potato mitogenome has a multi-partite architecture, divided in at least three independent molecules that according to our data should behave as autonomous chromosomes. Inter-cultivar variability was null, while comparative analyses with other species of the Solanaceae family allowed the investigation of the evolutionary history of their mitogenomes. The RNA-seq data revealed peculiarities in transcriptional and post-transcriptional processing of mRNAs. These included co-transcription of genes with open reading frames that are probably expressed, methylation of an rRNA at a position that should impact translation efficiency and extensive RNA editing, with a high proportion of partial editing implying frequent mis-targeting by the editing machinery.
Collapse
Affiliation(s)
- Jean-Stéphane Varré
- Univ. Lille, CNRS, Centrale Lille, UMR 9189-CRIStAL-Centre de Recherche en Informatique Signal et Automatique de Lille, F-59000 Lille, France.
| | - Nunzio D'Agostino
- CREA Research Centre for Vegetable and Ornamental Crops, 84098 Pontecagnano Faiano, SA, Italy.
| | - Pascal Touzet
- Univ. Lille, CNRS, UMR 8198-Evo-Eco-Paleo, F-59000 Lille, France.
| | - Sophie Gallina
- Univ. Lille, CNRS, UMR 8198-Evo-Eco-Paleo, F-59000 Lille, France.
| | - Rachele Tamburino
- CNR-IBBR, National Research Council of Italy, Institute of Biosciences and BioResources, 80055 Portici, NA, Italy.
| | - Concita Cantarella
- CREA Research Centre for Vegetable and Ornamental Crops, 84098 Pontecagnano Faiano, SA, Italy.
| | - Elodie Ubrig
- Institut de Biologie Moléculaire des Plantes-CNRS, Université de Strasbourg, Strasbourg 67084, France.
| | - Teodoro Cardi
- CREA Research Centre for Vegetable and Ornamental Crops, 84098 Pontecagnano Faiano, SA, Italy.
| | - Laurence Drouard
- Institut de Biologie Moléculaire des Plantes-CNRS, Université de Strasbourg, Strasbourg 67084, France.
| | - José Manuel Gualberto
- Institut de Biologie Moléculaire des Plantes-CNRS, Université de Strasbourg, Strasbourg 67084, France.
| | - Nunzia Scotti
- CNR-IBBR, National Research Council of Italy, Institute of Biosciences and BioResources, 80055 Portici, NA, Italy.
| |
Collapse
|
45
|
Corrigendum to "Analysis of the Complete Mitochondrial Genome Sequence of the Diploid Cotton Gossypium raimondii by Comparative Genomics Approaches". BIOMED RESEARCH INTERNATIONAL 2019; 2019:9691253. [PMID: 31559314 PMCID: PMC6735218 DOI: 10.1155/2019/9691253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 11/30/2022]
|
46
|
Rawal HC, Kumar PM, Bera B, Singh NK, Mondal TK. Decoding and analysis of organelle genomes of Indian tea (Camellia assamica) for phylogenetic confirmation. Genomics 2019; 112:659-668. [PMID: 31029862 DOI: 10.1016/j.ygeno.2019.04.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/03/2019] [Accepted: 04/24/2019] [Indexed: 01/16/2023]
Abstract
The NCBI database has >15 chloroplast (cp) genome sequences available for different Camellia species but none for C. assamica. There is no report of any mitochondrial (mt) genome in the Camellia genus or Theaceae family. With the strong believes that these organelle genomes can play a great tool for taxonomic and phylogenetic analysis, we successfully assembled and analyzed cp and mt genome of C. assamica. We assembled the complete mt genome of C. assamica in a single circular contig of 707,441 bp length comprising of a total of 66 annotated genes, including 35 protein-coding genes, 29 tRNAs and two rRNAs. The first ever cp genome of C. assamica resulted in a circular contig of 157,353 bp length with a typical quadripartite structure. Phylogenetic analysis based on these organelle genomes showed that C. assamica was closely related to C. sinensis and C. leptophylla. It also supports Caryophyllales as Superasterids.
Collapse
Affiliation(s)
- Hukam C Rawal
- ICAR-National Research Centre on Plant Biotechnology, Pusa, New Delhi 110012, India
| | - P Mohan Kumar
- Tea Board, Ministry of Commerce and Industry, Govt. of India, 14, B.T.M. Sarani, Kolkata 700 001, India
| | - Biswajit Bera
- Tea Board, Ministry of Commerce and Industry, Govt. of India, 14, B.T.M. Sarani, Kolkata 700 001, India
| | - Nagendra Kumar Singh
- ICAR-National Research Centre on Plant Biotechnology, Pusa, New Delhi 110012, India
| | - Tapan Kumar Mondal
- ICAR-National Research Centre on Plant Biotechnology, Pusa, New Delhi 110012, India.
| |
Collapse
|
47
|
Pacbio Sequencing Reveals Identical Organelle Genomes between American Cranberry ( Vaccinium macrocarpon Ait.) and a Wild Relative. Genes (Basel) 2019; 10:genes10040291. [PMID: 30974783 PMCID: PMC6523495 DOI: 10.3390/genes10040291] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 03/29/2019] [Accepted: 04/03/2019] [Indexed: 11/23/2022] Open
Abstract
Breeding efforts in the American cranberry (Vaccinium macrocarpon Ait.), a North American perennial fruit crop of great importance, have been hampered by the limited genetic and phenotypic variability observed among cultivars and experimental materials. Most of the cultivars commercially used by cranberry growers today were derived from a few wild accessions bred in the 1950s. In different crops, wild germplasm has been used as an important genetic resource to incorporate novel traits and increase the phenotypic diversity of breeding materials. Vaccinium microcarpum (Turcz. ex Rupr.) Schmalh. and V. oxycoccos L., two closely related species, may be cross-compatible with the American cranberry, and could be useful to improve fruit quality such as phytochemical content. Furthermore, given their northern distribution, they could also help develop cold hardy cultivars. Although these species have previously been analyzed in diversity studies, genomic characterization and comparative studies are still lacking. In this study, we sequenced and assembled the organelle genomes of the cultivated American cranberry and its wild relative, V. microcarpum. PacBio sequencing technology allowed us to assemble both mitochondrial and plastid genomes at very high coverage and in a single circular scaffold. A comparative analysis revealed that the mitochondrial genome sequences were identical between both species and that the plastids presented only two synonymous single nucleotide polymorphisms (SNPs). Moreover, the Illumina resequencing of additional accessions of V. microcarpum and V. oxycoccos revealed high genetic variation in both species. Based on these results, we provided a hypothesis involving the extension and dynamics of the last glaciation period in North America, and how this could have shaped the distribution and dispersal of V. microcarpum. Finally, we provided important data regarding the polyploid origin of V. oxycoccos.
Collapse
|
48
|
Pinard D, Myburg AA, Mizrachi E. The plastid and mitochondrial genomes of Eucalyptus grandis. BMC Genomics 2019; 20:132. [PMID: 30760198 PMCID: PMC6373115 DOI: 10.1186/s12864-019-5444-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 01/10/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Land plant organellar genomes have significant impact on metabolism and adaptation, and as such, accurate assembly and annotation of plant organellar genomes is an important tool in understanding the evolutionary history and interactions between these genomes. Intracellular DNA transfer is ongoing between the nuclear and organellar genomes, and can lead to significant genomic variation between, and within, species that impacts downstream analysis of genomes and transcriptomes. RESULTS In order to facilitate further studies of cytonuclear interactions in Eucalyptus, we report an updated annotation of the E. grandis plastid genome, and the second sequenced and annotated mitochondrial genome of the Myrtales, that of E. grandis. The 478,813 bp mitochondrial genome shows the conserved protein coding regions and gene order rearrangements typical of land plants. There have been widespread insertions of organellar DNA into the E. grandis nuclear genome, which span 141 annotated nuclear genes. Further, we identify predicted editing sites to allow for the discrimination of RNA-sequencing reads between nuclear and organellar gene copies, finding that nuclear copies of organellar genes are not expressed in E. grandis. CONCLUSIONS The implications of organellar DNA transfer to the nucleus are often ignored, despite the insight they can give into the ongoing evolution of plant genomes, and the problems they can cause in many applications of genomics. Future comparisons of the transcription and regulation of organellar genes between Eucalyptus genotypes may provide insight to the cytonuclear interactions that impact economically important traits in this widely grown lignocellulosic crop species.
Collapse
Affiliation(s)
- Desre Pinard
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
- Genomics Research Institute (GRI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
| | - Alexander A. Myburg
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
- Genomics Research Institute (GRI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
| | - Eshchar Mizrachi
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
- Genomics Research Institute (GRI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
| |
Collapse
|
49
|
Lin H, Bai D. The complete mitochondrial genome of a highly selfing species Capsella rubella. Mitochondrial DNA B Resour 2019. [DOI: 10.1080/23802359.2019.1614889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Haifeng Lin
- College of Information Science and Technology, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Di Bai
- College of Engineering, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
50
|
Tao Q, Cao J, Zhu L, Lin H. The complete mitochondrial genome of an important root crop cassava ( Manihot esculenta). Mitochondrial DNA B Resour 2019. [DOI: 10.1080/23802359.2019.1586471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Qiuchen Tao
- Department of Forensic Science and Technology, Nanjing Forest Police College, Nanjing, China
| | - Ji Cao
- Department of Forensic Science and Technology, Nanjing Forest Police College, Nanjing, China
| | - Lei Zhu
- Department of Forensic Science and Technology, Nanjing Forest Police College, Nanjing, China
| | - Haifeng Lin
- College of Information Science and Technology, Nanjing Forestry University, Nanjing, China
| |
Collapse
|