1
|
Fan R, Zhang Y, Liu R, Wei C, Wang X, Wu X, Yu X, Li Z, Mao R, Hu J, Zhu N, Liu X, Li Y, Xu M. Exogenous Nucleotides Improve the Skin Aging of SAMP8 Mice by Modulating Autophagy through MAPKs and AMPK Pathways. Nutrients 2024; 16:1907. [PMID: 38931262 PMCID: PMC11206724 DOI: 10.3390/nu16121907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/07/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
The skin, serving as the body's primary defense against external elements, plays a crucial role in protecting the body from infections and injuries, as well as maintaining overall homeostasis. Skin aging, a common manifestation of the aging process, involves the gradual deterioration of its normal structure and repair mechanisms. Addressing the issue of skin aging is increasingly imperative. Multiple pieces of evidence indicate the potential anti-aging effects of exogenous nucleotides (NTs) through their ability to inhibit oxidative stress and inflammation. This study aims to investigate whether exogenous NTs can slow down skin aging and elucidate the underlying mechanisms. To achieve this objective, senescence-accelerated mouse prone-8 (SAMP8) mice were utilized and randomly allocated into Aging, NTs-low, NTs-middle, and NTs-high groups, while senescence-accelerated mouse resistant 1 (SAMR1) mice were employed as the control group. After 9 months of NT intervention, dorsal skin samples were collected to analyze the pathology and assess the presence and expression of substances related to the aging process. The findings indicated that a high-dose NT treatment led to a significant increase in the thickness of the epithelium and dermal layers, as well as Hyp content (p < 0.05). Additionally, it was observed that low-dose NT intervention resulted in improved aging, as evidenced by a significant decrease in p16 expression (p < 0.05). Importantly, the administration of high doses of NTs could improve, in some ways, mitochondrial function, which is known to reduce oxidative stress and promote ATP and NAD+ production significantly. These observed effects may be linked to NT-induced autophagy, as evidenced by the decreased expression of p62 and increased expression of LC3BI/II in the intervention groups. Furthermore, NTs were found to upregulate pAMPK and PGC-1α expression while inhibiting the phosphorylation of p38MAPK, JNK, and ERK, suggesting that autophagy may be regulated through the AMPK and MAPK pathways. Therefore, the potential induction of autophagy by NTs may offer benefits in addressing skin aging through the activation of the AMPK pathway and the inhibition of the MAPK pathway.
Collapse
Affiliation(s)
- Rui Fan
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (R.F.); (Y.Z.); (R.L.); (C.W.); (X.W.); (X.W.); (X.Y.); (Z.L.); (R.M.); (J.H.); (N.Z.); (X.L.); (Y.L.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Ying Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (R.F.); (Y.Z.); (R.L.); (C.W.); (X.W.); (X.W.); (X.Y.); (Z.L.); (R.M.); (J.H.); (N.Z.); (X.L.); (Y.L.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Rui Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (R.F.); (Y.Z.); (R.L.); (C.W.); (X.W.); (X.W.); (X.Y.); (Z.L.); (R.M.); (J.H.); (N.Z.); (X.L.); (Y.L.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Chan Wei
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (R.F.); (Y.Z.); (R.L.); (C.W.); (X.W.); (X.W.); (X.Y.); (Z.L.); (R.M.); (J.H.); (N.Z.); (X.L.); (Y.L.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Xiujuan Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (R.F.); (Y.Z.); (R.L.); (C.W.); (X.W.); (X.W.); (X.Y.); (Z.L.); (R.M.); (J.H.); (N.Z.); (X.L.); (Y.L.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Xin Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (R.F.); (Y.Z.); (R.L.); (C.W.); (X.W.); (X.W.); (X.Y.); (Z.L.); (R.M.); (J.H.); (N.Z.); (X.L.); (Y.L.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Xiaochen Yu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (R.F.); (Y.Z.); (R.L.); (C.W.); (X.W.); (X.W.); (X.Y.); (Z.L.); (R.M.); (J.H.); (N.Z.); (X.L.); (Y.L.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Zhen Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (R.F.); (Y.Z.); (R.L.); (C.W.); (X.W.); (X.W.); (X.Y.); (Z.L.); (R.M.); (J.H.); (N.Z.); (X.L.); (Y.L.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Ruixue Mao
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (R.F.); (Y.Z.); (R.L.); (C.W.); (X.W.); (X.W.); (X.Y.); (Z.L.); (R.M.); (J.H.); (N.Z.); (X.L.); (Y.L.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Jiani Hu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (R.F.); (Y.Z.); (R.L.); (C.W.); (X.W.); (X.W.); (X.Y.); (Z.L.); (R.M.); (J.H.); (N.Z.); (X.L.); (Y.L.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Na Zhu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (R.F.); (Y.Z.); (R.L.); (C.W.); (X.W.); (X.W.); (X.Y.); (Z.L.); (R.M.); (J.H.); (N.Z.); (X.L.); (Y.L.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Xinran Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (R.F.); (Y.Z.); (R.L.); (C.W.); (X.W.); (X.W.); (X.Y.); (Z.L.); (R.M.); (J.H.); (N.Z.); (X.L.); (Y.L.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Yong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (R.F.); (Y.Z.); (R.L.); (C.W.); (X.W.); (X.W.); (X.Y.); (Z.L.); (R.M.); (J.H.); (N.Z.); (X.L.); (Y.L.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Meihong Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (R.F.); (Y.Z.); (R.L.); (C.W.); (X.W.); (X.W.); (X.Y.); (Z.L.); (R.M.); (J.H.); (N.Z.); (X.L.); (Y.L.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| |
Collapse
|
2
|
Lee KS, Cho E, Weon JB, Park D, Fréchet M, Chajra H, Jung E. Inhibition of UVB-Induced Inflammation by Laminaria japonica Extract via Regulation of nc886-PKR Pathway. Nutrients 2020; 12:E1958. [PMID: 32630038 PMCID: PMC7400497 DOI: 10.3390/nu12071958] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/26/2020] [Accepted: 06/27/2020] [Indexed: 12/21/2022] Open
Abstract
Continuous exposure to ultraviolet B (UVB) can cause photodamage of the skin. This photodamage can be inhibited by the overexpression of the non-coding RNA, nc886, via the protein kinase RNA-activated (PKR) pathway. The study aims to identify how UVB inhibits nc886 expression, and it also seeks to determine whether substances that can control nc886 expression can influence UV-induced inflammation, and the mechanisms involved. The results suggest that UVB irradiation accelerates the methylation of the nc886 gene, therefore, reducing its expression. This induces the activation of the PKR, which accelerates the expression of metalloproteinase-9 (MMP-9) and cyclooxygenase (COX-2), and the production of MMP-9, prostaglandin-endoperoxide synthase (PGE2), and certain pro-inflammatory cytokines, specifically interleukin-8 (IL-8), and tumor necrosis factor- (TNF-). Conversely, in a model of nc886 overexpression, the expression and production of those inflammatory factors are inhibited. In addition, Laminaria japonica extract (LJE) protect the levels of nc886 against UVB irradiation then subsequently inhibit the production of UV-induced inflammatory factors through the PKR pathway.
Collapse
Affiliation(s)
- Kwang-Soo Lee
- Life Science Institute, BioSpectrum, Yongin 16827, Gyeonggi, Korea; (K.-S.L.); (E.C.); (J.B.W.); (D.P.)
| | - Eunae Cho
- Life Science Institute, BioSpectrum, Yongin 16827, Gyeonggi, Korea; (K.-S.L.); (E.C.); (J.B.W.); (D.P.)
| | - Jin Bae Weon
- Life Science Institute, BioSpectrum, Yongin 16827, Gyeonggi, Korea; (K.-S.L.); (E.C.); (J.B.W.); (D.P.)
| | - Deokhoon Park
- Life Science Institute, BioSpectrum, Yongin 16827, Gyeonggi, Korea; (K.-S.L.); (E.C.); (J.B.W.); (D.P.)
| | - Mathilde Fréchet
- Clariant Active Ingredients, d’espagne, 31000 Toulouse, France; (M.F.); (H.C.)
| | - Hanane Chajra
- Clariant Active Ingredients, d’espagne, 31000 Toulouse, France; (M.F.); (H.C.)
| | - Eunsun Jung
- Life Science Institute, BioSpectrum, Yongin 16827, Gyeonggi, Korea; (K.-S.L.); (E.C.); (J.B.W.); (D.P.)
| |
Collapse
|
3
|
Wang L, Oh JY, Jayawardena TU, Jeon YJ, Ryu B. Anti-inflammatory and anti-melanogenesis activities of sulfated polysaccharides isolated from Hizikia fusiforme: Short communication. Int J Biol Macromol 2020; 142:545-550. [PMID: 31715243 DOI: 10.1016/j.ijbiomac.2019.09.128] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/16/2019] [Accepted: 09/29/2019] [Indexed: 12/20/2022]
Abstract
Antioxidant and anti-wrinkle effects of sulfated polysaccharides from Celluclast-assisted extract of Hizikia fusiforme (HFPS) make it a good candidate for exploring its cosmeceutical potential. In order to further explore this premise, the anti-inflammatory and anti-melanogenesis effects of HFPS were studied in the present study. HFPS significantly inhibited nitric oxide (NO) generation and improved the cell viability in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. It also decreased the expression of prostaglandin E2 (PGE2) and pro-inflammatory cytokines, and suppressed the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in LPS-stimulated RAW 264.7 cells. In addition, HFPS also inhibited melanin synthesis in alpha-melanocyte stimulating hormone (α-MSH)-stimulated B16F10 melanoma cells by down-regulating of intracellular levels of tyrosinase and tyrosinase-related protein-1 and -2 (TRP-1 and -2) via inhibiting microphthalmia-associated transcription factor (MITF) expression. These results demonstrate that HFPS possesses strong in vitro anti-inflammatory and anti-melanogenesis effects and can be used in the pharmaceutical and cosmeceutical industries.
Collapse
Affiliation(s)
- Lei Wang
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province 63333, Republic of Korea
| | - Jae Young Oh
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea
| | - Thilina U Jayawardena
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province 63333, Republic of Korea.
| | - BoMi Ryu
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province 63333, Republic of Korea.
| |
Collapse
|
4
|
Polysaccharides with Antioxidative and Antiaging Activities from Enzymatic-Extractable Mycelium by Agrocybe aegerita (Brig.) Sing. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:1584647. [PMID: 30622588 PMCID: PMC6304491 DOI: 10.1155/2018/1584647] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/25/2018] [Accepted: 07/18/2018] [Indexed: 12/15/2022]
Abstract
This study aimed to investigate the antioxidant, antiaging, and organ protective effects of the water-extractable mycelium polysaccharides (MPS) and enzymic-extractable mycelium polysaccharides (En-MPS) by Agrocybe aegerita (Brig.) Sing in D-galactose-induced (D-gal-induced) aging mice. In in vitro assays, the En-MPS demonstrated stronger antioxidant activities in dose-dependent manners. The mice experiments revealed that both En-MPS and MPS had potential effects on antioxidation, antiaging, and organ protection mainly by improving the antioxidant enzyme activities, decreasing the lipid peroxidation, and remitting the lipid metabolism. Furthermore, chemical composition and monosaccharide composition of polysaccharides were also measured, and the results indicated that differences in biological activity of MPS and En-MPS samples showed a significant correlation to their purity. The findings demonstrated that the polysaccharides by A. aegerita (Brig.) Sing could be exploited as natural and functional foods for the prevention and alleviation of aging and its complications.
Collapse
|
6
|
Cao YG, Hao Y, Li ZH, Liu ST, Wang LX. Antiviral activity of polysaccharide extract from Laminaria japonica against respiratory syncytial virus. Biomed Pharmacother 2016; 84:1705-1710. [PMID: 27847204 DOI: 10.1016/j.biopha.2016.10.082] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 10/19/2016] [Accepted: 10/27/2016] [Indexed: 01/16/2023] Open
Abstract
This study was designed to investigate the inhibition activity of polysaccharide extract from Laminaria japonica against RSV. The polysaccharide from Laminaria japonica was isolated by ethanol precipitation. HEK293 cells were infected with RVS, and the antiviral activity of polysaccharide extract against RSV in host cells was tested. By using ELISA and western blot assay, the expression level of IFN-α and IRF3 and their functional roles in polysaccharide-mediated antiviral activity against RSV were investigated. The polysaccharide extract from Laminaria japonica had low toxicity to HEK293 cell. The TC50 to HEK293 cells was up to 1.76mg/mL. Furthermore, the EC50 of polysaccharide extract to RSV was 5.27μg/mL, and TI was 334. The polysaccharide extract improved IRF-3 expression which promoted the level of IFN-α. IN CONCLUSION Polysaccharide extract from Laminaria japonica elicits antiviral activity against RSV by up-regulation of IRF3 signaling-mediated IFN-α production.
Collapse
Affiliation(s)
- Yin-Guang Cao
- Clinical Laboratory, Liaocheng People's Hospital of Taishan Medical University, Shandong 252000, China; Shandong University School of Medicine, Shandong 250012, China
| | - Yu Hao
- Clinical Laboratory, Liaocheng People's Hospital of Taishan Medical University, Shandong 252000, China
| | - Zhi-Hui Li
- Clinical Laboratory, Liaocheng People's Hospital of Taishan Medical University, Shandong 252000, China; Shandong University School of Medicine, Shandong 250012, China.
| | - Shun-Tao Liu
- Clinical Laboratory, Liaocheng People's Hospital of Taishan Medical University, Shandong 252000, China
| | - Le-Xin Wang
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia.
| |
Collapse
|