1
|
Gao Y, Wu T, Tang X, Wen J, Zhang Y, Zhang J, Wang S. Increased cellular senescence in doxorubicin-induced murine ovarian injury: effect of senolytics. GeroScience 2023; 45:1775-1790. [PMID: 36648735 PMCID: PMC10400526 DOI: 10.1007/s11357-023-00728-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/04/2023] [Indexed: 01/18/2023] Open
Abstract
Ovarian injury caused by chemotherapy can lead to early menopause, infertility, and even premature senility in female cancer patients, impairing the quality of life and overall health of the cancer survivors seriously. However, there is still a lack of effective protection strategies against such injury. Cellular senescence can be induced by chemotherapeutic agents in multiple organs and may corrode the structure and function of normal tissues. We hypothesized that the widely used first-line chemotherapy drug, doxorubicin, could increase senescent cell burden in normal ovarian tissue during the therapeutic process and that elimination of senescent cells with senolytics would ameliorate doxorubicin-induced ovarian injury. Here, we demonstrated an accumulation of cellular senescence in doxorubicin-treated ovaries through detecting p16 and p21 expression levels and senescence-associated β-galactosidase (SA-β-gal) activity as well as senescence-associated secretory phenotype (SASP) factors. Short-term intervention with the classic senolytic combination dasatinib and quercetin (DQ) or fisetin significantly reduced the load of senescent cells in ovaries after doxorubicin treatment. However, neither DQ nor fisetin alleviated doxorubicin-related ovarian dysfunction. Further experiments showed that ovarian apoptosis and fibrosis following doxorubicin exposure could not be improved by senolytics. Collectively, our study shows that senolytic treatment can eliminate accumulated senescent cells, but cannot reverse the massive follicle loss and ovarian stromal fibrosis caused by doxorubicin, suggesting that cellular senescence may not be one of the key mechanisms in doxorubicin-induced ovarian injury.
Collapse
Affiliation(s)
- Yueyue Gao
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Tong Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Xianan Tang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Jingyi Wen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Yan Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Jinjin Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China.
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China.
| |
Collapse
|
2
|
Zhang JL, Du C, Poon CCW, He MC, Wong MS, Wang NN, Zhang Y. Structural characterization and protective effect against renal fibrosis of polysaccharide from Ligustrum lucidum Ait. JOURNAL OF ETHNOPHARMACOLOGY 2023; 302:115898. [PMID: 36372193 DOI: 10.1016/j.jep.2022.115898] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 10/01/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fructus Ligustri Lucidi (FLL), the fruit of Ligustrum lucidum Ait., is a traditional Chinese medicine that has been used for tonifying the kidney and liver for decades. AIM OF THE STUDY This study aimed to explore and identify polysaccharides from FLL and elucidate its protective effect against renal fibrosis. MATERIALS AND METHODS Polysaccharides were extracted and isolated from FLL. The purified fraction was identified by serial phytochemical work, such as gel-permeation chromatography, ion chromatography, gas chromatography-mass spectrometry, and nuclear magnetic resonance. Mice with unilateral ureteral obstruction (UUO) were applied as a renal fibrosis model. The male UUO mice were pretreated with heteropolysaccharide (Poly) 1 week prior to surgery and continuously treated for 7 days after the operation. Renal fibrosis was assessed by Periodic Acid-Schiff (PAS) staining and Masson's trichrome staining in paraffin-embedded slides. The murine mesangial cells SV40-MES13 upon angiotensin II (Ang II) treatment were developed as an in vitro fibrotic model. The cells were treated by Poly in the presence of Ang II. Molecular expression was detected by RT-PCR, immunoblotting, and immunofluorescence staining. RESULTS We identified a heteropolysaccharide composed of arabinose and galactose (molar ratio, 0.73:0.27) with a predicted chemical structure characterized by a backbone composed of 1,5-α-Araf, 1,3,5-α-Araf, 1,6-α-Galp, and 1,3,6-β-Galp and side chains comprised of T-α-Araf, T-α-Arap, and 1,3-α-Araf. Pretreatment of UUO mice with Poly effectively alleviated glomerulosclerosis and tubulointerstitial fibrosis. Moreover, Poly pretreatment down-regulated the expression of extracellular matrix (ECM) protein fibronectin (FN), profibrotic factor VEGF, proinflammatory cytokines MCP-1 and Rantes in the obstructed kidney. Similarly, the incubation of SV40-MES13 cells with Poly significantly inhibited Ang II-induced elevation in accumulation and expression level of FN and attenuated Ang II-evoked up-regulation in protein expression of MCP-1 and Rantes. CONCLUSIONS Our study isolated and identified a naturally occurring heteropolysaccharide in FLL and revealed its potential in protecting the kidneys from fibrosis.
Collapse
Affiliation(s)
- Jia-Li Zhang
- Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Chen Du
- Department of Gynecology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Christina Chui-Wa Poon
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Ming-Chao He
- Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Man-Sau Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Na-Ni Wang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, 310007, China.
| | - Yan Zhang
- Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
3
|
Sedeman M, Christowitz C, de Jager L, Engelbrecht AM. Obese mammary tumour-bearing mice are highly sensitive to doxorubicin-induced hepatotoxicity. BMC Cancer 2022; 22:1240. [PMID: 36451148 PMCID: PMC9710042 DOI: 10.1186/s12885-022-10189-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 10/07/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Breast cancer is a major health burden for women, worldwide. Lifestyle-related risk factors, such as obesity and being overweight, have reached epidemic proportions and contributes to the development of breast cancer. Doxorubicin (DXR) is a chemotherapeutic drug commonly used to treat breast cancer, and although effective, may cause toxicity to other organs. The mechanisms and effects of DXR on hepatic tissue, and the contributing role of obesity, in breast cancer patients are poorly understood. The aim of this study was therefore to investigate the effects of DXR on hepatic tissue in an obese tumour-bearing mouse model. METHODS A diet-induced obesity (DIO) mouse model was established, where seventy-four three-week-old female C57BL6 mice were divided into two main groups, namely the high fat diet (containing 60% kcal fat) and standard diet (containing 10% kcal fat) groups. After eight weeks on their respective diets, the DIO phenotype was established, and the mice were further divided into tumour and non-tumour groups. Mice were subcutaneously inoculated with E0771 triple negative breast cancer cells in the fourth mammary gland and received three doses of 4 mg/kg DXR (cumulative dosage of 12 mg/kg) or vehicle treatments via intraperitoneal injection. The expression levels of markers involved in apoptosis and alanine aminotransferase (ALT) were compared by means of western blotting. To assess the pathology and morphology of hepatic tissue, haematoxylin and eosin staining was performed. The presence of fibrosis and lipid accumulation in hepatic tissues were assessed with Masson's trichrome and Oil Red O staining, respectively. RESULTS Microscopic examination of liver tissues showed significant changes in the high fat diet tumour-bearing mice treated with DXR, consisting of macrovesicular steatosis, hepatocyte ballooning and lobular inflammation, compared to the standard diet tumour-bearing mice treated with DXR and the control group (standard diet mice). These changes are the hallmarks of non-alcoholic fatty liver disease, associated with obesity. CONCLUSION The histopathological findings indicated that DXR caused significant hepatic parenchymal injury in the obese tumour-bearing mice. Hepatotoxicity is aggravated in obesity as an underlying co-morbidity. It has been shown that obesity is associated with poor clinical outcomes in patients receiving neo-adjuvant chemotherapy treatment regimens.
Collapse
Affiliation(s)
- Megan Sedeman
- grid.11956.3a0000 0001 2214 904XDepartment of Physiological Sciences, Stellenbosch University, Stellenbosch Campus, Stellenbosch, South Africa ,grid.11956.3a0000 0001 2214 904XDepartment of Global Health, Faculty of Medicine and Health Sciences, African Cancer Institute (ACI), Stellenbosch University, Cape Town, 8000 South Africa
| | - Claudia Christowitz
- grid.11956.3a0000 0001 2214 904XDepartment of Physiological Sciences, Stellenbosch University, Stellenbosch Campus, Stellenbosch, South Africa ,grid.11956.3a0000 0001 2214 904XDepartment of Global Health, Faculty of Medicine and Health Sciences, African Cancer Institute (ACI), Stellenbosch University, Cape Town, 8000 South Africa
| | - Louis de Jager
- grid.417371.70000 0004 0635 423XDivision of Anatomical Pathology, Stellenbosch University and National Health Laboratory Service (NHLS), Tygerberg Hospital, Cape Town, 8000 South Africa ,Anatomical Pathology, PathCare, Cape Town, South Africa
| | - Anna-Mart Engelbrecht
- grid.11956.3a0000 0001 2214 904XDepartment of Physiological Sciences, Stellenbosch University, Stellenbosch Campus, Stellenbosch, South Africa ,grid.11956.3a0000 0001 2214 904XDepartment of Global Health, Faculty of Medicine and Health Sciences, African Cancer Institute (ACI), Stellenbosch University, Cape Town, 8000 South Africa
| |
Collapse
|
4
|
Open label safety and efficacy pilot to study mitigation of equine recurrent uveitis through topical suppressor of cytokine signaling-1 mimetic peptide. Sci Rep 2022; 12:7177. [PMID: 35505065 PMCID: PMC9065145 DOI: 10.1038/s41598-022-11338-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 04/19/2022] [Indexed: 02/07/2023] Open
Abstract
Equine recurrent uveitis (ERU) is a painful and debilitating autoimmune disease and represents the only spontaneous model of human recurrent uveitis (RU). Despite the efficacy of existing treatments, RU remains a leading cause of visual handicap in horses and humans. Cytokines, which utilize Janus kinase 2 (Jak2) for signaling, drive the inflammatory processes in ERU that promote blindness. Notably, suppressor of cytokine signaling 1 (SOCS1), which naturally limits the activation of Jak2 through binding interactions, is often deficient in autoimmune disease patients. Significantly, we previously showed that topical administration of a SOCS1 peptide mimic (SOCS1-KIR) mitigated induced rodent uveitis. In this pilot study, we test the potential to translate the therapeutic efficacy observed in experimental rodent uveitis to equine patient disease. Through bioinformatics and peptide binding assays we demonstrate putative binding of the SOCS1-KIR peptide to equine Jak2. We also show that topical, or intravitreal injection of SOCS1-KIR was well tolerated within the equine eye through physical and ophthalmic examinations. Finally, we show that topical SOCS1-KIR administration was associated with significant clinical ERU improvement. Together, these results provide a scientific rationale, and supporting experimental evidence for the therapeutic use of a SOCS1 mimetic peptide in RU.
Collapse
|
5
|
Ikewuchi CC, Ikewuchi JC, Ifeanacho MO. Restoration of plasma kidney and liver biomarkers in doxorubicin-treated Wistar rats by aqueous extracts of Pleurotus tuberregium sclerotia and Cnidoscolus aconitifolius leaves. BIOTECHNOLOGIA 2021; 102:297-306. [PMID: 36606149 PMCID: PMC9645572 DOI: 10.5114/bta.2021.108726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 05/30/2021] [Accepted: 06/16/2021] [Indexed: 01/09/2023] Open
Abstract
The ability of aqueous extracts of sclerotia of Pleurotus tuberregium and leaves of Cnidoscolus aconitifolius to regulate plasma markers of kidney and liver function/integrity was investigated in doxorubicin-treated Wistar rats. Doxorubicin (dissolved in normal saline) was injected intraperitoneally (15 mg/kg body weight) into the rats; metformin was daily administered orally at 250 mg/kg, while the extracts were daily administered orally at doses of 50, 75, and 100 mg/kg. Compared to the test control, in both the doxorubicin pre-treatment (or ameliorative) study and the extract pre-treatment (protective) studies, the extracts and metformin-treated groups had significantly lower (P < 0.05) plasma levels of alkaline phosphatase, alanine transaminase and aspartate transaminase, and concentrations of creatinine, urea, and blood urea nitrogen. However, the plasma globulin, albumin, and total protein concentrations and the albumin/globulin ratio of the extract and metformin-treated groups were significantly higher (P < 0.05). The extracts prevented (in the protective study) or attenuated (in the ameliorative study) doxorubicin-induced increase in the levels of plasma markers of kidney and liver function/integrity, and afforded protection or recovery towards near-normal values.
Collapse
Affiliation(s)
- Catherine C. Ikewuchi
- Department of Biochemistry, Faculty of Science, University of Port Harcourt, P.M.B. 5323, Port Harcourt, Nigeria
| | - Jude C. Ikewuchi
- Department of Biochemistry, Faculty of Science, University of Port Harcourt, P.M.B. 5323, Port Harcourt, Nigeria
| | - Mercy O. Ifeanacho
- Department of Food, Nutrition and Home Science, Faculty of Agriculture, University of Port Harcourt, Nigeria
| |
Collapse
|
6
|
Renu K, Pureti LP, Vellingiri B, Valsala Gopalakrishnan A. Toxic effects and molecular mechanism of doxorubicin on different organs – an update. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.1912099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Kaviyarasi Renu
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, India
| | - Lakshmi Prasanna Pureti
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, India
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, India
| |
Collapse
|
7
|
Wu J, Li X, Luo F, Yan J, Yang K. Screening key miRNAs and genes in prostate cancer by microarray analysis. Transl Cancer Res 2020; 9:856-868. [PMID: 35117431 PMCID: PMC8799076 DOI: 10.21037/tcr.2019.12.30] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/29/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Prostate cancer (PCa) is the second most frequent cancer and the fifth leading cause of cancer-related death in men while the mechanisms remain unclear. METHODS Differentially expressed mRNAs (DEmRNAs) and miRNAs (DEmiRNAs) between PCa and non-tumor controls were identified by using microarray analysis. Functional annotation of DEmRNAs, construction of protein-protein interaction (PPI) network and prediction of upstream transcription factors and downstream target DEmRNAs of DEmiRNAs were conducted to further research functions of key DEmRNAs and DEmiRNAs. Validation of selected DEmRNAs and survival analysis were conducted by using The Cancer Genome Atlas (TCGA). RESULTS Total of 91 DEmRNAs and 62 DEmiRNAs were obtained. Thrombospondin-4 precursor (THBS4) was the most significantly up-regulated DEmRNA whose product was predicted to interact with the hub protein of the PCa-specific PPI network, collagen type I alpha 1 chain (COL1A1). Both ATP binding cassette subfamily C member 4 (ABCC4) and endothelin receptor type B (EDNRB) have great prognostic value for PCa. Thrombospondin type 1 domain containing 4 (THSD4) was a down-regulated DEmRNA regulated by several cancer-related miRNAs including has-miR-107, hsa-miR-3175 and hsa-miR-484. Two miRNAs (hsa-miR-428 and hsa-miR-4284) involve in PCa by regulating BMP5-BAMBI interaction and TGF-beta signaling pathway. The expression of selected DEmRNAs between PCa and non-tumor controls in TCGA was consistent with that in our microarray analysis, generally. CONCLUSIONS Key DEmRNAs and DEmiRNAs between PCa and non-tumor controls were identified in this study which provided clues for exploring the molecular mechanism and developing potential biomarkers and therapeutic target sites for PCa.
Collapse
Affiliation(s)
- Jianhui Wu
- Department of Urology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Xuemei Li
- Department of Endocrinology, Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, China
| | - Fei Luo
- Department of Urology, Tianjin Union Medical Center, Tianjin 300121, China
| | - Jun Yan
- Department of Pathology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Kuo Yang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| |
Collapse
|