1
|
Badr AM, Alotaibi HN, El-Orabi N. Dibenzazepine, a γ-Secretase Enzyme Inhibitor, Protects Against Doxorubicin-Induced Cardiotoxicity by Suppressing NF-κB, iNOS, and Hes1/Hey1 Expression. Inflammation 2024:10.1007/s10753-024-02046-x. [PMID: 39078585 DOI: 10.1007/s10753-024-02046-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 07/31/2024]
Abstract
Doxorubicin (DOX) is an effective chemotherapeutic drug; however, its cardiotoxicity and resistance compromise its therapeutic index. The Notch pathway was reported to contribute to DOX cancer resistance. The role of Notch pathway in DOX cardiotoxicity has not been identified yet. Notch receptors are characterized by their extracellular (NECD) and intracellular (NICD) domains (NICD). The γ-secretase enzyme helps in the release of NICD. Dibenzazepine (DBZ) is a γ-secretase inhibitor. The present study investigated the effect of Notch pathway inhibition on DOX cardiotoxicity. Twenty-four male Wistar rats were divided into four groups: control group, DOX group, acute cardiotoxicity was induced by a single dose of DOX (20 mg/kg) i.p., DOX (20 mg/kg) plus DBZ group, and DBZ group. The third and fourth groups received i.p. injection of DBZ daily for 14 days at 2 mg/kg dose. DOX cardiotoxicity increased the level of serum creatine kinase-MB and cardiac troponin I, and it was confirmed by the histopathological examination. Moreover, the antioxidants glutathione peroxidase and superoxide dismutase levels were markedly decreased, and the inflammatory markers, inducible nitric oxide synthase, nuclear factor-ķB, and tumor necrosis factor-α were markedly increased. Furthermore, DOX increased BAX protein and downregulated BCL-2. In addition, DOX upregulated Notch pathway-related parameters: Hes1 and Hey1 mRNA levels, and increased Hes1 protein levels. DBZ ameliorated DOX-induced cardiotoxicity, evidenced by reducing the cardiac injury biomarkers, improving cardiac histopathological changes, correcting antioxidant levels, and reducing inflammatory and apoptotic proteins. Our study indicates the protective effect of Notch inhibitor against DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Amira M Badr
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Saud University, Riyadh, 11211, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Hind N Alotaibi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Saud University, Riyadh, 11211, Saudi Arabia
| | - Naglaa El-Orabi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt.
| |
Collapse
|
2
|
Morsali S, Sabahi Z, Kakaei J, Hakimzadeh Z, Hamidi S, Gholipour-Khalili E, Sanaie S, Talebi M, Naseri A. Clinical efficacy and safety of melatonin supplementation in multiple sclerosis: a systematic review. Inflammopharmacology 2023; 31:2213-2220. [PMID: 37429996 DOI: 10.1007/s10787-023-01271-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/10/2023] [Indexed: 07/12/2023]
Abstract
BACKGROUND Melatonin is a neurohormone secreted predominantly by the pineal gland that is demonstrated to be associated with the pathogenesis of multiple sclerosis (MS). This research desires to evaluate the tolerability and beneficial effects of exogenous melatonin supplementations in patients with MS. METHODS This study was executed following the PRISMA 2020 statement. Both observational and interventional studies which reported the clinical effectiveness and/or safety of melatonin supplementation in patients with MS were included in this systematic review. Ovid, PubMed, Scopus, Embase, and Web of Science databases were searched and the risk of bias in included studies was assessed using the Joanna Briggs Institute (JBI) critical appraisal tools based on study design. RESULTS Out of 1304 results of database searches, finally, 14 articles, including 7 randomized controlled trials (RCTs), 6 case-control studies, and one quasi-experimental study, were included based on the full-text review. Included phenotypes of MS were mostly relapsing-remitting MS (RRMS) (in 11 studies); it was secondary progressive MS (SPMS) in only one study, and two other studies had a mixture of the different phenotypes. The course of treatment with melatonin supplementation was between 2 weeks and 12 months. There were no substantial safety issues. Although melatonin was associated with enhanced oxidative stress and inflammation status, concerning the clinical benefits, limited studies suggested improvements in sleep conditions, cognitive outcomes, and fatigue in MS. DISCUSSION There are insufficient data to support the regular melatonin prescription in MS. Limitations such as the small number of included studies, the diversity of the dosage, route, and duration of melatonin administration, and the diversity of assessment tests lead to unconvincing findings in this study. There is a need for future studies to achieve a comprehensive judgment on this subject.
Collapse
Affiliation(s)
- Soroush Morsali
- Student Research Committee, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, 5166/15731, East Azerbaijan, Iran
| | - Zahra Sabahi
- Research Center for Evidence-Based Medicine, Iranian EBM Centre: A Joanna Briggs Institute (JBI) Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Kakaei
- Zanjan Branch (IAUZ), Islamic Azad University, Zanjan, Iran
| | - Zahra Hakimzadeh
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, 5166/15731, Iran
| | - Sana Hamidi
- Student Research Committee, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, 5166/15731, East Azerbaijan, Iran
| | | | - Sarvin Sanaie
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, 5166/15731, Iran
| | - Mahnaz Talebi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, 5166/15731, Iran.
| | - Amirreza Naseri
- Student Research Committee, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, 5166/15731, East Azerbaijan, Iran.
- Research Center for Evidence-Based Medicine, Iranian EBM Centre: A Joanna Briggs Institute (JBI) Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Farshidianfar M, Ardekani A, Tabrizi R, Lankarani KB, Taherifard E, Abdollahi A, Azizi A, Akbari M. Effects of Melatonin on Cardiac Injury and Inflammatory Biomarkers in Patients Undergoing Coronary Artery Bypass Graft Surgery: a Meta-analysis. Cardiol Ther 2023; 12:11-20. [PMID: 36352301 PMCID: PMC9986370 DOI: 10.1007/s40119-022-00287-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/25/2022] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION The antiinflammatory and antioxidative effects of melatonin have been established in recent years. Several studies indicate that oxidative stress and inflammation are key drivers of post-coronary artery bypass graft (CABG) surgery complications. In the present study, we aimed to investigate the effects of melatonin on cardiac injury and inflammatory biomarkers in CABG candidates. METHODS Embase, Medline/PubMed, Web of Science, Scopus, and the Cochrane library were searched up to 5 June 2022. All randomized controlled trials examining cardiac injury and inflammatory biomarkers of CABG patients who received melatonin were included. The random-effects model was utilized to perform the analysis. RESULTS A total of 947 citations were retrieved through database searches. Finally, five articles (six trials with 342 patients) were included after the screening. Melatonin supplementation led to a significant reduction in cardiac troponin I (CTnI) [weighted mean difference(WMD): -2.28 ng/ml; 95% CI -2.87, -1.69; P < 0.01; I2: 91.25%] and high sensitivity-C reactive protein (hs-CRP) levels (WMD: -0.62 mg/L; 95% CI -0.73, -0.5; P < 0.01; I2: 99.98%) in patients undergoing CABG surgery. We found a nonsignificant decrease in creatine kinase isoenzyme muscle/brain (CK-MB) levels (WMD: -2.87 ng/ml; 95% CI -5.97, 0.23; P = 0.07; I2: 99.98%) after melatonin supplementation. No publication bias was found according to Egger's test. CONCLUSION Melatonin supplementation may be useful in reducing cardiac injury and inflammatory biomarkers in CABG candidates. Future studies should investigate the clinical significance of these findings.
Collapse
Affiliation(s)
- Melika Farshidianfar
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Medical Sciences, Islamic Azad University, Mashhad, Iran
| | - Ali Ardekani
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran.,School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Tabrizi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran.,Clinical Research Development Unit, Valiasr Hospital, Fasa University of Medical Sciences, Fasa, Iran.,USERN Office, Fasa University of Medical Sciences, Fasa, Iran
| | - Kamran B Lankarani
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Erfan Taherifard
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ashkan Abdollahi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Arezou Azizi
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran.,School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Akbari
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
4
|
Torres FF, Bernardo VS, de Paula CP, da Silva JPMDO, de Almeida EA, da Cunha AF, da Silva DGH. Influence of Melatonin Treatment on Cellular Mechanisms of Redox Adaptation in K562 Erythroleukemic Cells. Genes (Basel) 2022; 13:genes13122337. [PMID: 36553603 PMCID: PMC9778059 DOI: 10.3390/genes13122337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/07/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Melatonin (MEL) presents well-documented pleiotropic actions against oxidative stress (OS), acting indirectly through activation of transcription factors, e.g., FoxO3 and Nrf2. Thus, this study aimed to investigate the possible modulating effects of MEL on the redox signaling pathways PI3K/AKT/FoxO3 and Keap1/Nrf2/ARE in K562 erythroleukemic cells subjected to OS induction. For this, the viability, and transcript levels of genes involved in redox adaptation were evaluated in K562 cells in different periods of erythroid differentiation: under OS induction by hydrogen peroxide (100 µM H2O2); treated with 1 nM (C1) and 1 mM (C2) MEL; and associated or not with stress induction. We observed a restoration of physiological levels of Nrf2 in both MEL concentrations under OS. The C1 was related to enhanced expression of antioxidant and proteasome genes through the Nrf2-ARE pathway, while C2 to the induction of FOXO3 expression, suggesting an involvement with apoptotic pathway, according to BIM transcript levels. The effects of MEL administration in these cells showed a period and dose-dependent pattern against induced-OS, with direct and indirect actions through different pathways of cellular adaptation, reinforcing the importance of this indolamine in the regulation of cellular homeostasis, being a promising therapeutic alternative for diseases that present an exacerbated OS.
Collapse
Affiliation(s)
- Flaviene Felix Torres
- Department of Biology, Universidade Estadual Paulista (UNESP), São José do Rio Preto 15054-000, SP, Brazil
| | - Victoria Simões Bernardo
- Department of Biology, Universidade Estadual Paulista (UNESP), São José do Rio Preto 15054-000, SP, Brazil
| | - Carla Peres de Paula
- Department of Genetics and Evolution, Universidade Federal de São Carlos (UFSCar), São Carlos 13565-905, SP, Brazil
| | | | - Eduardo Alves de Almeida
- Department of Natural Sciences, Fundação Universidade Regional de Blumenau (FURB), Blumenau 89030-000, SC, Brazil
| | - Anderson Ferreira da Cunha
- Department of Genetics and Evolution, Universidade Federal de São Carlos (UFSCar), São Carlos 13565-905, SP, Brazil
| | - Danilo Grünig Humberto da Silva
- Campus de Três Lagoas, Universidade Federal de Mato Grosso do Sul (CPTL/UFMS), Três Lagoas 79613-000, MS, Brazil
- Correspondence:
| |
Collapse
|
5
|
Melatonin Inhibits EMT in Bladder Cancer by Targeting Autophagy. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248649. [PMID: 36557782 PMCID: PMC9784694 DOI: 10.3390/molecules27248649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Melatonin, a naturally biosynthesized molecule secreted by the pineal gland, exhibits antitumor activities against several different types of cancer. The mechanisms of action of melatonin against tumor progression involve cellular apoptosis, antimetastatic activity, antioxidant and mutagenic effects, antiangiogenic activity, and the restoration of cancer immune surveillance. Melatonin has anticancer activity when administered alone or in combination with standard chemotherapeutic agents, with measurable improvements seen in the clinical endpoints of tumor regression and patient survival. However, scant clinical evidence supports the use of melatonin in bladder cancer treatment. Our study has found that melatonin treatment suppresses the bladder cancer cell migratory ability by inhibiting the epithelial-mesenchymal transition (EMT) process, which appears to be linked to melatonin-induced decreases in bladder cancer cell autophagy. Finally, an evaluation of in vivo melatonin-induced antitumor effects in an orthotopic animal model of bladder cancer indicated that melatonin treatment slightly prolonged the survival of tumor-bearing mice. Our study offers novel insights into the use of melatonin in bladder cancer treatment.
Collapse
|
6
|
Zhao Y, Shao G, Liu X, Li Z. Assessment of the Therapeutic Potential of Melatonin for the Treatment of Osteoporosis Through a Narrative Review of Its Signaling and Preclinical and Clinical Studies. Front Pharmacol 2022; 13:866625. [PMID: 35645810 PMCID: PMC9130700 DOI: 10.3389/fphar.2022.866625] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/06/2022] [Indexed: 12/21/2022] Open
Abstract
Melatonin is a bioamine produced primarily in the pineal gland, although peripheral sites, including the gut, may also be its minor source. Melatonin regulates various functions, including circadian rhythm, reproduction, temperature regulation, immune system, cardiovascular system, energy metabolism, and bone metabolism. Studies on cultured bone cells, preclinical disease models of bone loss, and clinical trials suggest favorable modulation of bone metabolism by melatonin. This narrative review gives a comprehensive account of the current understanding of melatonin at the cell/molecular to the systems levels. Melatonin predominantly acts through its cognate receptors, of which melatonin receptor 2 (MT2R) is expressed in mesenchymal stem cells (MSCs), osteoblasts (bone-forming), and osteoclasts (bone-resorbing). Melatonin favors the osteoblastic fate of MSCs, stimulates osteoblast survival and differentiation, and inhibits osteoclastogenic differentiation of hematopoietic stem cells. Produced from osteoblastic cells, osteoprotegerin (OPG) and receptor activator of nuclear factor kappa B ligand (RANKL) critically regulate osteoclastogenesis and melatonin by suppressing the osteoclastogenic RANKL, and upregulating the anti-osteoclastogenic OPG exerts a strong anti-resorptive effect. Although the anti-inflammatory role of melatonin favors osteogenic function and antagonizes the osteoclastogenic function with the participation of SIRT signaling, various miRNAs also mediate the effects of the hormone on bone cells. In rodent models of osteoporosis, melatonin has been unequivocally shown to have an anti-osteoporotic effect. Several clinical trials indicate the bone mass conserving effect of melatonin in aging/postmenopausal osteoporosis. This review aims to determine the possibility of melatonin as a novel class of anti-osteoporosis therapy through the critical assessment of the available literature.
Collapse
Affiliation(s)
- Yongchao Zhao
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Guoxi Shao
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Xingang Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Zhengwei Li
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
Juszczak M, Kluska M, Kosińska A, Rudolf B, Woźniak K. Antioxidant Activity of Ruthenium Cyclopentadienyl Complexes Bearing Succinimidato and Phthalimidato Ligands. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092803. [PMID: 35566156 PMCID: PMC9101797 DOI: 10.3390/molecules27092803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 11/22/2022]
Abstract
In these studies, we investigated the antioxidant activity of three ruthenium cyclopentadienyl complexes bearing different imidato ligands: (η5-cyclopentadienyl)Ru(CO)2-N-methoxysuccinimidato (1), (η5-cyclopentadienyl)Ru(CO)2-N-ethoxysuccinimidato (2), and (η5-cyclopentadienyl)Ru(CO)2-N-phthalimidato (3). We studied the effects of ruthenium complexes 1–3 at a low concentration of 50 µM on the viability and the cell cycle of peripheral blood mononuclear cells (PBMCs) and HL-60 leukemic cells exposed to oxidative stress induced by hydrogen peroxide (H2O2). Moreover, we examined the influence of these complexes on DNA oxidative damage, the level of reactive oxygen species (ROS), and superoxide dismutase (SOD) activity. We have observed that ruthenium complexes 1–3 increase the viability of both normal and cancer cells decreased by H2O2 and also alter the HL-60 cell cycle arrested by H2O2 in the sub-G1 phase. In addition, we have shown that ruthenium complexes reduce the levels of ROS and oxidative DNA damage in both cell types. They also restore SOD activity reduced by H2O2. Our results indicate that ruthenium complexes 1–3 bearing succinimidato and phthalimidato ligands have antioxidant activity without cytotoxic effect at low concentrations. For this reason, the ruthenium complexes studied by us should be considered interesting molecules with clinical potential that require further detailed research.
Collapse
Affiliation(s)
- Michał Juszczak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (M.J.); (M.K.)
| | - Magdalena Kluska
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (M.J.); (M.K.)
| | - Aneta Kosińska
- Department of Organic Chemistry, Faculty of Chemistry, University of Lodz, 91-403 Lodz, Poland; (A.K.); (B.R.)
| | - Bogna Rudolf
- Department of Organic Chemistry, Faculty of Chemistry, University of Lodz, 91-403 Lodz, Poland; (A.K.); (B.R.)
| | - Katarzyna Woźniak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (M.J.); (M.K.)
- Correspondence:
| |
Collapse
|
8
|
Melatonin as a powerful antioxidant. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2021; 71:335-354. [PMID: 36654092 DOI: 10.2478/acph-2021-0027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/18/2020] [Indexed: 01/20/2023]
Abstract
Melatonin is a hormone that has many body functions and, for several decades, its antioxidant potential has been increasingly talked about. There is a relationship between failure in melatonin production in the pineal gland, an insufficient supply of this hormone to the body, and the occurrence of free radical etiology diseases such as neurodegenerative diseases, cardiovascular diseases, diabetes, cancer and others. Despite the development of molecular biology, numerous in vitro and in vivo studies, the exact mechanism of melatonin antioxidant activity is still unknown. Nowadays, the use of melatonin supplementation is more and more common, not only to prevent insomnia, but also to slow down the aging process and provide protection against diseases. The aim of this study is to get acquainted with current reports on melatonin, antioxidative mechanisms and their importance in diseases of free radical etiology.
Collapse
|
9
|
Vitorović J, Joković N, Radulović N, Mihajilov-Krstev T, Cvetković VJ, Jovanović N, Mitrović T, Aleksić A, Stanković N, Bernstein N. Antioxidant Activity of Hemp ( Cannabis sativa L.) Seed Oil in Drosophila melanogaster Larvae under Non-Stress and H 2O 2-Induced Oxidative Stress Conditions. Antioxidants (Basel) 2021; 10:antiox10060830. [PMID: 34067432 PMCID: PMC8224776 DOI: 10.3390/antiox10060830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/11/2021] [Accepted: 05/18/2021] [Indexed: 12/26/2022] Open
Abstract
The oil extracted from hemp seeds has significant nutritional and biological properties due to the unique composition of polyunsaturated fatty acids and various antioxidant compounds. The potential of this oil for the prevention of oxidative stress and for the treatment of oxidative-stress-induced ailments is of increasing interest. Most studies of hemp seed oil were conducted in-vitro, meaning we lack information about effects and activity in vivo. In the present study, we evaluated the hypothesis that hemp seed oil at different concentrations improves the oxidative state of D. melanogaster, under non-stress as well as hydrogen-peroxide-induced stress. We analyzed the effects of hemp seed oil on oxidative stress markers and on the life cycle of D.melanogaster under non-stress and hydrogen-peroxide-induced stress conditions. D.melanogaster larvae were exposed to hemp seed oil concentrations ranging from 12.5 to 125 μL/mL. The results revealed that under non-stress conditions, oil concentrations up to 62.5 µL/mL did not induce negative effects on the life cycle of D. melanogaster and maintained the redox status of the larval cells at similar levels to the control level. Under oxidative stress conditions, biochemical parameters were significantly affected and only two oil concentrations, 18.7 and 31.2 µL/mL, provided protection against hydrogen peroxide stress effects. A higher oil concentration (125 μL/mL) exerted negative effects on the oxidative status and increased larval mortality. The tested oil was characterized chemically by NMR, transesterification, and silylation, followed by GC-MS analyses, and was shown to contain polyunsaturated fatty acid triglycerides and low levels of tocopherols. The high levels of linoleic and linolenic acids in the oil are suggested to be responsible for the observed in vivo antioxidant effects. Taken together, the results show that hemp seed oil is effective for reducing oxidative stress at the cellular level, thus supporting the hypothesis. The obtained results point to the potential of hemp seed oil for the prevention and treatment of conditions caused by the action of reactive oxygen species.
Collapse
Affiliation(s)
- Jelena Vitorović
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, 18000 Niš, Serbia; (J.V.); (N.J.); (T.M.-K.); (V.J.C.); (N.J.); (T.M.); (A.A.)
| | - Nataša Joković
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, 18000 Niš, Serbia; (J.V.); (N.J.); (T.M.-K.); (V.J.C.); (N.J.); (T.M.); (A.A.)
| | - Niko Radulović
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, 18000 Niš, Serbia;
| | - Tatjana Mihajilov-Krstev
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, 18000 Niš, Serbia; (J.V.); (N.J.); (T.M.-K.); (V.J.C.); (N.J.); (T.M.); (A.A.)
| | - Vladimir J. Cvetković
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, 18000 Niš, Serbia; (J.V.); (N.J.); (T.M.-K.); (V.J.C.); (N.J.); (T.M.); (A.A.)
| | - Nikola Jovanović
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, 18000 Niš, Serbia; (J.V.); (N.J.); (T.M.-K.); (V.J.C.); (N.J.); (T.M.); (A.A.)
| | - Tatjana Mitrović
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, 18000 Niš, Serbia; (J.V.); (N.J.); (T.M.-K.); (V.J.C.); (N.J.); (T.M.); (A.A.)
| | - Ana Aleksić
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, 18000 Niš, Serbia; (J.V.); (N.J.); (T.M.-K.); (V.J.C.); (N.J.); (T.M.); (A.A.)
| | | | - Nirit Bernstein
- Institute of Soil Water and Environmental Sciences, Volcani Center, Rishon LeZion 15159, Israel
- Correspondence:
| |
Collapse
|
10
|
Ćirić Zdravković S, Kostić T, Marcetić ZP, Šulović LS, Nedeljković BM, Preljević A, Toskić D, Sokolović D. Melatonin modulates acute cardiac muscle damage induced by carbon tetrachloride - involvement of oxidative damage, glutathione, and arginine and nitric oxide metabolism. Can J Physiol Pharmacol 2021; 99:360-367. [PMID: 32758112 DOI: 10.1139/cjpp-2020-0201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study was designed to evaluate the cardioprotective effects of melatonin (a single dose of 50 mg·kg-1), a naturally occurring polypharmacological molecule, in Wistar rats acutely exposed to carbon tetrachloride (CCl4). This was done for the first time by tracking different biochemical parameters that reflect rat heart antioxidative and oxidative capacities, nitric oxide and arginine metabolism, and the glutathione cycle. Additionally, the extrinsic apoptosis pathway related parameters were studied. Acute exposure to CCl4 led to an increase in the studied tissue oxidant parameters (hydrogen peroxide, malondialdehyde, and carbonylated protein content), as well as the activity alteration of antioxidant (catalase, superoxide dismutase, and peroxidase) and glutathione-metabolizing (glutathione peroxidase, S-transferase, and reductase) enzymes. Furthermore, CCl4 caused a disturbance in the tissue myeloperoxidase, nitric oxide, citrulline, arginase, and inducible nitric oxide synthase content and activities and in two apoptosis-related parameters, caspase-3 and FAS ligand. Melatonin as a post-treatment prevented the changes induced by CCl4 to a differing extent, and in some cases, it was so potent that it completely abolished any tissue disturbances. This study is a promising starting point for further research directed to the development of melatonin treatment in cardiac tissue associated diseases.
Collapse
Affiliation(s)
- Snezana Ćirić Zdravković
- Clinic for Cardiovascular Diseases, Clinical Center Niš, University of Niš, Niš, Serbia
- Faculty of Medicine, University of Niš, Niš, Serbia
| | - Tomislav Kostić
- Clinic for Cardiovascular Diseases, Clinical Center Niš, University of Niš, Niš, Serbia
- Faculty of Medicine, University of Niš, Niš, Serbia
| | - Zoran P Marcetić
- Medical Faculty, University of Pristina, Kosovska Mitrovica, Serbia
| | | | | | | | - Dragan Toskić
- Faculty of Sport and Physical Education Leposavic, University of Pristina, Pristina, Serbia
| | | |
Collapse
|
11
|
Role of melatonin and HSF-1\HSP-70 in modulating cold stress-induced immunosuppression in a tropical rodent- Funambulus pennanti. J Therm Biol 2020; 87:102456. [PMID: 32001016 DOI: 10.1016/j.jtherbio.2019.102456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 11/03/2019] [Accepted: 11/18/2019] [Indexed: 11/21/2022]
|
12
|
Pistono C, Monti MC, Boiocchi C, Berzolari FG, Osera C, Mallucci G, Cuccia M, Pascale A, Montomoli C, Bergamaschi R. Response to oxidative stress of peripheral blood mononuclear cells from multiple sclerosis patients and healthy controls. Cell Stress Chaperones 2020; 25:81-91. [PMID: 31720998 PMCID: PMC6985352 DOI: 10.1007/s12192-019-01049-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/08/2019] [Accepted: 10/28/2019] [Indexed: 12/21/2022] Open
Abstract
The complex scenario of multiple sclerosis (MS) pathology involves several mechanisms, including oxidative stress response. The heat shock proteins (HSPs) are important for the protection of the cells; however, their role in MS is not clear. The present research is focused on the response of peripheral blood mononuclear cells (PBMCs) to oxidative stress and to the involvement of HSP70-2 (a protein coded by the HSPA1B gene, located in the MHC class III). To this aim, we challenged PBMCs from MS patients and healthy controls with hydrogen peroxide. Specifically, PBMCs mitochondrial activity, HSP70-2 protein expression and the production of intracellular reactive oxygen species were assessed. These parameters were also related to the HSP70-2 rs1061581 polymorphism, which is linked to the risk of developing MS. Moreover, mitochondrial activity and HSP70-2 protein levels were also related to disease severity. Overall, our results indicate that PBMCs, from both MS patients and healthy controls, may display a similar response towards an oxidative insult; within this context, HSP70-2 does not seem to be central in the protection of PBMCs. Nevertheless, the HSP70-2 rs1061581 polymorphism is related to ROS levels and appears to have a role in the different expression of HSP70-2 under oxidative stimulus.
Collapse
Affiliation(s)
- Cristiana Pistono
- Laboratory of Immunogenetics, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy.
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), CNRS/Université de Strasbourg, Faculté de psychologie, UMR, 7364, Strasbourg, France.
| | - Maria Cristina Monti
- Department of Public Health Experimental and Forensic Medicine, Unit of Biostatistics and Clinical Epidemiology, University of Pavia, Pavia, Italy
| | - Chiara Boiocchi
- Inter-Department Multiple Sclerosis Research Centre, National Neurological Institute "C. Mondino", Pavia, Italy
| | - Francesca Gigli Berzolari
- Department of Public Health Experimental and Forensic Medicine, Unit of Biostatistics and Clinical Epidemiology, University of Pavia, Pavia, Italy
| | - Cecilia Osera
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Giulia Mallucci
- Inter-Department Multiple Sclerosis Research Centre, National Neurological Institute "C. Mondino", Pavia, Italy
| | - Mariaclara Cuccia
- Laboratory of Immunogenetics, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Cristina Montomoli
- Department of Public Health Experimental and Forensic Medicine, Unit of Biostatistics and Clinical Epidemiology, University of Pavia, Pavia, Italy
| | - Roberto Bergamaschi
- Inter-Department Multiple Sclerosis Research Centre, National Neurological Institute "C. Mondino", Pavia, Italy
| |
Collapse
|
13
|
Lilić LM, Stefanović RZ, Toskić D, Mekić BB, Sokolovic DT. MELATONIN AMELIORATES DECREASE IN RAT GASTROCNEMIUS MUSCLE CATALASE ACTIVITY INDUCED BY CARBON TETRACHLORIDE. ACTA MEDICA MEDIANAE 2019. [DOI: 10.5633/amm.2019.0301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
14
|
Melatonin Protects Band 3 Protein in Human Erythrocytes against H 2O 2-Induced Oxidative Stress. Molecules 2019; 24:molecules24152741. [PMID: 31357737 PMCID: PMC6695615 DOI: 10.3390/molecules24152741] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/18/2019] [Accepted: 07/27/2019] [Indexed: 12/19/2022] Open
Abstract
The beneficial effect of Melatonin (Mel), recognized as an anti-inflammatory and antioxidant compound, has been already proven to prevent oxidative stress-induced damage associated to lipid peroxidation. As previous studies modeled the impact of oxidative stress on Band 3 protein, an anion exchanger that is essential to erythrocytes homeostasis, by applying H2O2 at not hemolytic concentrations and not producing lipid peroxidation, the aim of the present work was to evaluate the possible antioxidant effect of pharmacological doses of Mel on Band 3 protein anion exchange capability. The experiments have been performed on human erythrocytes exposed to 300 μM H2O2-induced oxidative stress. To this end, oxidative damage has been verified by monitoring the rate constant for SO4= uptake through Band 3 protein. Expression levels of this protein Mel doses lower than 100 µM have also been excluded due to lipid peroxidation, Band 3 protein expression levels, and cell shape alterations, confirming a pro-oxidant action of Mel at certain doses. On the other hand, 100 µM Mel, not provoking lipid peroxidation, restored the rate constant for SO4= uptake, Band 3 protein expression levels, and H2O2-induced cell shape alterations. Such an effect was confirmed by abolishing the endogenous erythrocytes antioxidant system. Therefore, the present findings show the antioxidant power of Mel at pharmacological concentrations in an in vitro model of oxidative stress not associated to lipid peroxidation, thereby confirming Band 3 protein anion exchange capability measurement as a suitable model to prove the beneficial effect of Mel and support the use of this compound in oxidative stress-related diseases affecting Band 3 protein.
Collapse
|
15
|
Shafiei E, Bahtoei M, Raj P, Ostovar A, Iranpour D, Akbarzadeh S, Shahryari H, Anvaripour A, Tahmasebi R, Netticadan T, Movahed A. Effects of N-acetyl cysteine and melatonin on early reperfusion injury in patients undergoing coronary artery bypass grafting: A randomized, open-labeled, placebo-controlled trial. Medicine (Baltimore) 2018; 97:e11383. [PMID: 30045259 PMCID: PMC6078764 DOI: 10.1097/md.0000000000011383] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVES This study assessed the efficacy of oral consumption of N-acetyl cysteine (NAC) and melatonin (ML) in reducing early reperfusion injury and acute oxidative stress in patients undergoing coronary artery bypass grafting (CABG) with respect to the measurements of cardiac troponin I, lactate, malondealdehyde (MDA), and tumor necrosis factor-α (TNF-α) levels in the blood. METHODS This study was a randomized, open-label, placebo-controlled trial. Eighty eight patients, aged between 39 to 76 years and eligible for CABG, were recruited and randomly assigned into 3 intervention groups through a simple randomization method and underwent CABG surgery. Blood samples were withdrawn from arterial line, before the induction of anesthesia (before the start of surgery), after incision (before aortic cross-clamping), during global ischemia (during aortic cross-clamping), after aortic cross-clamping (on set of reperfusion), 15 minutes after reperfusion, and after recovery at the intense care unit. The blood samples were analyzed for troponin I, lactate, MDA and TNF-α levels. RESULTS There was no significant difference in influencing variables among the groups at the baseline. Overall mean troponin I, lactate, and TNF- α levels were significantly different between the intervention groups (all P < .001) at the recovery phase. Post-hoc pairwise comparisons showed that the differences of mean serum levels between ML and control groups were statistically significant for MDA, TNF- α, lactate, and troponin I (P < .001, P = .001, and P = .001, respectively). The differences between NAC and control groups and between ML and NAC groups were only significant for mean lactate level (P < .001). CONCLUSION The current study revealed that ML and NAC are potent antioxidants with similar efficacy in terms of reducing CABG related cardiac injury and oxidative stress with the dosage employed for the intervention.
Collapse
Affiliation(s)
| | | | - Pema Raj
- Physiology and Pathophysiology, University of Manitoba
- Canadian Center for Agri-food Research in Health and Medicine, Winnipeg, Manitoba, Canada
| | - Afshin Ostovar
- Biochemistry Group, the Persian Gulf Tropical Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | | | | | | | | | - Rahim Tahmasebi
- Biochemistry Group, the Persian Gulf Tropical Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Thomas Netticadan
- Physiology and Pathophysiology, University of Manitoba
- Canadian Center for Agri-food Research in Health and Medicine, Winnipeg, Manitoba, Canada
| | - Ali Movahed
- Biochemistry Group, the Persian Gulf Tropical Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
16
|
Griffin F, Marignol L. Therapeutic potential of melatonin for breast cancer radiation therapy patients. Int J Radiat Biol 2018. [PMID: 29521142 DOI: 10.1080/09553002.2018.1446227] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Melatonin is an endogenous hormone primarily known for its action on the circadian rhythms. But pre-clinical studies are reporting both its radioprotective and radiosensitizing properties, possibly mediated through an interaction between melatonin and the regulation of estrogens. Melatonin pre-treatment prior to ionizing radiation was associated with a decrease in cell proliferation and an increase in p53 mRNA expression, leading to an increase in the radiosensitivity of breast cancer cells. At the same time, a decrease in radiation-induced side effects was described in breast cancer patients and in rodent models. This review examines the potential for melatonin to improve the therapeutic outcomes of breast radiation therapy, specifically estrogen receptor positive patients. Evidence suggests that melatonin may offer a novel, non-toxic and cheap adjuvant therapy to improve the existing treatment modalities. But further research is required in the clinical setting before a clear understanding of its therapeutic benefits is determined.
Collapse
Affiliation(s)
- Fiona Griffin
- a Applied Radiation Therapy Trinity, Discipline of Radiation therapy , Trinity College Dublin , Dublin , Ireland
| | - Laure Marignol
- a Applied Radiation Therapy Trinity, Discipline of Radiation therapy , Trinity College Dublin , Dublin , Ireland
| |
Collapse
|
17
|
Abstract
DNA damage, largely owing to oxidative stress, is a leading cause of defective sperm function. High levels of oxidative stress result in damage to sperm DNA, RNA transcripts, and telomeres and, therefore might provide a common underlying aetiology of male infertility and recurrent pregnancy loss, in addition to congenital malformations, complex neuropsychiatric disorders, and childhood cancers in children fathered by men with defective sperm cells. Spermatozoa are highly vulnerable to oxidative stress owing to limited levels of antioxidant defence and a single, limited DNA-damage detection and repair mechanism. Oxidative stress is predominantly caused by a host of lifestyle-related factors, the majority of which are modifiable. Antioxidant regimens and lifestyle modifications could both be plausible therapeutic approaches that enable the burden of oxidative-stress-induced male factor infertility to be overcome. Lifestyle interventions including yoga and meditation can substantially improve the integrity of sperm DNA by reducing levels of oxidative DNA damage, regulating oxidative stress and by increasing the expression of genes responsible for DNA repair, cell-cycle control and anti-inflammatory effects. Oxidative stress is caused by various modifiable factors, and the use of simple interventions can decrease levels of oxidative stress, and therefore reduce the incidence of both infertility and complex diseases in the resultant offspring.
Collapse
Affiliation(s)
- Shilpa Bisht
- Laboratory for Molecular Reproduction and Genetics, Department of Anatomy, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Muneeb Faiq
- Laboratory for Molecular Reproduction and Genetics, Department of Anatomy, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Madhuri Tolahunase
- Laboratory for Molecular Reproduction and Genetics, Department of Anatomy, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Rima Dada
- Laboratory for Molecular Reproduction and Genetics, Department of Anatomy, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| |
Collapse
|
18
|
Khaksar M, Oryan A, Sayyari M, Rezabakhsh A, Rahbarghazi R. Protective effects of melatonin on long-term administration of fluoxetine in rats. ACTA ACUST UNITED AC 2017; 69:564-574. [PMID: 28552630 DOI: 10.1016/j.etp.2017.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 05/05/2017] [Accepted: 05/05/2017] [Indexed: 12/12/2022]
Abstract
The degree and consequence of tissue injury are highly regarded during long-term exposure to selective antidepressant fluoxetine. Melatonin has been shown to palliate different lesions by scavenging free radicals, but its role in the reduction of the fluoxetine-induced injuries has been little known. Thirty-six mature male Wistar rats were randomly assigned into control and experimental groups. The experimental rats were included as following; 24mg/kg/bw fluoxetine for 4 weeks; 1mg/kg/bw melatonin for 4 weeks; fluoxetine+1-week melatonin, fluoxetine+2-week melatonin and fluoxetine+4-week melatonin. In the current experiment, we investigated weight gain, hematological and biochemical parameters, pathological injuries and oxidative status. We noted the positive effect of melatonin in weight loss of fluoxetine-treated rats (p<0.05). The significant reduction of superoxide dismutase, glutathione peroxidase, catalase activities in blood, liver, and kidneys and changes in serum total antioxidant capacity caused by fluoxetine were reversed by melatonin (p<0.05). Melatonin reduced the increased lipid peroxidation and transaminase activity in rats received fluoxetine (p<0.05). We also showed the potency of fluoxetine in inducing leukopenia, thrombocytopenia and hypochromic and macrocytic anemia which was blunted by melatonin. Both RBCs and platelets indices were also corrected. Rats received melatonin in combination with fluoxetine showed a reduction in the severity of degeneration and inflammatory changes in different tissues, brain, heart, liver, lungs, testes and kidneys as compared to the fluoxetine group. Therefore, melatonin fundamentally reversed the side effects of fluoxetine in the rat model which is comparable to human medicine.
Collapse
Affiliation(s)
- Majid Khaksar
- Department of Pathobiology, Faculty of Veterinary Medicine, Shiraz University, Shiraz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ahmad Oryan
- Department of Pathobiology, Faculty of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Mansour Sayyari
- Department of Pathobiology, Faculty of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Aysa Rezabakhsh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
19
|
|
20
|
Ma M, Chen XY, Li B, Li XT. Melatonin protects premature ovarian insufficiency induced by tripterygium glycosides: role of SIRT1. Am J Transl Res 2017; 9:1580-1602. [PMID: 28469767 PMCID: PMC5411910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 03/22/2017] [Indexed: 06/07/2023]
Abstract
Melatonin confers protective effects on premature ovarian insufficiency (POI) induced by tripterygium glycosides (TG) by reducing oxidative stress. Silent information regulator 1 (SIRT1) signaling is found to be associated with the physiology and pathology of ovary. We hypothesize that melatonin could protect POI via activating SIRT1 signaling. The aim of this study was to investigate the protective effect of melatonin on POI and elucidate its potential mechanisms. Mice were assigned to melatonin treatment with or without SIRT1 inhibitor Ex527 or melatonin receptor antagonist luzindole (Luz) and then subjected to POI. Melatonin conferred a protective effect by improving estrous phase, ovarian and uterus mass and index, increasing ovarian follicles, corpus luteum and anti-mullerian hormone (AMH), decreasing atresia follicles and follicle stimulating hormone (FSH). Melatonin treatment also could reduce malondialdehyde (MDA) level, MDA5, Gp91phox, Caspase3 and Bax expression, and increase total antioxidant activity (TAC), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and Bcl-2 expression by up-regulating SIRT1 signaling. However, these protective effects were blocked by Ex527 and Luz, indicating that SIRT1 signaling and melatonin receptor might be specially involved in these effects. In summary, these findings suggest that melatonin protects POI by reducing oxidative stress and apoptotic damage via activation of SIRT1 signaling in a receptor-dependent manner.
Collapse
Affiliation(s)
- Min Ma
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan UniversityShanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghai 200011, China
| | - Xiu-Ying Chen
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan UniversityShanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghai 200011, China
| | - Bin Li
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan UniversityShanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghai 200011, China
| | - Xiao-Tian Li
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan UniversityShanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghai 200011, China
- Institute of Biomedical Sciences, Shanghai Medical School of Fudan UniversityShanghai 200032, China
| |
Collapse
|
21
|
Kumar ADN, Bevara GB, Kaja LK, Badana AK, Malla RR. Protective effect of 3-O-methyl quercetin and kaempferol from Semecarpus anacardium against H 2O 2 induced cytotoxicity in lung and liver cells. Altern Ther Health Med 2016; 16:376. [PMID: 27680742 PMCID: PMC5041319 DOI: 10.1186/s12906-016-1354-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 09/15/2016] [Indexed: 12/18/2022]
Abstract
BACKGROUND Hydrogen peroxide is continuously generated in living cells through metabolic pathways and serves as a source of reactive oxygen species. Beyond the threshold level, it damages cells and causes several human disorders, including cancer. METHODS Effect of isolated 3-O-methyl quercetin and kaempferol on H2O2 induced cytotoxicity, ROS formation, plasma membrane damage, loss of mitochondrial membrane potential, DNA damage was evaluated in normal liver and lung cells. The RT-PCR analysis used to determine Nrf 2 gene expression. Calorimetric ELISA was used to determine Nrf2 and p-38 levels. Expression of SOD and catalase was analyzed by Western blot analysis. RESULTS The present study isolated 3-O-methyl quercetin and kaempferol from the stem bark. They protected normal lung and liver cells from H2O2 induced cytotoxicity, ROS formation, membrane damage and DNA damage. Pre-treatment with 3-O-methyl quercetin and kaempferol caused translocation of Nrf2 from cytosol to nucleus. It also increased expression of p-p38, Nrf2, SOD and catalase in H2O2 treated lung and liver cells. CONCLUSION The flavonoids isolated from S. anacardium significantly reduced H2O2 induced stress and increased expression of Nrf2, catalase and superoxide dismutase-2 indicating cytoprotective nature of 3-O-methylquercetin and kaempferol.
Collapse
|