1
|
Wang W, Zhao B, Zhang Z, Kikuchi T, Li W, Jantrawut P, Feng F, Liu F, Zhang J. Natural polysaccharides and their derivatives targeting the tumor microenvironment: A review. Int J Biol Macromol 2024; 268:131789. [PMID: 38677708 DOI: 10.1016/j.ijbiomac.2024.131789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/10/2024] [Accepted: 04/21/2024] [Indexed: 04/29/2024]
Abstract
Polysaccharides have gained attention as valuable supplements and natural medicinal resources, particularly for their anti-tumor properties. Their low toxicity and potent anti-tumor effects make them promising candidates for cancer prevention and treatment. The tumor microenvironment is crucial in tumor development and offers potential avenues for novel cancer therapies. Research indicates that polysaccharides can positively influence the tumor microenvironment. However, the structural complexity of most anti-tumor polysaccharides, often heteropolysaccharides, poses challenges for structural analysis. To enhance their pharmacological activity, researchers have modified the structure and properties of natural polysaccharides based on structure-activity relationships, and they have discovered that many polysaccharides exhibit significantly enhanced anti-tumor activity after chemical modification. This article reviews recent strategies for targeting the tumor microenvironment with polysaccharides and briefly discusses the structure-activity relationships of anti-tumor polysaccharides. It also summarises the main chemical modification methods of polysaccharides and discusses the impact of chemical modifications on the anti-tumor activity of polysaccharides. The review aims to lay a theoretical foundation for the development of anti-tumor polysaccharides and their derivatives.
Collapse
Affiliation(s)
- Wenli Wang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Bin Zhao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Zhongtao Zhang
- Tumor Precise Intervention and Translational Medicine Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China; Shandong Provincial Key Medical and Health Laboratory of Anti-drug Resistant Drug Research, Taian City Central Hospital, Taian 271000, China
| | - Takashi Kikuchi
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Wei Li
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Pensak Jantrawut
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Feng Feng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - FuLei Liu
- Tumor Precise Intervention and Translational Medicine Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China; Shandong Provincial Key Medical and Health Laboratory of Anti-drug Resistant Drug Research, Taian City Central Hospital, Taian 271000, China.
| | - Jie Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China.
| |
Collapse
|
2
|
Tang C, Wang Y, Chen D, Zhang M, Xu J, Xu C, Liu J, Kan J, Jin C. Natural polysaccharides protect against diet-induced obesity by improving lipid metabolism and regulating the immune system. Food Res Int 2023; 172:113192. [PMID: 37689942 DOI: 10.1016/j.foodres.2023.113192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 09/11/2023]
Abstract
Unhealthy dietary patterns-induced obesity and obesity-related complications pose a great threat to human health all over the world. Accumulating evidence suggests that the pathophysiology of obesity and obesity-associated metabolic disorders is closely associated with dysregulation of lipid and energy metabolism, and metabolic inflammation. In this review, three potential anti-obesity mechanisms of natural polysaccharides are introduced. Firstly, natural polysaccharides protect against diet-induced obesity directly by improving lipid and cholesterol metabolism. Since the immunity also affects lipid and energy metabolism, natural polysaccharides improve lipid and energy metabolism by regulating host immunity. Moreover, diet-induced mitochondrial dysfunction, prolonged endoplasmic reticulum stress, defective autophagy and microbial dysbiosis can disrupt lipid and/or energy metabolism in a direct and/or inflammation-induced manner. Therefore, natural polysaccharides also improve lipid and energy metabolism and suppress inflammation by alleviating mitochondrial dysfunction and endoplasmic reticulum stress, promoting autophagy and regulating gut microbiota composition. Specifically, this review comprehensively summarizes underlying anti-obesity mechanisms of natural polysaccharides and provides a theoretical basis for the development of functional foods. For the first time, this review elucidates anti-obesity mechanisms of natural polysaccharides from the perspectives of their hypolipidemic, energy-regulating and immune-regulating mechanisms.
Collapse
Affiliation(s)
- Chao Tang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Yuxin Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Dan Chen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Man Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Jingguo Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Chen Xu
- Nanjing Key Laboratory of Quality and safety of agricultural product, Nanjing Xiaozhuang University, Nanjing 211171, China.
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Juan Kan
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Changhai Jin
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| |
Collapse
|
3
|
Phytochemical Constituents, Folk Medicinal Uses, and Biological Activities of Genus Angelica: A Review. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010267. [PMID: 36615460 PMCID: PMC9822461 DOI: 10.3390/molecules28010267] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/17/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022]
Abstract
Genus Angelica is one of the widely distributed and well-known genera of family Umbelliferae. It is utilized mainly by Chinese and Korean populations especially in their folk medicine. Angelica comprises a lot of medicinally important phytoconstituents such as coumarins, furanocoumarins, flavonoids, essential oils, verbascosides, polysaccharides, etc. Members of this genus play important roles, namely antioxidant, anti-inflammatory, anti-microbial, anti-diabetic, skin-whitening, cytotoxic, hepatoprotective, and many others. This review draws attention to many species of genus Angelica with much focus on A. dahurica being one of the highly medicinally used species within this genus.
Collapse
|
4
|
Yang H, Qu Y, Gao Y, Sun S, Ding R, Cang W, Wu R, Wu J. Role of the dietary components in food allergy: A comprehensive review. Food Chem 2022; 386:132762. [PMID: 35334324 DOI: 10.1016/j.foodchem.2022.132762] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/16/2022] [Accepted: 03/19/2022] [Indexed: 12/18/2022]
Abstract
Currently, the increasing incidence of food allergy is considered a major public health and food safety concern. Importantly, food-induced anaphylaxis is an acute, life-threatening, systemic reaction with varied clinical presentations and severity that results from the release of mediators from mast cells and basophils. Many factors are blamed for the increasing incidence of food allergy, including hygiene, microbiota (composition and diversity), inopportune complementary foods (a high-fat diet), and increasing processed food consumption. Studies have shown that different food components, including lipids, sugars, polyphenols, and vitamins, can modify the immunostimulating properties of allergenic proteins and change their bioavailability. Understanding the role of the food components in allergy might improve diagnosis, treatment, and prevention of food allergy. This review considers the role of the dietary components, including lipids, sugars, polyphenols, and vitamins, in the development of food allergy as well as results of mechanistic investigations in in vivo and in vitro models.
Collapse
Affiliation(s)
- Hui Yang
- College of Food Science, Shenyang Agricultural University, Engineering Research Center of Food Fermentation Technology, Liaoning, Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, Shenyang 110866, China
| | - Yezhi Qu
- College of Food Science, Shenyang Agricultural University, Engineering Research Center of Food Fermentation Technology, Liaoning, Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, Shenyang 110866, China
| | - Yaran Gao
- College of Food Science, Shenyang Agricultural University, Engineering Research Center of Food Fermentation Technology, Liaoning, Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, Shenyang 110866, China
| | - Shuyuan Sun
- College of Food Science, Shenyang Agricultural University, Engineering Research Center of Food Fermentation Technology, Liaoning, Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, Shenyang 110866, China
| | - Ruixue Ding
- College of Food Science, Shenyang Agricultural University, Engineering Research Center of Food Fermentation Technology, Liaoning, Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, Shenyang 110866, China
| | - Weihe Cang
- College of Food Science, Shenyang Agricultural University, Engineering Research Center of Food Fermentation Technology, Liaoning, Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, Shenyang 110866, China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Engineering Research Center of Food Fermentation Technology, Liaoning, Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, Shenyang 110866, China.
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Engineering Research Center of Food Fermentation Technology, Liaoning, Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, Shenyang 110866, China.
| |
Collapse
|
5
|
Nai J, Zhang C, Shao H, Li B, Li H, Gao L, Dai M, Zhu L, Sheng H. Extraction, structure, pharmacological activities and drug carrier applications of Angelica sinensis polysaccharide. Int J Biol Macromol 2021; 183:2337-2353. [PMID: 34090852 DOI: 10.1016/j.ijbiomac.2021.05.213] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/04/2021] [Accepted: 05/31/2021] [Indexed: 02/08/2023]
Abstract
Angelica sinensis polysaccharide (ASP) is one of the main active components of Angelica sinensis (AS) that is widely used in traditional Chinese medicine. ASP is water-soluble polysaccharides, and it is mainly composed of glucose (Glc), galactose (Gal), arabinose (Ara), rhamnose (Rha), fucose (Fuc), xylose (Xyl) and galacturonic acid (GalUA). The extraction methods of ASP include hot water extraction and ultrasonic wave extraction, and different extraction methods can affect the yield of ASP. ASP has a variety of pharmacological activities, including hematopoietic activity, promoting immunity, antitumor, anti-inflammatory, antioxidant, anti-aging, anti-virus, liver protection, and so on. As a kind of natural polysaccharide, ASP has potential application as drug carriers. This review provides a comprehensive summary of the latest extraction and purification methods of ASP, the strategies used for monosaccharide compositional analysis plus polysaccharide structural characterization, pharmacological activities and drug carrier applications, and it can provide a basis for further study on ASP.
Collapse
Affiliation(s)
- Jijuan Nai
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Chao Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Huili Shao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Bingqian Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Huan Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lei Gao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Mengmeng Dai
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Liqiao Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Huagang Sheng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
6
|
Cai Y, Folkerts J, Folkerts G, Maurer M, Braber S. Microbiota-dependent and -independent effects of dietary fibre on human health. Br J Pharmacol 2019; 177:1363-1381. [PMID: 31663129 DOI: 10.1111/bph.14871] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/06/2019] [Accepted: 09/08/2019] [Indexed: 12/11/2022] Open
Abstract
Dietary fibre, such as indigestible oligosaccharides and polysaccharides, occurs in many foods and has gained considerable importance related to its beneficial effects on host health and specific diseases. Dietary fibre is neither digested nor absorbed in the small intestine and modulates the composition of the gut microbiota. New evidence indicates that dietary fibre also interacts directly with the epithelium and immune cells throughout the gastrointestinal tract by microbiota-independent effects. This review focuses on how dietary fibre improves human health and the reported health benefits that are connected to molecular pathways, in (a) a microbiota-independent manner, via interaction with specific surface receptors on epithelial and immune cells regulating intestinal barrier and immune function, and (b) a microbiota-dependent manner via maintaining intestinal homeostasis by promoting beneficial microbes, including Bifidobacteria and Lactobacilli, limiting the growth, adhesion, and cytotoxicity of pathogenic microbes, as well as stimulating fibre-derived microbial short-chain fatty acid production. LINKED ARTICLES: This article is part of a themed section on The Pharmacology of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.6/issuetoc.
Collapse
Affiliation(s)
- Yang Cai
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Jelle Folkerts
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands.,Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Marcus Maurer
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Saskia Braber
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
7
|
The Combination of Astragalus membranaceus and Angelica sinensis Inhibits Lung Cancer and Cachexia through Its Immunomodulatory Function. JOURNAL OF ONCOLOGY 2019; 2019:9206951. [PMID: 31781219 PMCID: PMC6875282 DOI: 10.1155/2019/9206951] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/11/2019] [Indexed: 12/24/2022]
Abstract
Lung cancer and its related cachexia are the leading cause of cancer death in the world. In this study, we report the inhibitory effect of the combined therapy of Astragalus membranaceus and Angelica sinensis, on tumor growth and cachexia in tumor-bearing mice. Lewis lung carcinoma cells were inoculated into male C57BL/6 and CAnN.Cg-Foxn1nu nude mice. After tumor inoculation, mice were fed orally by the combination of AM and AS in different doses. In C57BL/6 mice, the combination of AM and AS significantly inhibited the growth of cancer tumor and prevented the loss of body weight and skeletal muscle. It also diminished the formation of free radicals and cytokines, stimulated the differentiation of NK and Tc cells, and rebalanced the ratios of Th/Tc cells, Th1/Th2 cytokines, and M1/M2 tumor-associated macrophages. The herbal combination also downregulated the expression of NFκΒ, STAT3, HIF-1α, and VEGF in tumors. In contrast, the findings were not observed in the nude mice. Therefore, the combination of AM and AS is confirmed to inhibit the progression of lung cancer, cancer cachexia, and cancer inflammation through the immunomodulatory function.
Collapse
|
8
|
Wang J, Chen G, Shi T, Wang Y, Guan C. Possible treatment for cutaneous lichen planus: An in vitro anti-inflammatory role of Angelica polysaccharide in human keratinocytes HaCaT. Int J Immunopathol Pharmacol 2019; 33:2058738418821837. [PMID: 30791744 PMCID: PMC6328949 DOI: 10.1177/2058738418821837] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cutaneous lichen planus (CLP) is an autoimmune disease. Angelica polysaccharide (AP) has been found to exert immunomodulation activity. In this study, we explored the roles of AP in lipopolysaccharide (LPS)-induced inflammatory injury of human keratinocytes (HaCaT cells), as well as the underlying mechanisms. LPS-induced cell injury was evaluated by alterations of cell viability, apoptosis, and expressions of proteins associated with apoptosis and inflammatory cytokines. Then, the protective effects of AP on LPS-induced cell injury were assessed. The protein expressions of sirtuin 1 (SIRT1) and key kinases in the Nrf2/HO-1 and nuclear factor κB (NF-κB) pathways were measured using western blotting. SIRT1 knockdown and overexpression were used to analyze whether AP affected HaCaT cells through regulating SIRT1. Finally, the possible inhibitory effects of AP on cell injury after LPS treatment were also evaluated. We found that LPS reduced HaCaT cell viability, enhanced apoptosis, and induced release of inflammatory cytokines. AP alleviated LPS-induced HaCaT cell inflammatory injury. The expression of SIRT1 was enhanced after AP treatment. AP activated Nrf2/HO-1 pathway while inhibited NF-κB pathway in HaCaT cells. The protective effects of AP on LPS-induced HaCaT cell injury were reversed by SIRT1 knockdown. Dysregulation of SIRT1 altered the activation of Nrf2/HO-1 and NF-κB pathways in LPS-treated HaCaT cells. Furthermore, AP also exerted inhibitory effects on HaCaT cell injury after LPS stimulation. In conclusion, AP could alleviate LPS-induced inflammatory injury of HaCaT cells through upregulating SIRT1 expression and then activating Nrf2/HO-1 pathway but inactivating NF-κB pathway. This study provided a possible therapeutic strategy for clinical CLP treatments.
Collapse
Affiliation(s)
- Jun Wang
- Department of Dermatology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guanzhi Chen
- Department of Dermatology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tongxin Shi
- Department of Dermatology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yingying Wang
- Department of Dermatology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chengfei Guan
- Department of Dermatology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
9
|
Folkerts J, Stadhouders R, Redegeld FA, Tam SY, Hendriks RW, Galli SJ, Maurer M. Effect of Dietary Fiber and Metabolites on Mast Cell Activation and Mast Cell-Associated Diseases. Front Immunol 2018; 9:1067. [PMID: 29910798 PMCID: PMC5992428 DOI: 10.3389/fimmu.2018.01067] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 04/30/2018] [Indexed: 12/14/2022] Open
Abstract
Many mast cell-associated diseases, including allergies and asthma, have seen a strong increase in prevalence during the past decades, especially in Western(ized) countries. It has been suggested that a Western diet may contribute to the prevalence and manifestation of allergies and asthma through reduced intake of dietary fiber and the subsequent production of their metabolites. Indeed, dietary fiber and its metabolites have been shown to positively influence the development of immune disorders via changes in microbiota composition and the regulation of B- and T-cell activation. However, the effects of these dietary components on the activation of mast cells, key effector cells of the inflammatory response in allergies and asthma, remain poorly characterized. Due to their location in the gut and vascularized tissues, mast cells are exposed to high concentrations of dietary fiber and/or its metabolites. Here, we provide a focused overview of current findings regarding the direct effects of dietary fiber and its various metabolites on the regulation of mast cell activity and the pathophysiology of mast cell-associated diseases.
Collapse
Affiliation(s)
- Jelle Folkerts
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands.,Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands.,Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States.,Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ralph Stadhouders
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands.,Department of Cell Biology, Erasmus MC, Rotterdam, Netherlands
| | - Frank A Redegeld
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - See-Ying Tam
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Stephen J Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Marcus Maurer
- Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
10
|
Immunomodulation Effects of Schizonepeta tenuifolia Briq. on the IgE-Induced Allergic Model of RBL-2H3 Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:6514705. [PMID: 29849717 PMCID: PMC5937521 DOI: 10.1155/2018/6514705] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/20/2018] [Accepted: 02/28/2018] [Indexed: 12/15/2022]
Abstract
Schizonepeta tenuifolia (ST) Briq. is a traditional herbal medicine commonly used to treat allergic skin diseases, where the inflammation process is closely related to symptom severity. This study aimed to explore the immunomodulatory effect of ST by using immunoglobulin E- (IgE-) stimulated RBL-2H3 cell cultures, a common cell line for studying mast cell degranulation and inflammatory cytokine release in vitro. After stimulating the RBL-2H3 cells with IgE, ST at concentrations of 10, 50, or 100 μg/mL was added to the cell cultures. Cell viability, inflammatory cytokines (IL-6, IL-13, IL-4, TNF-α, and IFN-γ), anti-inflammatory cytokine IL-10, and degranulation ability were examined 48 and 72 hours after administration of ST. The markers of inflammation and allergic reaction, IFN-γ, TNF-α, IL-4, and IL-6, were suppressed, especially after treatment with 100 μg/mL ST. However, the anti-inflammation marker IL-10 was also suppressed by ST. Trend analysis showed that a higher ST concentration was associated with lower IFN-γ and TNF-α levels. Moreover, degranulation of RBL-2H3 cells was assessed by measuring the release of β-hexosaminidase, which was suppressed by ST at 10 μg/mL. This study showed an immunomodulatory effect of ST at the cellular level and suggests the role of ST in treating allergic diseases.
Collapse
|
11
|
Panthavee W, Noda M, Danshiitsoodol N, Kumagai T, Sugiyama M. Characterization of Exopolysaccharides Produced by Thermophilic Lactic Acid Bacteria Isolated from Tropical Fruits of Thailand. Biol Pharm Bull 2017; 40:621-629. [DOI: 10.1248/bpb.b16-00856] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Wanchai Panthavee
- Department of Probiotic Science for Preventive Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University
- Institute of Food Research and Product Development, Kasetsart University
| | - Masafumi Noda
- Department of Probiotic Science for Preventive Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Narandalai Danshiitsoodol
- Department of Probiotic Science for Preventive Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Takanori Kumagai
- Department of Molecular Microbiology and Biotechnology, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Masanori Sugiyama
- Department of Probiotic Science for Preventive Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University
| |
Collapse
|