1
|
Li B, Xie X. A20 (TNFAIP3) alleviates viral myocarditis through ADAR1/miR-1a-3p-dependent regulation. BMC Cardiovasc Disord 2022; 22:10. [PMID: 35034631 PMCID: PMC8762865 DOI: 10.1186/s12872-021-02438-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 12/09/2021] [Indexed: 11/29/2022] Open
Abstract
Objective To investigate the effect of A20 and how A20 is regulated in viral myocarditis (VMC). Methods BABL/C mice, primary neonatal rat cardiomyocytes and H9c2 cells were infected with Coxsackie virus B3 (CVB3) to establish animal and cellular models of VMC. H&E staining revealed the pathologic condition of myocardium. ELISA measured the serum levels of creatine kinase, creatine kinase isoenzyme and cardiac troponin I. The effects of A20, miR-1a-3p and ADAR1 were investigated using gain and loss of function approaches. ELISA measured the levels of IL-6, IL-18 and TNF-α in serum or cell culture supernatant. TUNEL staining and flow cytometry assessed the apoptosis of myocardium and cardiomyocytes, respectively. RNA-binding protein immunoprecipitation and dual-luciferase reporter assays verified the binding between A20 and miR-1a-3p. Co-immunoprecipitation assay verified the binding between ADAR1 and Dicer. Results A20 was underexpressed and miR-1a-3p was overexpressed in the myocardium of VMC mice as well as in CVB3-infected cardiomyocytes. Overexpression of A20 suppressed cardiomyocyte inflammation and apoptosis in vivo and in vitro. miR-1a-3p promoted CVB3-induced inflammation and apoptosis in cardiomyocytes by binding to A20. The expression of miR-1a-3p was regulated by ADAR1. ADAR1 promoted the slicing of miR-1a-3p precursor by binding to Dicer. Conclusion A20, regulated by ADAR1/miR-1a-3p, suppresses inflammation and cardiomyocyte apoptosis in VMC. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-021-02438-z.
Collapse
Affiliation(s)
- Bin Li
- Department of Cardiovascular Medicine, Affiliated Hospital of Xiangnan University, No. 25, West Renmin Road, Chenzhou, 423000, Hunan, People's Republic of China
| | - Xing Xie
- Department of Cardiovascular Medicine, Affiliated Hospital of Xiangnan University, No. 25, West Renmin Road, Chenzhou, 423000, Hunan, People's Republic of China.
| |
Collapse
|
2
|
Wang X, Chen X, Xu H, Zhou S, Zheng Y, Keller BB, Cai L. Emerging roles of microRNA-208a in cardiology and reverse cardio-oncology. Med Res Rev 2021; 41:2172-2194. [PMID: 33533026 DOI: 10.1002/med.21790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/22/2020] [Accepted: 01/20/2021] [Indexed: 12/18/2022]
Abstract
Cardiovascular diseases (CVDs) and cancer, which are the leading causes of mortality globally, have been viewed as two distinct diseases. However, the fact that cancer and CVDs may coincide has been noted by cardiologists when taking care of patients with CVDs caused by cancer chemotherapy; this entity is designated cardio-oncology. More recently, patients with CVDs have also been found to have increased risk of cancers, termed reverse cardio-oncology. Although reverse cardio-oncology has been highlighted as an important disease state in recent studies, how the diseased heart affects cancer and the potential mediators of the crosstalk between CVDs and cancer are largely unknown. Here, we focus on the roles of cardiac-specific microRNA-208a (miR-208a) in cardiac and cancer biology and explore its essential roles in reverse cardio-oncology. Accumulating evidence has shown that within the heart, increased miR-208a promotes myocardial injury, arrhythmia, cardiac remodeling, and dysfunction and that secreted miR-208a in the circulation may have novel roles in promoting tumor proliferation and invasion. This review, therefore, provides insights into the novel roles of miR-208a in reverse cardio-oncology and strategies to prevent secondary carcinogenesis in patients with early- or late-stage heart failure.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Cardiovascular Disease, First Hospital of Jilin University, Jilin University, Changchun, Jilin, China
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Xinxin Chen
- Department of Burn Surgery, First Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| | - Hui Xu
- Department of Cardiovascular Disease, First Hospital of Jilin University, Jilin University, Changchun, Jilin, China
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Shanshan Zhou
- Department of Cardiovascular Disease, First Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| | - Yang Zheng
- Department of Cardiovascular Disease, First Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| | - Bradley B Keller
- Cincinnati Children's Heart Institute, Greater Louisville and Western Kentucky Practice, Louisville, Kentucky, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Lu Cai
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|
3
|
Khomtchouk BB, Tran DT, Vand KA, Might M, Gozani O, Assimes TL. Cardioinformatics: the nexus of bioinformatics and precision cardiology. Brief Bioinform 2020; 21:2031-2051. [PMID: 31802103 PMCID: PMC7947182 DOI: 10.1093/bib/bbz119] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/08/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide, causing over 17 million deaths per year, which outpaces global cancer mortality rates. Despite these sobering statistics, most bioinformatics and computational biology research and funding to date has been concentrated predominantly on cancer research, with a relatively modest footprint in CVD. In this paper, we review the existing literary landscape and critically assess the unmet need to further develop an emerging field at the multidisciplinary interface of bioinformatics and precision cardiovascular medicine, which we refer to as 'cardioinformatics'.
Collapse
Affiliation(s)
- Bohdan B Khomtchouk
- Department of Biology, Stanford University, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Medicine, Section of Computational Biomedicine and Biomedical Data Science, University of Chicago, Chicago, IL, USA
| | - Diem-Trang Tran
- School of Computing, University of Utah, Salt Lake City, UT, USA
| | | | - Matthew Might
- Hugh Kaul Personalized Medicine Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Or Gozani
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Themistocles L Assimes
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| |
Collapse
|
4
|
miRNAS in cardiovascular diseases: potential biomarkers, therapeutic targets and challenges. Acta Pharmacol Sin 2018; 39:1073-1084. [PMID: 29877320 PMCID: PMC6289363 DOI: 10.1038/aps.2018.30] [Citation(s) in RCA: 426] [Impact Index Per Article: 60.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 04/07/2018] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular diseases (CVD) are the leading cause of morbidity and mortality in the world. Although considerable progress has been made in the diagnosis, treatment and prognosis of CVD, there is still a critical need for novel diagnostic biomarkers and new therapeutic interventions to decrease the incidence of this disease. Recently, there is increasing evidence that circulating miRNAs (miRNAs), i.e. endogenous, stable, single-stranded, short, non-coding RNAs, can be used as diagnostic biomarkers for CVD. Furthermore, miRNAs represent potential novel therapeutic targets for several cardiovascular disorders. In this review we provides an overview of the effects of several CVD; including heart failure, acute myocardial infarction, arrhythmias and pulmonary hypertension; on levels of circulating miRNAs. In addition, the use of miRNA as therapeutic targets is also discussed, as well as challenges and recommendations in their use in the diagnosis of CVD.
Collapse
|