1
|
Patel S, Khan MB, Kumar S, Vyavahare S, Mendhe B, Lee TJ, Cai J, Isales CM, Liu Y, Hess DC, Fulzele S. The impact of ischemic stroke on bone marrow microenvironment and extracellular vesicles: A study on inflammatory and molecular changes. Exp Neurol 2024; 379:114867. [PMID: 38914274 DOI: 10.1016/j.expneurol.2024.114867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/03/2024] [Accepted: 06/14/2024] [Indexed: 06/26/2024]
Abstract
An ischemic stroke (IS) is caused due to the lack of blood flow to cerebral tissue. Most of the studies have focused on how stroke affects the localized tissue, but it has been observed that a stroke can cause secondary complications in distant organs, such as Bone Marrow (BM). Our study focused on the effect of ischemic strokes on the bone marrow microenvironment. Bone marrow (BM) is a vital organ that maintains inflammatory homeostasis and aids in the repair of damaged tissue after injury/IS. We used the middle cerebral artery occlusion (MCAO) model of ischemic stroke on adult mice (6 months) and investigated the changes in the BM environment. BM cells were used for western blot and RT-PCR, and the BM supernatant was used for cytokine analysis and extracellular vesicle (EVs) isolation. We observed a significant increase in the total cell number within the BM and an increase in TNF-alpha and MCP-1, which are known for inducing a pro-inflammatory environment. Western blots analysis on the whole BM cell lysate demonstrated elevated levels of inflammatory factors (IL-6, TNF-alpha, and TLR-4) and senescence markers (p21 p16). EVs isolated from the BM supernatant showed no change in size or concentration; however, we found that the EVs carried increased miRNA-141-3p and miRNA-34a. Proteomic analysis on BM-derived EVs showed an alteration in the protein cargo of IS. We observed an increase in FgB, C3, Fn1, and Tra2b levels. The signaling pathway analysis showed mitochondrial function is most affected within the bone marrow. Our study demonstrated that IS induces changes in the BM environment and EVs secreted in the BM.
Collapse
Affiliation(s)
- Sagar Patel
- Department of Medicine, Augusta University, Augusta, GA, USA
| | - Mohammad Badruzzaman Khan
- Department of Neurology, Augusta University, Augusta, GA, 30912, USA; Center for Healthy Aging, Augusta University, Augusta, GA, USA
| | - Sandeep Kumar
- Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, USA
| | - Sagar Vyavahare
- Department of Medicine, Augusta University, Augusta, GA, USA
| | - Bharati Mendhe
- Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, USA
| | - Tae Jin Lee
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA 30912, USA
| | - Jingwen Cai
- Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, USA
| | - Carlos M Isales
- Department of Medicine, Augusta University, Augusta, GA, USA; Center for Healthy Aging, Augusta University, Augusta, GA, USA
| | - Yutao Liu
- Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, USA
| | - David C Hess
- Department of Neurology, Augusta University, Augusta, GA, 30912, USA
| | - Sadanand Fulzele
- Department of Medicine, Augusta University, Augusta, GA, USA; Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, USA; Center for Healthy Aging, Augusta University, Augusta, GA, USA.
| |
Collapse
|
2
|
Ferrostatin-1 improves BMSC survival by inhibiting ferroptosis. Arch Biochem Biophys 2023; 736:109535. [PMID: 36708941 DOI: 10.1016/j.abb.2023.109535] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/26/2023]
Abstract
OBJECTIVE To investigate the effect of ferroptosis in BMSCs and explore the protective metabolism of ferrostatin-1 under GSDH treatment. METHODS BMSCs were treated with GSDH to simulate the damaged microenvironment in vivo to establish a cell injury model. Propidium iodide and CCK8 were utilized to detect the ratio of dead cells and cell viability. DCFH-DA and Amplex Red, FerroOrange, and BPDIPY were used to visualize the cellular fluorescent images of ROS, Fe2+, and lipid droplets, respectively. The quantified detection of MDA was conducted by a Lipid Peroxidation MDA Assay Kit. JC-1 staining, Mito-Tracker staining, and TEM were implemented to detect the membrane potential, morphology, and ultrastructure of mitochondria, respectively. The expression levels of ferroptosis-related proteins such as GPX4 and FTH1 were measured by Western blotting. RESULTS GSDH treatment induced ferroptosis in BMSCs based on an increased ratio of cell death, Fe2+, ROS, lipid droplets, and MDA in cells plus decreased protein levels of antioxidant systems, such as GPX4, and increased protein levels related to fatty acid synthesis. Compared to the blank group, mitochondria in the GSDH group underwent lower membrane potential, damaged morphology, and shrunken ultrastructure; Ferr-1 rescued the injured BMSCs to a certain extent as the declined ratio of cell death, Fe2+, ROS, lipid droplets, MDA, and the increased level antioxidant protein. AMPK was phosphorylated and activated after Ferr-1 treatment, and its downstream lipid peroxidation and antioxidation proteins changed accordingly. Inhibition of AMPK hindered the curative effect of Ferr-1. CONCLUSION Ferr-1 rescued ferroptosis-induced injury to BMSCs under GSDH conditions, and AMPK might have a relationship with the mitigative effect of Ferr-1.
Collapse
|
3
|
Fang CN, Tan HQ, Song AB, Jiang N, Liu QR, Song T. NGF/TrkA promotes the vitality, migration and adhesion of bone marrow stromal cells in hypoxia by regulating the Nrf2 pathway. Metab Brain Dis 2022; 37:2017-2026. [PMID: 35579787 DOI: 10.1007/s11011-022-00974-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/24/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Bone marrow stromal cells (BMSCs) transplantation is a treatment strategy for ischemic stroke (IS) with great potential. However, the vitality, migration and adhesion of BMSCs are greatly impaired due to the harsh environment of the ischemic area, which affects the therapeutic effects. Herein, we aimed to investigate the roles of nerve growth factor (NGF) in regulating cell behaviors of BMSCs in IS. METHODS The mRNA and protein expressions were assessed using qRT-PCR and western blot, respectively. To simulate ischemic-like conditions in vitro, Brain microvascular (bEnd.3) cells were exposed to oxygen and glucose deprivation (OGD). Cell viability and cell proliferation were evaluated by MTT assay and BrdU assay, respectively. Transwell migration and cell adhesion assays were carried out to determine cell migration and adhesion of BMSCs, respectively, coupled with flow cytometry to evaluate cell apoptosis of bEnd.3 cells. Finally, angiogenesis assay was performed to assess the angiogenesis ability of bEnd.3 cells. RESULTS NGF overexpression resulted in increased cell vitality, adhesion and migration of BMSCs, while NGF knockdown presented the opposite effects. We subsequently discovered that TrkA was a receptor for NGF, and TrkA knockdown significantly inhibited the cell viability, migration and adhesion of BMSCs. Besides, Nrf2 was confirmed as the downstream target of NGF/TrkA to promote the viability, adhesion and migration of BMSC cells. Finally, NGF-silenced BMSCs could not effectively restore the OGD-induced brain microvascular cell damage. CONCLUSIONS NGF/TrkA promoted the viability, migration and adhesion of BMSCs in IS via activating Nrf2 pathway.
Collapse
Affiliation(s)
- Cui-Ni Fang
- Department of Rehabilitation, Hunan Provincial People's Hospital (the first-affiliated Hospital of Hunan normal University), No.89, Guhan Road, Furong District, 410000, Changsha, Hunan Province, P.R. China
| | - Hai-Qun Tan
- Department of Rehabilitation, Hunan Provincial People's Hospital (the first-affiliated Hospital of Hunan normal University), No.89, Guhan Road, Furong District, 410000, Changsha, Hunan Province, P.R. China
| | - Ao-Bo Song
- Department of Rehabilitation, Hunan Provincial People's Hospital (the first-affiliated Hospital of Hunan normal University), No.89, Guhan Road, Furong District, 410000, Changsha, Hunan Province, P.R. China
| | - Ni Jiang
- Department of Rehabilitation, Hunan Provincial People's Hospital (the first-affiliated Hospital of Hunan normal University), No.89, Guhan Road, Furong District, 410000, Changsha, Hunan Province, P.R. China
| | - Qian-Rong Liu
- Department of Rehabilitation, Hunan Provincial People's Hospital (the first-affiliated Hospital of Hunan normal University), No.89, Guhan Road, Furong District, 410000, Changsha, Hunan Province, P.R. China
| | - Tao Song
- Department of Rehabilitation, Hunan Provincial People's Hospital (the first-affiliated Hospital of Hunan normal University), No.89, Guhan Road, Furong District, 410000, Changsha, Hunan Province, P.R. China.
| |
Collapse
|
4
|
Berlet R, Anthony S, Brooks B, Wang ZJ, Sadanandan N, Shear A, Cozene B, Gonzales-Portillo B, Parsons B, Salazar FE, Lezama Toledo AR, Monroy GR, Gonzales-Portillo JV, Borlongan CV. Combination of Stem Cells and Rehabilitation Therapies for Ischemic Stroke. Biomolecules 2021; 11:1316. [PMID: 34572529 PMCID: PMC8468342 DOI: 10.3390/biom11091316] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/14/2022] Open
Abstract
Stem cell transplantation with rehabilitation therapy presents an effective stroke treatment. Here, we discuss current breakthroughs in stem cell research along with rehabilitation strategies that may have a synergistic outcome when combined together after stroke. Indeed, stem cell transplantation offers a promising new approach and may add to current rehabilitation therapies. By reviewing the pathophysiology of stroke and the mechanisms by which stem cells and rehabilitation attenuate this inflammatory process, we hypothesize that a combined therapy will provide better functional outcomes for patients. Using current preclinical data, we explore the prominent types of stem cells, the existing theories for stem cell repair, rehabilitation treatments inside the brain, rehabilitation modalities outside the brain, and evidence pertaining to the benefits of combined therapy. In this review article, we assess the advantages and disadvantages of using stem cell transplantation with rehabilitation to mitigate the devastating effects of stroke.
Collapse
Affiliation(s)
- Reed Berlet
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Rd, North Chicago, IL 60064, USA;
| | - Stefan Anthony
- Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL 34211, USA;
| | - Beverly Brooks
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (B.B.); (Z.-J.W.)
| | - Zhen-Jie Wang
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (B.B.); (Z.-J.W.)
| | | | - Alex Shear
- University of Florida, 205 Fletcher Drive, Gainesville, FL 32611, USA;
| | - Blaise Cozene
- Tulane University, 6823 St. Charles Ave, New Orleans, LA 70118, USA;
| | | | - Blake Parsons
- Washington and Lee University, 204 W Washington St, Lexington, VA 24450, USA;
| | - Felipe Esparza Salazar
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Mexico; (F.E.S.); (A.R.L.T.); (G.R.M.)
| | - Alma R. Lezama Toledo
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Mexico; (F.E.S.); (A.R.L.T.); (G.R.M.)
| | - Germán Rivera Monroy
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Mexico; (F.E.S.); (A.R.L.T.); (G.R.M.)
| | | | - Cesario V. Borlongan
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (B.B.); (Z.-J.W.)
- Center of Excellence for Aging and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| |
Collapse
|
5
|
Filho DM, de Carvalho Ribeiro P, Oliveira LF, Dos Santos ALRT, Parreira RC, Pinto MCX, Resende RR. Enhancing the Therapeutic Potential of Mesenchymal Stem Cells with the CRISPR-Cas System. Stem Cell Rev Rep 2020; 15:463-473. [PMID: 31147819 DOI: 10.1007/s12015-019-09897-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mesenchymal stem cells (MSCs), also known as multipotent mesenchymal stromal stem cells, are found in the perivascular space of several tissues. These cells have been subject of intense research in the last decade due to their low teratogenicity, as well as their ability to differentiate into mature cells and to secrete immunomodulatory and trophic factors. However, they usually promote only a modest benefit when transplanted in experimental disease models, one of the limitations for their clinical application. The CRISPR-Cas system, in turn, is highlighted as a simple and effective tool for genetic engineering. This system was tested in clinical trials over a relatively short period of time after establishing its applicability to the edition of the mammalian cell genome. Similar to the research evolution in MSCs, the CRISPR-Cas system demonstrated inconsistencies that limited its clinical application. In this review, we outline the evolution of MSC research and its applicability, and the progress of the CRISPR-Cas system from its discovery to the most recent clinical trials. We also propose perspectives on how the CRISPR-Cas system may improve the therapeutic potential of MSCs, making it more beneficial and long lasting.
Collapse
Affiliation(s)
- Daniel Mendes Filho
- Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Patrícia de Carvalho Ribeiro
- Laboratory of Immunology and Experimental Transplantation, São José do Rio Preto Medical School, São José do Rio Preto, São Paulo, Brazil.,Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Lucas Felipe Oliveira
- Department of Physiology, Biological and Natural Sciences Institute, Triangulo Mineiro Federal University, Uberaba, Minas Gerais, Brazil.,National Institute of Science and Technology for Regenerative Medicine (INCT-REGENERA-CNPq), Rio de Janeiro, RJ, Brazil.,Minas Gerais Network for Tissue Engineering and Cell Therapy (REMETTECFAPEMIG), Belo Horizonte, MG, Brazil
| | | | - Ricardo Cambraia Parreira
- Department of Pharmacology, Biological Sciences Institute, Goias Federal University, Goiania, Goias, Brazil.
| | - Mauro Cunha Xavier Pinto
- Department of Pharmacology, Biological Sciences Institute, Goias Federal University, Goiania, Goias, Brazil
| | - Rodrigo Ribeiro Resende
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
6
|
Zhang J, Li Z, Liu W, Zeng W, Duan C, He X. Effects of bone marrow mesenchymal stem cells transplantation on the recovery of neurological functions and the expression of Nogo-A, NgR, Rhoa, and ROCK in rats with experimentally-induced convalescent cerebral ischemia. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:390. [PMID: 32355834 PMCID: PMC7186734 DOI: 10.21037/atm.2020.03.144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Background To investigate the effects of intravenous transplantation of bone marrow mesenchymal stem cells (BMSCs) on neurological function in rats with experimentally-induced convalescent cerebral ischemia and the expression of Nogo-A, NgR, Rhoa, and ROCK expression. Methods BMSCs were isolated and cultured in vitro using the whole bone marrow adherent method. Eighty-one adult male Sprague-Dawley rats were divided at random into three groups: the sham-operated group, the cerebral ischemia group, and the BMSC treatment group (n=27 rats per group). In the latter two groups, the middle cerebral artery occlusion (MCAO) model was performed by the modified Zea Longa method. After MCAO, rats in the sham-operated and cerebral ischemic groups were injected with 1 mL of phosphate buffered saline (PBS) via the tail vein. In the BMSC-treatment group, 1 mL of the BMSC suspension (containing 3×106 BMSCs) was injected through the rats’ femoral vein. At 12, 24, and 72 h after BMSC transplantation, modified neurological deficit scores (mNSS) were used to assess neurological function. TTC (2,3,5-triphenyl tetrazolium chloride) staining was used to measure the ischemic lesion volume, and the distribution of Nogo-A protein was observed by immunohistochemistry. The expressions of Nogo-A, NgR, Rhoa, and ROCK were detected by Western blot. Results At 72 h after BMSC transplantation, the mNSS scores were significantly lower in the BMSC treatment group than those in the cerebral ischemia group (7.50±0.55 vs. 8.67±0.52, P<0.01), and the ischemic lesions volume was significantly reduced. The expressions of Nogo-A, NgR, RhoA, and ROCK were significantly decreased compared with the controls (P<0.05). Conclusions The transplantation of BMSCs can improve neurological function in rats after convalescent cerebral ischemia, and their therapeutic effect may be related to the downregulation of Nogo-A, NgR, RhoA, and ROCK expression.
Collapse
Affiliation(s)
- Jianbo Zhang
- Department of Neurosurgery, The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Province Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Zhenjun Li
- Department of Neurosurgery, The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Province Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Wenchao Liu
- Department of Neurosurgery, The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Province Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Wenxian Zeng
- Department of Neurosurgery, The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Province Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Chuanzhi Duan
- Department of Neurosurgery, The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Province Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Xuying He
- Department of Neurosurgery, The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Province Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.,Department of Neurosurgery, Southern Medical University, Zhujiang Hospital, Guangzhou 510282, China
| |
Collapse
|
7
|
Ling X, Zhang G, Xia Y, Zhu Q, Zhang J, Li Q, Niu X, Hu G, Yang Y, Wang Y, Deng Z. Exosomes from human urine-derived stem cells enhanced neurogenesis via miR-26a/HDAC6 axis after ischaemic stroke. J Cell Mol Med 2019; 24:640-654. [PMID: 31667951 PMCID: PMC6933407 DOI: 10.1111/jcmm.14774] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 09/08/2019] [Accepted: 09/29/2019] [Indexed: 12/19/2022] Open
Abstract
Endogenous neurogenesis holds promise for brain repair and long‐term functional recovery after ischaemic stroke. However, the effects of exosomes from human urine‐derived stem cells (USC‐Exos) in neurogenesis remain unclear. This study aimed to investigate whether USC‐Exos enhanced neurogenesis and promoted functional recovery in brain ischaemia. By using an experimental stroke rat model, we found that intravenous injection of USC‐Exos enhanced neurogenesis and alleviated neurological deficits in post‐ischaemic stroke rats. We used neural stem cells (NSCs) subjected to oxygen‐glucose deprivation/reoxygenation (OGD/R) as an in vitro model of ischaemic stroke. The in vitro results suggested that USC‐Exos promoted both proliferation and neuronal differentiation of NSCs after OGD/R. Notably, a further mechanism study revealed that the pro‐neurogenesis effects of USC‐Exos may be partially attributed to histone deacetylase 6 (HDAC6) inhibition via the transfer of exosomal microRNA‐26a (miR‐26a). Taken together, this study indicates that USC‐Exos can be used as a novel promising strategy for brain ischaemia, which highlights the application of USC‐Exos.
Collapse
Affiliation(s)
- Xiaozheng Ling
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People' Hospital, Shanghai, China
| | - Guowei Zhang
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People' Hospital, Shanghai, China.,Department of Neurosurgery, Tai'an City Central Hospital, Tai'an, China
| | - Yuguo Xia
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People' Hospital, Shanghai, China
| | - Qingwei Zhu
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People' Hospital, Shanghai, China.,Department of Neurosurgery, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juntao Zhang
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People' Hospital, Shanghai, China
| | - Qing Li
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People' Hospital, Shanghai, China
| | - Xin Niu
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People' Hospital, Shanghai, China
| | - Guowen Hu
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People' Hospital, Shanghai, China
| | - Yunlong Yang
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People' Hospital, Shanghai, China
| | - Yang Wang
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People' Hospital, Shanghai, China
| | - Zhifeng Deng
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People' Hospital, Shanghai, China
| |
Collapse
|
8
|
Choi C, Kim HM, Shon J, Park J, Kim HT, Kang SH, Oh SH, Kim NK, Kim OJ. The combination of mannitol and temozolomide increases the effectiveness of stem cell treatment in a chronic stroke model. Cytotherapy 2019; 20:820-829. [PMID: 29776835 DOI: 10.1016/j.jcyt.2018.04.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/19/2018] [Accepted: 04/25/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND The blood-brain barrier (BBB) presents a significant challenge to the therapeutic efficacy of stem cells in chronic stroke. Various methods have been developed to increase BBB permeability, but these are associated with adverse effects and are, therefore, not clinically applicable. We recently identified that combination drug treatment of mannitol and temozolomide improved BBB permeability in vitro. Here, we investigated whether this combination could increase the effectiveness of stem cell treatment in an animal model of chronic ischemic stroke. METHODS Chronic stroke was induced in rats by middle cerebral artery occlusion (MCAo). After then, rats were administered human umbilical cord-derived mesenchymal stromal cells (hUC-MSCs) by intravenous injection with or without combination drug treatment of mannitol and temozolomide. To evaluate the therapeutic efficacy, behavioral and immunohistochemical tests were performed, and the differences among control, stem cell only, combination drug only and stem cell with combination drug treatment were analyzed. RESULTS Although no hUC-MSCs were detected in any group, treatment with stem cells and combination drug of mannitol and temozolomide increased the intracerebral delivery of hCD63-positive microvesicles compared with stem cell only treatment. Furthermore, treatment with stem cells and drug combination ameliorated behavioral deficits and increased bromodeoxyuridine-, doublecortin- and Reca-1-positive cells in the perilesional area as compared with other groups. DISCUSSION The combination drug treatment of mannitol and temozolomide allowed for the efficient delivery of hUC-MSC-derived microvesicles into the brain in a chronic stroke rat model. This attenuated behavioral deficits, likely by improving neural regeneration and angiogenesis. Thus, combination drug treatment of mannitol and temozolomide could be a novel therapeutic option for patients with chronic ischemic stroke.
Collapse
Affiliation(s)
- Chunggab Choi
- Department of Neurology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Hye Min Kim
- Department of Neurology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Jeeheun Shon
- Department of Neurology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Jiae Park
- Department of Neurology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Hyeong-Taek Kim
- Department of Neurology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Suk Ho Kang
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Seung-Hun Oh
- Department of Neurology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Nam Keun Kim
- Institute for Clinical Research, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Ok Joon Kim
- Department of Neurology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea; Institute for Clinical Research, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea.
| |
Collapse
|
9
|
Lan X, Sun Z, Chu C, Boltze J, Li S. Dental Pulp Stem Cells: An Attractive Alternative for Cell Therapy in Ischemic Stroke. Front Neurol 2019; 10:824. [PMID: 31428038 PMCID: PMC6689980 DOI: 10.3389/fneur.2019.00824] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/17/2019] [Indexed: 12/20/2022] Open
Abstract
Ischemic stroke is a major cause of disability and mortality worldwide, but effective restorative treatments are very limited at present. Regenerative medicine research revealed that stem cells are promising therapeutic options. Dental pulp stem cells (DPSCs) are autologously applicable cells that origin from the neural crest and exhibit neuro-ectodermal features next to multilineage differentiation potentials. DPSCs are of increasing interest since they are relatively easy to obtain, exhibit a strong proliferation ability, and can be cryopreserved for a long time without losing their multi-directional differentiation capacity. Besides, use of DPSCs can avoid fundamental problems such as immune rejection, ethical controversy, and teratogenicity. Therefore, DPSCs provide a tempting prospect for stroke treatment.
Collapse
Affiliation(s)
- Xiaoyan Lan
- Department of Neurology, Dalian Municipal Central Hospital Affiliated to Dalian Medical University, Dalian, China
| | - Zhengwu Sun
- Department of Pharmacy, Dalian Municipal Central Hospital Affiliated to Dalian Medical University, Dalian, China
| | - Chengyan Chu
- Department of Neurology, Dalian Municipal Central Hospital Affiliated to Dalian Medical University, Dalian, China
| | - Johannes Boltze
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Shen Li
- Department of Neurology, Dalian Municipal Central Hospital Affiliated to Dalian Medical University, Dalian, China
| |
Collapse
|
10
|
Li Q, Zhu Z, Wang C, Cai L, Lu J, Wang Y, Xu J, Su Z, Zheng W, Chen X. CTRP9 ameliorates cellular senescence via PGC‑1α/AMPK signaling in mesenchymal stem cells. Int J Mol Med 2018; 42:1054-1063. [PMID: 29749459 DOI: 10.3892/ijmm.2018.3666] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/03/2018] [Indexed: 11/06/2022] Open
Abstract
Stroke is the second most common cause of death worldwide, and thus, it imposes great financial burdens on both individuals and society. Mesenchymal stem cell (MSC) therapy is a promising approach for ischemic brain injury. However, MSC treatment potential is progressively reduced with age, limiting their therapeutic efficacy for brain repair post‑stroke. C1q and tumor necrosis factor‑related protein 9 (CTRP9) is a novel cytoprotective cytokine with antioxidant effects, which is highly expressed in brain tissue. The present study tested the hypothesis that CTRP9 might act as an antisenescence factor to promote the rejuvenation of aged MSCs. MSCs were isolated from the bone marrow of young (8‑weeks‑old) and aged (18‑months‑old) male C57BL/6 mice. Cell proliferation was measured by Cell Counting Kit‑8 assay and cell viability was determined by MTT assay. Gene expression levels of interleukin (IL)‑6 and IL‑10 were evaluated with reverse transcription‑quantitative polymerase chain reaction, and secretion of vascular endothelial growth factor, basic fibroblast growth factor, hepatocyte growth factor, and insulin‑like growth factor were measured by ELISA. The expression levels of proteins in the peroxisome proliferator‑activated receptor γcoactivator (PGC)‑1α/AMP‑activated protein kinase (AMPK) signaling pathway were investigated with western blotting. Oxidative stress was evaluated by detecting mitochondrial membrane potential, reactive oxygen species, superoxide dismutase activity and malondialdehyde. MSCs isolated from aged mice exhibited reduced proliferation and viability, and impaired immunoregulatory and paracrine abilities, compared with MSCs from younger mice. CTRP9 had a significant antisenescence effect in aged MSCs by activating PGC‑1α/AMPK signaling and decreasing the oxidative response. Silencing either PGC‑1α or AMPK abolished the above effects of CTRP9. These results suggest that CTRP9 may have a critical role in cellular senescence by facilitating stem cell rejuvenation, and may therefore have the potential to enhance the efficacy of stem cell therapy.
Collapse
Affiliation(s)
- Qun Li
- Department of Neurosurgery, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Zhangzhang Zhu
- Department of Neurosurgery, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Chengde Wang
- Department of Neurosurgery, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Lin Cai
- Department of Neurosurgery, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Jianglong Lu
- Department of Neurosurgery, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yongchun Wang
- Department of Neurosurgery, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Jiadong Xu
- Department of Neurosurgery, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Zhipeng Su
- Department of Neurosurgery, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Weiming Zheng
- Department of Neurosurgery, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Xianbin Chen
- Department of Neurosurgery, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
11
|
Yu X, Wu H, Zhao Y, Guo Y, Chen Y, Dong P, Mu Q, Wang X, Wang X. Bone marrow mesenchymal stromal cells alleviate brain white matter injury via the enhanced proliferation of oligodendrocyte progenitor cells in focal cerebral ischemic rats. Brain Res 2017; 1680:127-136. [PMID: 29258846 DOI: 10.1016/j.brainres.2017.12.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 12/11/2017] [Accepted: 12/13/2017] [Indexed: 02/05/2023]
Abstract
The effects of transplanting bone marrow mesenchymal stromal cells (BMSCs) for the treatment of white matter damage are not well understood, nor are the underlying mechanisms. Recent studies showed that endogenous oligodendrocyte progenitor cells (OPCs) can be stimulated to proliferate. Therefore, we explore the effects of BMSCs transplantation on white matter damage and the proliferation of OPCs in transient focal cerebral ischemic rats. BMSCs were transplanted into a group of rats that had undergone middle cerebral artery occlusion (MCAO) 24 h after reperfusion. The ratswere examined by MRI-T2 and DTI sequencesdynamically. The proliferating cells were labeled by 5-Bromo-2'-deoxyuridine (BrdU). The effects of BMSC transplantation on neurons, axons, myelination, and proliferating OPCs were examined by Nissl staining, MBP/NF-H and BrdU/NG2 immunofluorescence staining7 days after transplantation. More Nissl-stained neuronswere found and the FA value of MRI-DTI was significantly higher in the MCAO + BMSCs group than in the MCAOgroup (both P < .01). The fold change of MBP protein was significantly higher in the MCAO + BMSCs group than in the MCAO group (P < .01); the same was true of NF-H protein. Additionally, there were more BrdU+NG2+ cells in the SVZ areas of the MCAO + BMSCs group than in the MCAO group (P < .01). BMSCs thus were shown to alleviate neuronal/axonal injury and promote the proliferation of OPCs and formation of myelin sheath, significantly alleviating white matter damage in focal cerebral ischemic rats.
Collapse
Affiliation(s)
- Xiaohe Yu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Hongjuan Wu
- Clinical Medical Institute, Weifang Medical University, Weifang 261053, PR China
| | - Yansong Zhao
- Department of Ophthalmology, Weifang Medical University Affiliated Hospital, Clinical Medical Institute, Weifang Medical University, Weifang 261053, PR China
| | - Yuanyuan Guo
- Department of Medical Imaging, Weifang Medical University, Weifang 261053, PR China
| | - Yuxi Chen
- Department of Medical Imaging, Weifang Medical University, Weifang 261053, PR China
| | - Peng Dong
- Department of Medical Imaging, Weifang Medical University, Weifang 261053, PR China
| | - Qingjie Mu
- Department of Hematology, Clinical Medical Institute, Weifang Medical University, Weifang 261053, PR China
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Xiaoli Wang
- Department of Medical Imaging, Weifang Medical University, Weifang 261053, PR China.
| |
Collapse
|
12
|
Sinden JD, Hicks C, Stroemer P, Vishnubhatla I, Corteling R. Human Neural Stem Cell Therapy for Chronic Ischemic Stroke: Charting Progress from Laboratory to Patients. Stem Cells Dev 2017; 26:933-947. [PMID: 28446071 PMCID: PMC5510676 DOI: 10.1089/scd.2017.0009] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Chronic disability after stroke represents a major unmet neurologic need. ReNeuron's development of a human neural stem cell (hNSC) therapy for chronic disability after stroke is progressing through early clinical studies. A Phase I trial has recently been published, showing no safety concerns and some promising signs of efficacy. A single-arm Phase II multicenter trial in patients with stable upper-limb paresis has recently completed recruitment. The hNSCs administrated are from a manufactured, conditionally immortalized hNSC line (ReNeuron's CTX0E03 or CTX), generated with c-mycERTAM technology. This technology has enabled CTX to be manufactured at large scale under cGMP conditions, ensuring sufficient supply to meets the demands of research, clinical development, and, eventually, the market. CTX has key pro-angiogenic, pro-neurogenic, and immunomodulatory characteristics that are mechanistically important in functional recovery poststroke. This review covers the progress of CTX cell therapy from its laboratory origins to the clinic, concluding with a look into the late stage clinical future.
Collapse
|
13
|
Xiang J, Hu J, Shen T, Liu B, Hua F, Zan K, Zu J, Cui G, Ye X. Bone marrow mesenchymal stem cells-conditioned medium enhances vascular remodeling after stroke in type 2 diabetic rats. Neurosci Lett 2017; 644:62-66. [DOI: 10.1016/j.neulet.2017.02.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 02/14/2017] [Accepted: 02/15/2017] [Indexed: 10/20/2022]
|