1
|
Esfandi R, Willmore WG, Tsopmo A. Structural characterization of peroxyl radical oxidative products of antioxidant peptides from hydrolyzed proteins. Heliyon 2024; 10:e30588. [PMID: 38765145 PMCID: PMC11101819 DOI: 10.1016/j.heliyon.2024.e30588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/21/2024] Open
Abstract
This work aimed to characterize oxidative products of five unique antioxidant peptides (P1: YFDEQNEQFR, P2: GQLLIVPQ, P3: SPFWNINAH, P4: NINAHSVVY, P5: RALPIDVL) from hydrolyzed oat proteins. Peptides were reacted with 2,2'-Azobis(2-amidinopropane) dihydrochloride, a common peroxyl radical generator. Chromatographic data showed that peptide P3 was the most oxidized (67 ± 4 %) while also displaying the most ability to scavenge radicals in the oxygen absorbance capacity assay (ORAC) with an activity of 2.16 ± 0.09 μM Trolox equivalents/μM peptide. Structural characterization using mass spectrometry showed the presence of four oxidative products of P3, three of which were mono-oxygenated and the fourth di-oxygenated. The identification of these oxidative products is new and provides an opportunity to investigate their biological function. A good correlation (r = 0.889) between the degree of oxidation and the ORAC data, demonstrates the usefulness of using oxidative peptide data to predict their radical scavenging activities.
Collapse
Affiliation(s)
- Ramak Esfandi
- Food Science and Nutrition Program, Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - William G. Willmore
- Food Science and Nutrition Program, Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Apollinaire Tsopmo
- Food Science and Nutrition Program, Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| |
Collapse
|
2
|
Mel R, Rampitsch C, Zvomuya F, Nilsen KT, Beattie AD, Malalgoda M. Determining the Impact of Genotype × Environment on Oat Protein Isolate Composition Using HPLC and LC-MS Techniques. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8103-8113. [PMID: 38530645 DOI: 10.1021/acs.jafc.3c07486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The effect of genotype and environment on oat protein composition was analyzed through size exclusion-high-performance liquid chromatography (SE-HPLC) and liquid chromatography-mass spectrometry (LC-MS) to characterize oat protein isolate (OPI) extracted from three genotypes grown at three locations in the Canadian Prairies. SE-HPLC identified four fractions in OPI, including polymeric globulins, avenins, glutelins, and albumins, and smaller proteins. The protein composition was dependent on the environment, rather than the genotype. The proteins identified through LC-MS were grouped into eight categories, including globulins, prolamins/avenins, glutelins, enzymes/albumins, enzyme inhibitors, heat shock proteins, grain softness proteins, and allergenic proteins. Three main globulin protein types were also identified, including the P14812|SSG2-12S seed storage globulin, the Q6UJY8_TRITU-globulin, and the M7ZQM3_TRIUA-Globulin-1 S. Principal component analysis indicated that samples from Manitoba showed a positive association with the M7ZQM3_TRIUA-Globulin-1 S allele and Q6UJY8_TRITU-globulin, while samples from Alberta and Saskatchewan had a negative association with them. The results show that the influence of G × E on oat protein fractions and their relative composition is crucial to understanding genotypes' behavior in response to different environments.
Collapse
Affiliation(s)
- Roshema Mel
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Christof Rampitsch
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, Morden, Manitoba R6M 1Y5, Canada
| | - Francis Zvomuya
- Department of Soil Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Kirby T Nilsen
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, Morden, Manitoba R6M 1Y5, Canada
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Aaron D Beattie
- Crop Development Center, University of Saskatchewan, Saskatoon, Saskatchewan R3T 2N2, Canada
| | - Maneka Malalgoda
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
3
|
Kang YA, Kim YJ, Jin SK, Choi HJ. Antioxidant, Collagenase Inhibitory, and Antibacterial Effects of Bioactive Peptides Derived from Enzymatic Hydrolysate of Ulva australis. Mar Drugs 2023; 21:469. [PMID: 37755082 PMCID: PMC10532848 DOI: 10.3390/md21090469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/28/2023] Open
Abstract
The protein extract of Ulva australis hydrolyzed with Alcalase and Flavourzyme was found to have multi-functional properties, including total antioxidant capacity (TAC), collagenase inhibitory, and antibacterial activities. The #5 fraction (SP5) and #7 fraction (SP7) of U. australis hydrolysate from cation-exchange chromatography displayed significantly high TAC, collagenase inhibitory, and antibacterial effects against Propionibacterium acnes, and only the Q3 fraction from anion-exchange chromatography displayed high multi-functional activities. Eight of 42 peptides identified by MALDI-TOF/MS and Q-TOF/MS/MS were selected from the results for screening with molecular docking on target proteins and were then synthesized. Thr-Gly-Thr-Trp (TGTW) displayed ABTS [2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)] radical scavenging activity. The effect of TAC as Trolox equivalence was dependent on the concentration of TGTW. Asn-Arg-Asp-Tyr (NRDY) and Arg-Asp-Arg-Phe (RDRF) exhibited collagenase inhibitory activity, which increased according to the increase in concentration, and their IC50 values were 0.95 mM and 0.84 mM, respectively. Peptides RDRF and His-Ala-Val-Tyr (HAVY) displayed anti-P. Acnes effects, with IC50 values of 8.57 mM and 13.23 mM, respectively. These results suggest that the U. australis hydrolysate could be a resource for the application of effective nutraceuticals and cosmetics.
Collapse
Affiliation(s)
- You-An Kang
- Korea Beauty Industry Development Institute Co., Ltd., #501, Elite Bldg, Jeju Science Park, Cheomdanro 213-4, Jeju 63309, Republic of Korea;
| | - Ye-Jin Kim
- Oceanpep Co., Ltd., 105, Jinju Bioindustry Foundation, Musan-myeon, Jinju 52839, Republic of Korea;
| | - Sang-Keun Jin
- Division of Animal Science, Gyeongsang National University, Jinju 52828, Republic of Korea;
| | - Hwa-Jung Choi
- Department of Beauty Art, Youngsan University, 142 Bansong Beltway (Bansong-dong), Busan 48015, Republic of Korea
| |
Collapse
|
4
|
Akan E, Karakaya S, Eda Eker Özkacar M, Kinik Ö. Effect of food matrix and fermentation on angiotensin-converting enzyme inhibitory activity and β-glucan release after in vitro digestion in oat-based products. Food Res Int 2023; 165:112508. [PMID: 36869510 DOI: 10.1016/j.foodres.2023.112508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/09/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023]
Abstract
The aim of this study was to determine the effects of fermentation and food matrix on the ACE inhibitory activities of the peptides obtained after in vitro gastrointestinal digestion, protein profiles (SDS-PAGE) and β-glucan amounts of oat products. Furthermore, the physicochemical and microbiological properties of fermented oat drinks and oat yogurt-like product obtained from oat fermentation were evaluated. Oat grains were mixed with a certain ratio of water 1:3 w/v (oat:water, yogurt consistency) and 1:5 w/v (oat:water, drink consistency), and this mixture was fermented with yogurt culture and probiotic Lactobacillus plantarum and fermented drinks and yogurt were produced. The results indicated that the fermented oat drink and the oat yogurt-like product had L. plantarum viability over 107 cfu/g. After the in vitro gastrointestinal digestion of the samples, the hydrolysis levels ranged from 57.70 % to 82.06 %.The hydrolysis level of the samples with fermented-drink consistency was significantly higher than the samples with yogurt consistency (p < 0.05).The SDS-PAGE profiles of the non-digested samples showed that the bands had molecular weights of 12-15 kDa and around 35 kDa. Bands whose molecular weights were around 35 kDA disappeared after gastric digestion. ACE inhibitory activities of the fractions composed of molecular weights of 2 kDa and 2-5 kDa obtained after in vitro gastrointestinal digestion of the oat samples were in the range of 46.93-65.91 %. The effect of fermentation on the ACE inhibitory activities of the peptide mixture with molecular weights between 2 and 5 kDa was not statistically significant, however, fermentation caused an increase in the ACE inhibitory activities of the peptide mixture with a molecular weight<2 kDa (p < 0.05). The β-glucan amounts of fermented and non-fermented oat products were in the range of 0.57-1.28 %. The β-glucan amounts detected after gastric digestion decreased considerably and β-glucan could not be detected in the supernatant after gastrointestinal digestion. This indicated that β-glucan did not solubilize in the supernatant (bioaccessible) and remained in the pellet. In conclusion, fermentation is a valuable process for releasing peptides with moderately high ACE inhibitory effects from the parent oat proteins.
Collapse
Affiliation(s)
- Ecem Akan
- Aydin Adnan Menderes University Faculty of Agriculture Department of Dairy Technology, Aydin, Türkiye.
| | - Sibel Karakaya
- Ege University Faculty of Engineering Department of Food Engineering, Izmir, Türkiye
| | | | - Özer Kinik
- Ege University Faculty of Agriculture Department of Dairy Technology, Izmir, Türkiye
| |
Collapse
|
5
|
Zang R, Yu Q, Guo Z. Impact of Nitrite Supplementation on Bioactive Peptides during Sausage Processing. Foods 2023; 12:foods12020407. [PMID: 36673498 PMCID: PMC9857388 DOI: 10.3390/foods12020407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 12/21/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
The goal of this investigation was to examine the impact of nitrite supplementation on the concentration, antioxidant properties, and species of antioxidant peptides in fermented sausages. The polypeptide concentration in nitrite-supplemented sausages was markedly elevated during sausage processing compared to the blank control (p < 0.05). Moreover, nitrite supplementation in fermented sausages markedly enhanced the DPPH, as well as the ABTS, hydroxyl radical, and superoxide anion free radical scavenging abilities (FRSA) of polypeptides (p < 0.05). The ferrous ion chelating ability was also significantly enhanced (p < 0.05). Based on the liquid chromatograph-mass spectrometer (LC-MS) analysis of the sausage, LPGGGHGDL, TKYRVP, FLKMN, SAGNPN, GLAGA, LPGGGT, DLEE, GKFNV, GLAGA, AEEEYPDL, HCNKKYRSEM, TSNRYHSYPWG, and other polypeptides exhibited antioxidant properties. Moreover, the number of species of antioxidant polypeptides in the nitrite-supplemented sausage was greater in comparison to the controls. Based on this evidence, it may be concluded that nitrite supplementation positively modulated antioxidant polypeptide formation in fermented sausages, thereby providing strong evidence that nitrite supplementation significantly enhances sausage quality.
Collapse
|
6
|
Preparation Process Optimization of Peptides from Agaricus blazei Murrill, and Comparison of Their Antioxidant and Immune-Enhancing Activities Separated by Ultrafiltration Membrane Technology. Foods 2023; 12:foods12020251. [PMID: 36673343 PMCID: PMC9858576 DOI: 10.3390/foods12020251] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/24/2022] [Accepted: 12/25/2022] [Indexed: 01/09/2023] Open
Abstract
Agaricus blazei murrill (ABM), a large fungus, is reported to have extensive biological activities but the antioxidant and immune-regulatory capacities have been less studied and the components responsible for the functions are unclear. This study prepared ABM peptides (ABMP) using ultrasound-assisted enzymatic extraction (UAEE) strategy and cascade ultrafiltration (UF) membrane technology. The UAEE extraction conditions were optimized using response surface methodology (RSM) with four factors and three levels to achieve the maximum ABMP yield (34.03%); the optimal conditions were an enzyme amount of 4%, ratio of ABM to water of 1:30, ultrasonic power of 360 W, and ultrasonic time of 30 min. Four ABMP fractions were obtained after UF with different pore size and their antioxidant and immune-regulatory abilities were evaluated and compared. The results showed that they could effectively scavenge DPPH, hydroxyl, and ABTS radicals, especially for ABMP-2; the scavenging rate of the above radicals were 79.31%, 63.60%, and 96.08%, respectively. In addition, four ABMP fractions also activated macrophage activity through strengthening phagocytosis and the production of NO, IL-6, IL-1β, and TNF-α in a dose-dependent manner. Notably, the ABMP-2 fraction with a MW of 3-5 kDa and peptide purity of 82.88% was found to have the best effect, showing the maximum phagocytosis (189.37%) as well as NO (7.98 μM), IL-6 (195.05 pg/mL), IL-1β (876.15 pg/mL), and TNF-α (1620 pg/mL) secretion at a treatment concentration of 150 μg/mL. The findings indicated that the ABMP, especially for the separate ABMP-2, could be used as dietary supplements and have the potential to be exploited as immune-enhancing agents.
Collapse
|
7
|
Wei L, Li H, Yu X, Yang H, Pu D, Zhu M, Lu Q, Bao Y, Zu Y. Amino Acid Composition, Antioxidant, α-Glucosidase and α-Amylase Inhibitory Activities of the Enzymic Polypeptide from Acer truncatum Seed Meal. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10473-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Ramírez Fuentes L, Richard C, Chen L. Sequential alcalase and flavourzyme treatment for preparation of α-amylase, α-glucosidase, and dipeptidyl peptidase (DPP)-IV inhibitory peptides from oat protein. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
9
|
Tuaño APP, Tan LAG, Hernandez MBS, Lu RE. In vitro
α‐amylase inhibitory and antioxidant properties of soluble proteins and their peptic hydrolysates from raw and cooked commercially available oatmeal. Cereal Chem 2021. [DOI: 10.1002/cche.10485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Arvin Paul P. Tuaño
- Institute of Chemistry, College of Arts and Sciences University of the Philippines Los Baños, College Laguna Philippines
- Department of Chemistry, College of Humanities and Sciences De La Salle Medical and Health Sciences Institute Dasmariñas City, Cavite Philippines
| | - Lance Aaron G. Tan
- Department of Chemistry, College of Humanities and Sciences De La Salle Medical and Health Sciences Institute Dasmariñas City, Cavite Philippines
- College of Medicine University of the East Ramon Magsaysay Memorial Medical Center Quezon City Philippines
| | - Mia Bianca S. Hernandez
- Department of Chemistry, College of Humanities and Sciences De La Salle Medical and Health Sciences Institute Dasmariñas City, Cavite Philippines
- College of Medicine De La Salle Medical and Health Sciences Institute Dasmariñas City, Cavite Philippines
| | - Ramon E. Lu
- Department of Chemistry, College of Humanities and Sciences De La Salle Medical and Health Sciences Institute Dasmariñas City, Cavite Philippines
- College of Medicine De La Salle Medical and Health Sciences Institute Dasmariñas City, Cavite Philippines
| |
Collapse
|
10
|
Esfandi R, Seidu I, Willmore W, Tsopmo A. Antioxidant, pancreatic lipase, and α-amylase inhibitory properties of oat bran hydrolyzed proteins and peptides. J Food Biochem 2021; 46:e13762. [PMID: 33997997 DOI: 10.1111/jfbc.13762] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 11/28/2022]
Abstract
This work aimed to determine the antioxidant properties of identified hydrolyzed oat proteins and peptides, and their capacity to inhibit lipase and α-amylase. The protein hydrolysates retarded the oxidation of peanut oil by reducing peroxide values (up to 2.5-fold), relative to the control oil. Of the five tested peptides, P1 (YFDEQNEQFR), P3 (SPFWNINAH), and P4 (NINAHSVVY) significantly reduced the oxidation of linoleic acid. In the enzyme assays, P3 was the best lipase inhibitor (IC50 85.4 ± 3 µM) while P1 was the most potent inhibitor of α-amylase (IC50 37.5 ± 1.1 µM). The structure-activity relationship assessed using the CABS-dock computational model predicted that interactions between peptides and pancreatic lipase residues of Ser153 , His264 , and Asp177 were important for the inhibition. In the case of α-amylase, interactions with residues of the active sites (Asp197 , Glu233 , and Asp300 ), but not those of calcium- or chloride-binding domains, were important for the inhibition. PRACTICAL APPLICATIONS: In recent years, there have been many studies focussing on isolating multifunctional peptides from food and food waste with antioxidant and bioactivity potential to promote human health. Some of these antioxidant peptides have been found to be effective to prevent diseases and complications such as hypertension, cardiovascular disease, cancer, diabetes, and obesity. The peptides studied in this work showed a great potential to prevent oxidation in a lipid system and demonstrated a significant ability to reduce the enzymatic activity of lipase and α-amylase. These enzymes contribute to the digestion of fat and carbohydrate, and their inhibition can reduce the absorption of these macronutrients and make them a great target for designing antioxidant and anti-obesity compounds. With the multifunctional activity of oat bran-derived peptides, it is proposed that these peptides can be used in food formulations due to their antioxidant and potential anti-obesity properties.
Collapse
Affiliation(s)
- Ramak Esfandi
- Food Science and Nutrition Program, Department of Chemistry, Carleton University, Ottawa, ON, Canada
| | - Issaka Seidu
- National Research Council of Canada, Ottawa, ON, Canada
| | - William Willmore
- Department of Biology, Carleton University, Ottawa, ON, Canada.,Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Apollinaire Tsopmo
- Food Science and Nutrition Program, Department of Chemistry, Carleton University, Ottawa, ON, Canada.,Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
11
|
Campos Espinosa GY, Udenigwe CC, Tsopmo A. Inhibition of low-density lipoprotein oxidation, antioxidative and bile acid-binding capacities of hydrolyzed proteins from carbohydrase-treated oat bran. J Food Biochem 2021; 46:e13675. [PMID: 33650139 DOI: 10.1111/jfbc.13675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 11/28/2022]
Abstract
This study investigated the valorization of oat bran and the use of its proteins to generate polypeptides with antioxidant and bile acid-binding properties. Ten protein hydrolysates were prepared by treating cellulase (CPI) or Viscozyme (VPI) protein isolates with five proteases. VPI-pepsin was the best peroxyl radical scavenger (497 ± 6-μM Trolox equivalents [TE]/g) while VPI-Flavourzyme quenched hydroxyl radicals (28 ± 0.6) and VPI-pepsin superoxide anion radicals (45.3 ± 6.6%). Hydrolysates, except those produced with pepsin, dose-dependently chelated iron whereas VPI-Protamex had the best copper-chelating capacity (59.83 ± 1.40%). These antioxidative capacities were important in preventing by 50% in vitro copper-induced oxidation of human low-density lipoprotein. Furthermore, due to their aromatic amino acid contents and hydrophobicity, the hydrolysates bound up to 46.3% the bile acids taurodeoxycholate and taurocholate. PRACTICAL APPLICATIONS: The presence of oxidants in foods can damage food molecules and decrease their quality. They are also known to increase the risk of developing chronic conditions like cardiovascular disease. Finding new antioxidant molecules are therefore useful in the management of chronic diseases. Data from this work showed that hydrolyzed oat bran proteins can be useful in stabilizing commercial oil as they reduced the oxidation of peanut oil. Additionally, the protein hydrolysates not only prevented the oxidation of linoleic, a common component of both vegetable oils and biological cell membranes, they also inhibited the oxidation of human LDL cholesterol and chelated bile acids. These hydrolysates can then be further explored as multifunctional ingredients for the development of stable functional food products with potential beneficial effects on the cardiovascular system.
Collapse
Affiliation(s)
| | - Chibuike C Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Apollinaire Tsopmo
- Food Science and Nutrition Program, Department of Chemistry, Carleton University, Ottawa, ON, Canada.,Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
12
|
Tomé-Sánchez I, Martín-Diana AB, Peñas E, Frias J, Rico D, Jiménez-Pulido I, Martínez-Villaluenga C. Bioprocessed Wheat Ingredients: Characterization, Bioaccessibility of Phenolic Compounds, and Bioactivity During in vitro Digestion. FRONTIERS IN PLANT SCIENCE 2021; 12:790898. [PMID: 35003179 PMCID: PMC8740022 DOI: 10.3389/fpls.2021.790898] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/29/2021] [Indexed: 05/13/2023]
Abstract
To enlarge the applications of whole wheat grain (WWG) and wheat bran (WB) as functional ingredients in foodstuffs that can promote human health, researchers have explored bioprocessing approaches to improve the bioaccessibility of phenolic compounds from these food matrices and, subsequently, their biological effects. The objective of this study was to compare the composition in nutrients, anti-nutrients, and bioactive compounds of WWG and WB, and their respective bioprocessed products: sprouted wheat (GERM) and WB hydrolysate (stabilized by spray-drying [SPD] and microencapsulated [MEC]). In addition, to evaluate the functional properties of these ingredients, the bioaccessibility of phenolic compounds and their potential antioxidant and anti-inflammatory activities were monitored in different digestion steps. GERM had increased amounts of insoluble dietary fiber, higher diversity of oligosaccharides, and higher concentration of monosaccharides, free phosphorous, and phenolic compounds than WWG. SPD had improved content of soluble dietary fiber, oligosaccharides, monosaccharides, free phosphorous, and phenolic compounds (vs. WB), whereas MEC was mainly composed of protein and had nearly 2-fold lower content of SPD components. All the ingredients showed lower amounts of phytic acid as compared with raw materials. In all samples, hydroxycinnamic acids were the most representative polyphenols followed by minor amounts of hydroxybenzoic acids and flavonoids. Gastrointestinal digestion of GERM, SPD, and MEC revealed high stability of total phenolic compounds in both gastric and intestinal phases. Hydroxycinnamic acids were the most bioaccessible compounds during digestion among the three bioprocessed wheat ingredients studied, although their bioaccessibility varied across ingredients. In this sense, the bioaccessibility of ferulic acid (FA) derivatives increased in GERM with progression of the digestion, while it was reduced in SPD and MEC up to the end of the intestinal phase. Microencapsulation of SPD with pea protein led to generally to lower bioaccessible amounts of phenolic acids. Comparison analysis of biological effects highlighted SPD for its most potent antioxidant effects in the gastrointestinal tract (3 out 4 antioxidant parameters with highest values), while no clear differences were observed with regard to in vitro anti-inflammatory activity. Overall, these results support the potential application of GERM, SPD, and MEC as functional and nutraceutical ingredients.
Collapse
Affiliation(s)
- Irene Tomé-Sánchez
- Department of Characterization, Quality and Safety (DCCS), Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), Madrid, Spain
| | - Ana Belén Martín-Diana
- Agricultural and Technical Institute of Castile and Leon (ITACyL), Sub-directorate of Research and Technology, Valladolid, Spain
| | - Elena Peñas
- Department of Characterization, Quality and Safety (DCCS), Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), Madrid, Spain
| | - Juana Frias
- Department of Characterization, Quality and Safety (DCCS), Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), Madrid, Spain
| | - Daniel Rico
- Agricultural and Technical Institute of Castile and Leon (ITACyL), Sub-directorate of Research and Technology, Valladolid, Spain
| | - Iván Jiménez-Pulido
- Agricultural and Technical Institute of Castile and Leon (ITACyL), Sub-directorate of Research and Technology, Valladolid, Spain
| | - Cristina Martínez-Villaluenga
- Department of Characterization, Quality and Safety (DCCS), Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), Madrid, Spain
- *Correspondence: Cristina Martínez-Villaluenga
| |
Collapse
|
13
|
Wen C, Zhang J, Zhang H, Duan Y, Ma H. Plant protein-derived antioxidant peptides: Isolation, identification, mechanism of action and application in food systems: A review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.09.019] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
14
|
Sánchez-López F, Robles-Olvera VJ, Hidalgo-Morales M, Tsopmo A. Characterization of Amaranthus hypochondriacus seed protein fractions, and their antioxidant activity after hydrolysis with lactic acid bacteria. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2020.103075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
15
|
Pan M, Liu K, Yang J, Liu S, Wang S, Wang S. Advances on Food-Derived Peptidic Antioxidants-A Review. Antioxidants (Basel) 2020; 9:E799. [PMID: 32867173 PMCID: PMC7554705 DOI: 10.3390/antiox9090799] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023] Open
Abstract
The oxidation process is considered to be the main reason behind human aging, human degenerative diseases and food quality degradation. Food-derived peptidic antioxidants (PAs) have wide sources and great activity, and have broad application prospects in removing excess reactive oxygen species in the body, anti-aging and preventing and treating diseases related to oxidative stress. On the other hand, PAs are expected to inhibit the lipid peroxidation of foods and increase the stability of the food system in the food industry. However, the production pathways and action mechanism of food-derived PAs are diverse, which makes it is difficult to evaluate the performance of PAs which is why the commercial application of PAs is still in its infancy. This article focuses on reviewing the preparation, purification, and characterization methods of food-derived PAs, and expounds the latest progress in performance evaluation and potential applications, in order to provide an effective reference for subsequent related research of PAs.
Collapse
Affiliation(s)
- Mingfei Pan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (M.P.); (K.L.); (J.Y.); (S.L.); (S.W.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Kaixin Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (M.P.); (K.L.); (J.Y.); (S.L.); (S.W.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jingying Yang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (M.P.); (K.L.); (J.Y.); (S.L.); (S.W.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shengmiao Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (M.P.); (K.L.); (J.Y.); (S.L.); (S.W.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shan Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (M.P.); (K.L.); (J.Y.); (S.L.); (S.W.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (M.P.); (K.L.); (J.Y.); (S.L.); (S.W.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
16
|
Olagunju AI, Omoba OS, Enujiugha VN, Alashi AM, Aluko RE. Thermoase-hydrolysed pigeon pea protein and its membrane fractions possess in vitro bioactive properties (antioxidative, antihypertensive, and antidiabetic). J Food Biochem 2020; 45:e13429. [PMID: 32776555 DOI: 10.1111/jfbc.13429] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/24/2020] [Accepted: 07/20/2020] [Indexed: 12/26/2022]
Abstract
Enzymatic hydrolysis can liberate bioactive peptides from protein materials, thus, pigeon pea was hydrolysed using thermoase. Crude hydrolysate (PPHT) was subjected to ultrafiltration using different molecular weight cutoffs to collect <1, 1-3, 3-5, 5-10, and >10 kDa peptide fractions. Fractions were analysed for in vitro antioxidative, antihypertensive, and antidiabetic properties. The peptide fractions had stronger DPPH• scavenging and renin inhibition when compared to PPHT. In contrast, ACE inhibition was stronger for the PPHT and <1 kDa peptide fraction while activity decreased as peptide size increased. The <1 kDa peptide also showed significantly stronger ferric reducing antioxidant power, OH• scavenging and inhibition of linoleic acid oxidation when compared to PPHT. α-amylase and α-glucosidase were inhibited by all the peptide fractions, though the 3-5 and >10 kDa had higher values. We conclude that the PPHT and peptide fractions could serve as potential ingredients to formulate antihypertensive and antidiabetic functional foods and nutraceuticals. PRACTICAL APPLICATIONS: Oxidative stress promotes the generation of free radicals, which have a significant impact in the pathogenesis of human chronic diseases such as cardiovascular impairment, cancer, and diabetes. Peptides generated from enzymatic hydrolysis of proteins have been identified to impart beneficial health effects. In this work, we showed that a thermoase digest of pigeon pea protein as well as the fractionated peptides had strong antioxidant properties in addition to exhibiting inhibitory activities against renin and angiotensin converting enzyme, the main therapeutic targets for antihypertensive agents. The peptide products also inhibited α-amylase and α-glucosidase activities, providing potential ingredients that can be used to formulate antidiabetic functional foods.
Collapse
Affiliation(s)
- Aderonke I Olagunju
- Department of Food Science and Technology, Federal University of Technology, Akure, Nigeria.,Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Olufunmilayo S Omoba
- Department of Food Science and Technology, Federal University of Technology, Akure, Nigeria
| | - Victor N Enujiugha
- Department of Food Science and Technology, Federal University of Technology, Akure, Nigeria
| | - Adeola M Alashi
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
17
|
Sushytskyi L, Lukáč P, Synytsya A, Bleha R, Rajsiglová L, Capek P, Pohl R, Vannucci L, Čopíková J, Kaštánek P. Immunoactive polysaccharides produced by heterotrophic mutant of green microalga Parachlorella kessleri HY1 (Chlorellaceae). Carbohydr Polym 2020; 246:116588. [PMID: 32747247 DOI: 10.1016/j.carbpol.2020.116588] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/17/2020] [Accepted: 06/04/2020] [Indexed: 11/27/2022]
Abstract
Hot water extract from biomass of heterotrophic mutant green alga Parachlorella kessleri HY1 (Chlorellaceae) was deproteinised, and three polysaccharidic fractions were obtained by preparative chromatography. The low-molecular fraction (1.5 × 104g mol-1) was defined mainly as branched O-2-β-xylo-(1→3)-β-galactofuranan where xylose is partially methylated at O-4. Two high-molecular fractions (3.05 × 105 and 9.84 × 104g mol-1) were complex polysaccharides containing α-l-rhamnan and xylogalactofuranan parts in different ratios. The polysaccharides were well soluble in hot water and, upon cooling, tended to self-segregate. Immunomodulatory activities of the obtained fractions were preliminary tested using ELISA, FACS and ImmunoSpot kits. The polysaccharides increased the TNF-α production in melanoma bearing mice with much higher intensity than in healthy mice. This was in agreement with the FACS results on T and B cells indicating their possibly secondary activation by innate immunity cells.
Collapse
Affiliation(s)
- Leonid Sushytskyi
- Department of Carbohydrates and Cereals, Faculty of Food and Biochemical Technology, University of Chemistry and Technology in Prague, Technická 5, 166 28, Prague 6 Dejvice, Czech Republic.
| | - Pavol Lukáč
- Czech Academy of Sciences, Institute of Microbiology, Vídeňská 1083, 142 20, Prague 4 Krč, Czech Republic; Faculty of Science, Charles University, Albertov 6, 128 00, Prague 2, Czech Republic
| | - Andriy Synytsya
- Department of Carbohydrates and Cereals, Faculty of Food and Biochemical Technology, University of Chemistry and Technology in Prague, Technická 5, 166 28, Prague 6 Dejvice, Czech Republic
| | - Roman Bleha
- Department of Carbohydrates and Cereals, Faculty of Food and Biochemical Technology, University of Chemistry and Technology in Prague, Technická 5, 166 28, Prague 6 Dejvice, Czech Republic
| | - Lenka Rajsiglová
- Czech Academy of Sciences, Institute of Microbiology, Vídeňská 1083, 142 20, Prague 4 Krč, Czech Republic; Faculty of Science, Charles University, Albertov 6, 128 00, Prague 2, Czech Republic
| | - Peter Capek
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry AS CR, Flemingovo sq. 2, 166 28, Prague 6, Czech Republic
| | - Luca Vannucci
- Czech Academy of Sciences, Institute of Microbiology, Vídeňská 1083, 142 20, Prague 4 Krč, Czech Republic
| | - Jana Čopíková
- Department of Carbohydrates and Cereals, Faculty of Food and Biochemical Technology, University of Chemistry and Technology in Prague, Technická 5, 166 28, Prague 6 Dejvice, Czech Republic
| | - Petr Kaštánek
- Department of Biotechnology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology in Prague, Technická 5, 166 28, Prague 6 Dejvice, Czech Republic; EcoFuel Laboratories s.r.o., Ocelářská 9, Prague 9 Libeň, 190 00, Czech Republic
| |
Collapse
|
18
|
Shittu A, Esfandi R, Tsopmo A. Chromium and arsenic speciation analysis in meats by HPLC-ICP-MS in the presence of hydrolyzed oat proteins with radical scavenging activities. Heliyon 2020; 6:e03654. [PMID: 32258493 PMCID: PMC7113437 DOI: 10.1016/j.heliyon.2020.e03654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/12/2020] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
Transition metals play an important role in a wide variety of biological processes, but their functions are dependent on the quantity and the type of species present. Specific forms of arsenic (As) and chromium (Cr) are associated with oxidative stress, cellular damage and inflammation. The aim of this research was to test in a food system whether, in the presence of hydrolyzed oat proteins, arsenic or chromium will exist predominantly in a specific oxidative state, and to evaluate the potential implication of promoting or decreasing oxidative stress. Eight hydrolyzed proteins with different degrees of radical scavenging activities were produced by combining two extraction methods and four proteases. The addition of hydrolysates to ground chicken meat decreased lipid hydroperoxides by up to 50% when stored at 4 °C but had no effect at -20 °C. The ratio of pentavalent arsenic (As(V)) to arsenobetaine (AsB) in meat was about 2:1 but in the presence of the hydrolysates, meanwhile, the amount of AsB detected was 3-fold higher depending on the storage condition. This was due to better extraction of AsB in the presence of hydrolysates rather than to the conversion of other species. Data on chromium showed that Cr(VI) contents decreased from 14.3 ± 0.1 to 6.3 ± 0.5 μg/g while concentrations of Cr(III) increased from 2.8 ± 0. 2 to 8.6 ± 0.7 μg/g. In summary, the addition of hydrolyzed oat proteins to chicken meat enhanced the extraction of AsB, and had little effect on arsenic speciation during storage meanwhile, there was a reduction of Cr(VI) to Cr(III) which was in part due to the relative content of thiol groups. Additionally, there was a reduction of lipid oxidation in meats that contained the oat protein hydrolysates.
Collapse
Affiliation(s)
- Adenike Shittu
- Food Science and Nutrition Program, Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Ramak Esfandi
- Food Science and Nutrition Program, Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Apollinaire Tsopmo
- Food Science and Nutrition Program, Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.,Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
19
|
Esfandi R, Willmore WG, Tsopmo A. Antioxidant and Anti-Apoptotic Properties of Oat Bran Protein Hydrolysates in Stressed Hepatic Cells. Foods 2019; 8:E160. [PMID: 31083557 PMCID: PMC6560420 DOI: 10.3390/foods8050160] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/03/2019] [Accepted: 05/09/2019] [Indexed: 12/19/2022] Open
Abstract
The objective of this work was to find out how the method to extract proteins and subsequent enzymatic hydrolysis affect the ability of hepatic cells to resist oxidative stress. Proteins were isolated from oat brans in the presence of Cellulase (CPI) or Viscozyme (VPI). Four protein hydrolysates were produced from CPI and four others from VPI when they treated with Alcalase, Flavourzyme, Papain, or Protamex. Apart from CPI-Papain that reduced the viability of cell by 20%, no other hydrolysate was cytotoxic in the hepatic HepG2 cells. In the cytoprotection test, VPI-Papain and VPI-Flavourzyme fully prevented the damage due to peroxyl radical while CPI-Papain and CPI-Alcalase enhanced the cellular damage. Cells treated with VPI-hydrolysates reduced intracellular reactive oxygen species (ROS) by 20-40% and, also increased the intracellular concentration of glutathione, compared to CPI-hydrolysates. In antioxidant enzyme assays, although all hydrolysates enhanced the activity of both superoxide dismutase and catalase by up to 2- and 3.4-fold, respectively relative the control cells, the largest increase was due to VPI-Papain and VPI-Flavourzyme hydrolysates. In caspase-3 assays, hydrolysates with reduced ROS or enhanced antioxidant enzyme activities were able to reduce the activity of the pro-apoptotic enzyme, caspase-3 indicating that they prevented oxidative stress-induced cell death.
Collapse
Affiliation(s)
- Ramak Esfandi
- Food Science and Nutrition Program, Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
| | - William G Willmore
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
| | - Apollinaire Tsopmo
- Food Science and Nutrition Program, Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
20
|
Peptidomic analysis of hydrolyzed oat bran proteins, and their in vitro antioxidant and metal chelating properties. Food Chem 2019; 279:49-57. [DOI: 10.1016/j.foodchem.2018.11.110] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/12/2018] [Accepted: 11/25/2018] [Indexed: 11/20/2022]
|
21
|
Esfandi R, Walters ME, Tsopmo A. Antioxidant properties and potential mechanisms of hydrolyzed proteins and peptides from cereals. Heliyon 2019; 5:e01538. [PMID: 31183417 PMCID: PMC6495149 DOI: 10.1016/j.heliyon.2019.e01538] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 04/05/2019] [Accepted: 04/16/2019] [Indexed: 01/13/2023] Open
Abstract
Cereals like wheat, rice, corn, barley, rye, oat, and millet are staple foods in many regions around the world and contribute to more than half of human energy requirements. Scientific publications contain evidence showing that apart from energy, the regular consumption of whole grains is useful for the prevention of many chronic diseases associated with oxidative stress. Biological activities have mostly been attributed to the presence of glucans and polyphenols. In recent years however, food proteins have been investigated as sources of peptides that can exert biological functions, promote health and prevent oxidative stress. This review focuses on the role of hydrolyzed proteins and peptides with antioxidant properties in various models and their mechanisms which include hydrogen or electron transfer, metal chelating, and regulation of enzymes involved in the oxidation-reduction process.
Collapse
Affiliation(s)
- Ramak Esfandi
- Food Science and Nutrition Program, Department of Chemistry, Carleton Uinversity, 1125 Colonel By Drive, K1S 5B6, Ottawa, ON, Canada
| | - Mallory E. Walters
- Food Science and Nutrition Program, Department of Chemistry, Carleton Uinversity, 1125 Colonel By Drive, K1S 5B6, Ottawa, ON, Canada
| | - Apollinaire Tsopmo
- Food Science and Nutrition Program, Department of Chemistry, Carleton Uinversity, 1125 Colonel By Drive, K1S 5B6, Ottawa, ON, Canada
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, K1S 5B6, Ottawa, ON, Canada
| |
Collapse
|
22
|
Walters ME, Udenigwe CC, Tsopmo A. Structural Characterization and Functional Properties of Proteins from Oat Milling Fractions. J AM OIL CHEM SOC 2018. [DOI: 10.1002/aocs.12101] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Mallory E. Walters
- Food Science and Nutrition Program; Carleton University, 1125 Colonel By Drive; Ottawa ON K1S 5B6 Canada
| | - Chibuike C. Udenigwe
- Faculty of Health Sciences, School of Nutrition Sciences; University of Ottawa, 75 Laurier Ave E; Ottawa ON K1N 6N5 Canada
| | - Apollinaire Tsopmo
- Food Science and Nutrition Program; Carleton University, 1125 Colonel By Drive; Ottawa ON K1S 5B6 Canada
- Institute of Biochemistry; Carleton University, 1125 Colonel By Drive; Ottawa ON K1S 5B6 Canada
| |
Collapse
|
23
|
Production of antioxidant peptide fractions from a by-product of tomato processing: mass spectrometry identification of peptides and stability to gastrointestinal digestion. Journal of Food Science and Technology 2018; 55:3498-3507. [PMID: 30150808 DOI: 10.1007/s13197-018-3274-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/17/2018] [Accepted: 05/28/2018] [Indexed: 10/28/2022]
Abstract
In this study, proteins were extracted from tomato seeds, the main by-product of tomato processing. The incubation for 138.62 min coupled with 3% alcalase was observed to be optimum to produce a tomato seed protein hydrolysate (TSPH) with the highest antioxidant properties. Under these conditions, predicted TSPH activities were 62.99% scavenging of DPPH radicals and 54.81% reduction of phosphomolybdate. Separation of TSPH by ultrafiltration provided three fractions (UF1-UF3) of which, UF3 (< 3 kDa) showed the strongest activity (73.15% DPPH scavenging and 60.1% phosphomolybdate reduction). UF3 was further separated by RP-HPLC into sub-fractions F1-F6. Biological testing found that F2 and F4 were the most active in scavenging DPPH radicals (60.36 and 21.23%) and reducing phosphomolybdate (57.3 and 48.0%). LC-ESI-MS/MS analysis showed that the higher activity of F2 might be explained by the presence of more peptides that contained tyrosine and histidine, known to enhance antioxidant activity through hydrogen or electron transfer. In the simulated gastrointestinal digestion test, peptides in F2 were more resistant compared to those in F4. These findings indicate that peptide fraction F2 might be more useful in the formulation of functional foods because of its greater antioxidant activity and resistance to digestion.
Collapse
|
24
|
Agyei D, Tsopmo A, Udenigwe CC. Bioinformatics and peptidomics approaches to the discovery and analysis of food-derived bioactive peptides. Anal Bioanal Chem 2018. [PMID: 29516135 DOI: 10.1007/s00216-018-0974-1] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
There are emerging advancements in the strategies used for the discovery and development of food-derived bioactive peptides because of their multiple food and health applications. Bioinformatics and peptidomics are two computational and analytical techniques that have the potential to speed up the development of bioactive peptides from bench to market. Structure-activity relationships observed in peptides form the basis for bioinformatics and in silico prediction of bioactive sequences encrypted in food proteins. Peptidomics, on the other hand, relies on "hyphenated" (liquid chromatography-mass spectrometry-based) techniques for the detection, profiling, and quantitation of peptides. Together, bioinformatics and peptidomics approaches provide a low-cost and effective means of predicting, profiling, and screening bioactive protein hydrolysates and peptides from food. This article discuses the basis, strengths, and limitations of bioinformatics and peptidomics approaches currently used for the discovery and analysis of food-derived bioactive peptides.
Collapse
Affiliation(s)
- Dominic Agyei
- Department of Food Science, University of Otago, Dunedin, 9054, New Zealand
| | - Apollinaire Tsopmo
- Food Science and Nutrition Program, Department of Chemistry, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Chibuike C Udenigwe
- School of Nutrition Sciences, University of Ottawa, Ottawa, ON, K1N 6N5, Canada. .,Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
| |
Collapse
|
25
|
Leung R, Venus C, Zeng T, Tsopmo A. Structure-function relationships of hydroxyl radical scavenging and chromium-VI reducing cysteine-tripeptides derived from rye secalin. Food Chem 2018; 254:165-169. [PMID: 29548438 DOI: 10.1016/j.foodchem.2018.01.190] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/21/2018] [Accepted: 01/31/2018] [Indexed: 11/16/2022]
Abstract
The aim of the study was to determine the activity of four rye peptides and molecular descriptors responsible for the detected biological function. The activity was determined using hydroxyl radical scavenging and chromium-VI (Cr(VI) reducing assays while the density functional theory (DFT) was used for molecular descriptors (i.e. structure-activity relationships). It was found that at pH 7.4, peptide CQV had the highest Cr(VI) reducing activity (76%) followed by QCA (30.8%) while other peptides had less than 25% reduction. All tested peptides were less active at pH 3.0 and this was due to poor spatial proximity of thiol and amine on the glutamine side chain. In the hydroxyl radical scavenging assay, CQV had the highest activity with 28.9 ± 1.3% inhibition of the formation of HO radicals compared to 19.0-13.6% for other peptides. Cysteine at the N-terminal was important for both the reduction of chromium (pH 7.4) and the HO activity because S-H bond energies at that position were lower based on DFT calculations.
Collapse
Affiliation(s)
- Rachel Leung
- Food Science and Nutrition Program, Carleton University, 1125 Colonel By Drive, K1S 5B6 Ottawa, ON, Canada
| | - Colin Venus
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, K1S 5B6 Ottawa, ON, Canada
| | - Tao Zeng
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, K1S 5B6 Ottawa, ON, Canada
| | - Apollinaire Tsopmo
- Food Science and Nutrition Program, Carleton University, 1125 Colonel By Drive, K1S 5B6 Ottawa, ON, Canada; Department of Chemistry, Carleton University, 1125 Colonel By Drive, K1S 5B6 Ottawa, ON, Canada; Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, K1S 5B6 Ottawa, ON, Canada.
| |
Collapse
|
26
|
Sitthiya K, Devkota L, Sadiq MB, Anal AK. Extraction and characterization of proteins from banana ( Musa Sapientum L) flower and evaluation of antimicrobial activities. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2018; 55:658-666. [PMID: 29391630 PMCID: PMC5785391 DOI: 10.1007/s13197-017-2975-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/18/2017] [Accepted: 11/22/2017] [Indexed: 12/20/2022]
Abstract
Ultrasonic assisted alkaline extraction of protein from banana flower was optimized using response surface methodology. The extracted proteins were characterized by Fourier transform infrared spectroscopy and molecular weight distribution was determined by gel electrophoresis. The maximum protein yield of 252.25 mg/g was obtained under optimized extraction conditions: temperature 50 °C, 30 min extraction time and 1 M NaOH concentration. The alkaline extraction produced a significantly high protein yield compared to enzymatic extraction of banana flower. Chemical finger printing of proteins showed the presence of tyrosine, tryptophan and amide bonds in extracted protein. Alkaline and pepsin assisted extracted banana flower proteins showed characteristic bands at 40 and 10 kDA, respectively. The extracted proteins showed antibacterial effects against both gram positive and gram negative bacteria. The high protein content and antimicrobial activity indicate the potential applications of banana flower in the food and feed industry.
Collapse
Affiliation(s)
- Kewalee Sitthiya
- Food Engineering and Bioprocess Technology, Department of Food, Agriculture and Bioresources, Asian Institute of Technology, Khlong Luang, Pathum Thani 12120 Thailand
| | - Lavaraj Devkota
- Food Engineering and Bioprocess Technology, Department of Food, Agriculture and Bioresources, Asian Institute of Technology, Khlong Luang, Pathum Thani 12120 Thailand
| | - Muhammad Bilal Sadiq
- Food Engineering and Bioprocess Technology, Department of Food, Agriculture and Bioresources, Asian Institute of Technology, Khlong Luang, Pathum Thani 12120 Thailand
| | - Anil Kumar Anal
- Food Engineering and Bioprocess Technology, Department of Food, Agriculture and Bioresources, Asian Institute of Technology, Khlong Luang, Pathum Thani 12120 Thailand
| |
Collapse
|
27
|
Kamdem JP, Tsopmo A. Reactivity of peptides within the food matrix. J Food Biochem 2017; 43:e12489. [PMID: 31353483 DOI: 10.1111/jfbc.12489] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 11/27/2017] [Accepted: 11/27/2017] [Indexed: 11/29/2022]
Abstract
Numerous biological activities have been reported for peptides or peptide-rich fractions from hydrolyzed food proteins. Some of the properties of peptides include antioxidant, antimicrobial, anti-inflammation, antihypertensive, and immune system modulation. To evaluate the efficacy of peptides in vivo, foods have been used as carrier vehicles. However, there are many molecules in foods that can react or interact with peptides, thereby reducing the bioavailability or bioactivity of these peptides. The Schiff base reactions of peptides with reducing sugars are well established. Peptides can also react with oxidized lipids or reactive oxygen species. Secondary metabolites such as quinones in foods, can react as well with amine or thiol groups of peptides. All these reactions affect the concentration of peptides. This review summarizes and discusses some of the implication of those reactions on the availability of bioactive peptides within the food matrix. PRACTICAL APPLICATIONS: Bioactive peptides possess specific effects on foods like preventing oxidative rancidity. In human, they may lower blood pressure or reduce inflammation. The knowledge on the type of reactions these peptides may encountered when foods are used as transport vehicles is essential. This will prevent variability in intake and ensure proper dosage and reproducible results.
Collapse
Affiliation(s)
- Jean Paul Kamdem
- Department of Biological Sciences, Regional University of Cariri, Crato, Ceará, Brazil
| | - Apollinaire Tsopmo
- Food Science and Nutrition Program, Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
28
|
Ratnasari N, Walters M, Tsopmo A. Antioxidant and lipoxygenase activities of polyphenol extracts from oat brans treated with polysaccharide degrading enzymes. Heliyon 2017; 3:e00351. [PMID: 28725872 PMCID: PMC5506884 DOI: 10.1016/j.heliyon.2017.e00351] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/28/2017] [Accepted: 07/05/2017] [Indexed: 01/09/2023] Open
Abstract
This study used polysaccharide degrading enzymes and protein precipitation to extract polyphenols from oats and to determine their bioactivity. Duplicate oat brans were treated with viscozyme (Vis), cellulase (Cel) or no enzyme (control, CTL) then, proteins were removed in one set (Vis1, Cel1, CTL1) and not in the other (Vis2, Cel2, CTL2). HPLC analyses showed that for cellulase treated brans, precipitation of proteins increased phenolic acids and avenanthramides by 14%. Meanwhile, a decreased of 67% and 20% respectively was found for viscozyme and control brans. The effect of protein precipitation on soluble polyphenols is therefore dependent of the carbohydrase, as proteins with different compositions will interact differently with other molecules. Radical scavenging data showed that Cel1 and Vis1 had higher quenching effects on ROO• radicals with activities of 22.1 ± 0.8 and 23.5 ± 1.2 μM Trolox Equivalents/g defatted brans. Meanwhile, CTL2 had the highest HO• radicals inhibition (49.4 ± 2.8%) compared to 10.8–32.3% for others. Samples that highly inhibited lipoxygenase (LOX), an enzyme involved in lipid oxidation were Cel1 (23.4 ± 2.3%) and CTL1 (18 ± 0.4%).
Collapse
Affiliation(s)
- Nisita Ratnasari
- Food Science and Nutrition Program, 1125 Colonel By Drive, K1S 5B6, Ottawa, ON, Canada
| | - Mallory Walters
- Food Science and Nutrition Program, 1125 Colonel By Drive, K1S 5B6, Ottawa, ON, Canada
| | - Apollinaire Tsopmo
- Food Science and Nutrition Program, 1125 Colonel By Drive, K1S 5B6, Ottawa, ON, Canada.,Institute of Biochemistry Carleton University, 1125 Colonel By Drive, K1S 5B6, Ottawa, ON, Canada
| |
Collapse
|