1
|
Gopal Krishnan PD, Lee WX, Goh KY, Choy SM, Turqueza LRR, Lim ZH, Tang HW. Transcriptional regulation of autophagy in skeletal muscle stem cells. Dis Model Mech 2025; 18:DMM052007. [PMID: 39925192 PMCID: PMC11849978 DOI: 10.1242/dmm.052007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025] Open
Abstract
Muscle stem cells (MuSCs) are essential for the regenerative capabilities of skeletal muscles. MuSCs are maintained in a quiescent state, but, when activated, can undergo proliferation and differentiation into myocytes, which fuse and mature to generate muscle fibers. The maintenance of MuSC quiescence and MuSC activation are processes that are tightly regulated by autophagy, a conserved degradation system that removes unessential or dysfunctional cellular components via lysosomes. Both the upregulation and downregulation of autophagy have been linked to impaired muscle regeneration, causing myopathies such as cancer cachexia, sarcopenia and Duchenne muscular dystrophy. In this Review, we highlight the importance of autophagy in regulating MuSC activity during muscle regeneration. Additionally, we summarize recent studies that link the transcriptional dysregulation of autophagy to muscle atrophy, emphasizing the dominant roles that transcription factors play in myogenic programs. Deciphering and understanding the roles of these transcription factors in the regulation of autophagy during myogenesis could advance the development of regenerative medicine.
Collapse
Affiliation(s)
- Priya D. Gopal Krishnan
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Wen Xing Lee
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Kah Yong Goh
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Sze Mun Choy
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | | | - Zhuo Han Lim
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Hong-Wen Tang
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore 169610, Singapore
| |
Collapse
|
2
|
Pulous FE, Steurer B, Pun FW, Zhang M, Ren F, Zhavoronkov A. MAT2A inhibition combats metabolic and transcriptional reprogramming in cancer. Drug Discov Today 2024; 29:104189. [PMID: 39306235 DOI: 10.1016/j.drudis.2024.104189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/05/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
Metabolic and transcriptional reprogramming are crucial hallmarks of carcinogenesis that present exploitable vulnerabilities for the development of targeted anticancer therapies. Through controlling the balance of the cellular methionine (MET) metabolite pool, MET adenosyl transferase 2 alpha (MAT2A) regulates crucial steps during metabolism and the epigenetic control of transcription. The aberrant function of MAT2A has been shown to drive malignant transformation through metabolic addiction, transcriptional rewiring, and immune modulation of the tumor microenvironment (TME). Moreover, MAT2A sustains the survival of 5'-methylthioadenosine phosphorylase (MTAP)-deficient tumors, conferring synthetic lethality to cancers with MTAP loss, a genetic alteration that occurs in ∼15% of all cancers. Thus, the pharmacological inhibition of MAT2A is emerging as a desirable therapeutic strategy to combat tumor growth. Here, we review the latest insights into MAT2A biology, focusing on its roles in both metabolic addiction and gene expression modulation in the TME, outline the current landscape of MAT2A inhibitors, and highlight the most recent clinical developments and opportunities for MAT2A inhibition as a novel anti-tumor therapy.
Collapse
Affiliation(s)
- Fadi E Pulous
- Insilico Medicine US Inc, 1000 Massachusetts Avenue, Suite 126, Cambridge, MA 02138, USA
| | - Barbara Steurer
- Insilico Medicine US Inc, 1000 Massachusetts Avenue, Suite 126, Cambridge, MA 02138, USA
| | - Frank W Pun
- Insilico Medicine Hong Kong Ltd, Unit 310, 3/F, Building 8W, Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - Man Zhang
- Insilico Medicine Shanghai Ltd, 9F, Chamtime Plaza Block C, Lane 2889, Jinke Road, Pudong New Area, China
| | - Feng Ren
- Insilico Medicine Shanghai Ltd, 9F, Chamtime Plaza Block C, Lane 2889, Jinke Road, Pudong New Area, China
| | - Alex Zhavoronkov
- Insilico Medicine US Inc, 1000 Massachusetts Avenue, Suite 126, Cambridge, MA 02138, USA; Insilico Medicine Hong Kong Ltd, Unit 310, 3/F, Building 8W, Hong Kong Science and Technology Park, Hong Kong SAR, China; Insilico Medicine AI Ltd, Level 6, Unit 08, Block A, IRENA HQ Building, Masdar City, Abu Dhabi, UAE.
| |
Collapse
|
3
|
Rajabian N, Choudhury D, Ikhapoh I, Saha S, Kalyankar AS, Mehrotra P, Shahini A, Breed K, Andreadis ST. Reversine ameliorates hallmarks of cellular senescence in human skeletal myoblasts via reactivation of autophagy. Aging Cell 2023; 22:e13764. [PMID: 36625257 PMCID: PMC10014065 DOI: 10.1111/acel.13764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 10/20/2022] [Accepted: 12/08/2022] [Indexed: 01/11/2023] Open
Abstract
Cellular senescence leads to the depletion of myogenic progenitors and decreased regenerative capacity. We show that the small molecule 2,6-disubstituted purine, reversine, can improve some well-known hallmarks of cellular aging in senescent myoblast cells. Reversine reactivated autophagy and insulin signaling pathway via upregulation of Adenosine Monophosphate-activated protein kinase (AMPK) and Akt2, restoring insulin sensitivity and glucose uptake in senescent cells. Reversine also restored the loss of connectivity of glycolysis to the TCA cycle, thus restoring dysfunctional mitochondria and the impaired myogenic differentiation potential of senescent myoblasts. Altogether, our data suggest that cellular senescence can be reversed by treatment with a single small molecule without employing genetic reprogramming technologies.
Collapse
Affiliation(s)
- Nika Rajabian
- Department of Chemical and Biological EngineeringUniversity at Buffalo, State University of New YorkAmherstNew YorkUSA
| | - Debanik Choudhury
- Department of Chemical and Biological EngineeringUniversity at Buffalo, State University of New YorkAmherstNew YorkUSA
| | - Izuagie Ikhapoh
- Department of Chemical and Biological EngineeringUniversity at Buffalo, State University of New YorkAmherstNew YorkUSA
| | - Shilpashree Saha
- Department of Biomedical EngineeringUniversity at Buffalo, State University of New YorkAmherstNew YorkUSA
| | - Aishwarya S. Kalyankar
- Department of Biomedical EngineeringUniversity at Buffalo, State University of New YorkAmherstNew YorkUSA
| | - Pihu Mehrotra
- Department of Chemical and Biological EngineeringUniversity at Buffalo, State University of New YorkAmherstNew YorkUSA
| | - Aref Shahini
- Department of Chemical and Biological EngineeringUniversity at Buffalo, State University of New YorkAmherstNew YorkUSA
| | - Kendall Breed
- Department of Chemical and Biological EngineeringUniversity at Buffalo, State University of New YorkAmherstNew YorkUSA
| | - Stelios T. Andreadis
- Department of Chemical and Biological EngineeringUniversity at Buffalo, State University of New YorkAmherstNew YorkUSA
- Department of Biomedical EngineeringUniversity at Buffalo, State University of New YorkAmherstNew YorkUSA
- Center of Excellence in Bioinformatics and Life SciencesUniversity at Buffalo, State University of New YorkAmherstNew YorkUSA
- Cell, Gene and Tissue Engineering (CGTE) Center, School of Engineering and Applied SciencesUniversity at Buffalo, State University of New YorkAmherstNew YorkUSA
| |
Collapse
|
4
|
Rajabian N, Ikhapoh I, Shahini S, Choudhury D, Thiyagarajan R, Shahini A, Kulczyk J, Breed K, Saha S, Mohamed MA, Udin SB, Stablewski A, Seldeen K, Troen BR, Personius K, Andreadis ST. Methionine adenosyltransferase2A inhibition restores metabolism to improve regenerative capacity and strength of aged skeletal muscle. Nat Commun 2023; 14:886. [PMID: 36797255 PMCID: PMC9935517 DOI: 10.1038/s41467-023-36483-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
We investigate the age-related metabolic changes that occur in aged and rejuvenated myoblasts using in vitro and in vivo models of aging. Metabolic and signaling experiments reveal that human senescent myoblasts and myoblasts from a mouse model of premature aging suffer from impaired glycolysis, insulin resistance, and generate Adenosine triphosphate by catabolizing methionine via a methionine adenosyl-transferase 2A-dependant mechanism, producing significant levels of ammonium that may further contribute to cellular senescence. Expression of the pluripotency factor NANOG downregulates methionine adenosyltransferase 2 A, decreases ammonium, restores insulin sensitivity, increases glucose uptake, and enhances muscle regeneration post-injury. Similarly, selective inhibition of methionine adenosyltransferase 2 A activates Akt2 signaling, repairs pyruvate kinase, restores glycolysis, and enhances regeneration, which leads to significant enhancement of muscle strength in a mouse model of premature aging. Collectively, our investigation indicates that inhibiting methionine metabolism may restore age-associated impairments with significant gain in muscle function.
Collapse
Affiliation(s)
- Nika Rajabian
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Izuagie Ikhapoh
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Shahryar Shahini
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Debanik Choudhury
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Ramkumar Thiyagarajan
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo and Research Service, Veterans Affairs Western New York Healthcare System, Buffalo, NY, USA
| | - Aref Shahini
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Joseph Kulczyk
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Kendall Breed
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Shilpashree Saha
- Department of Biomedical Engineering, University at Buffalo, Amherst, NY, USA
| | - Mohamed Alaa Mohamed
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Susan B Udin
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Aimee Stablewski
- Gene Targeting and Transgenic Shared Resource, Roswell Park Comprehensive Cancer Institute, Buffalo, NY, USA
| | - Kenneth Seldeen
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo and Research Service, Veterans Affairs Western New York Healthcare System, Buffalo, NY, USA
| | - Bruce R Troen
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo and Research Service, Veterans Affairs Western New York Healthcare System, Buffalo, NY, USA
| | - Kirkwood Personius
- Department of Rehabilitation Science, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA
| | - Stelios T Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA.
- Department of Biomedical Engineering, University at Buffalo, Amherst, NY, USA.
- Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, USA.
- Cell, Gene and Tissue Engineering (CGTE) Center, School of Engineering and Applied Sciences, University at Buffalo, Amherst, NY, USA.
| |
Collapse
|
5
|
Chen W, Chen Y, Liu Y, Wang X. Autophagy in muscle regeneration: potential therapies for myopathies. J Cachexia Sarcopenia Muscle 2022; 13:1673-1685. [PMID: 35434959 PMCID: PMC9178153 DOI: 10.1002/jcsm.13000] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 12/19/2022] Open
Abstract
Autophagy classically functions as a physiological process to degrade cytoplasmic components, protein aggregates, and/or organelles, as a mechanism for nutrient breakdown, and as a regulator of cellular architecture. Its biological functions include metabolic stress adaptation, stem cell differentiation, immunomodulation and diseases regulation, and so on. Current researches have proved that autophagy dysfunction may contribute to the pathogenesis of some myopathies through impairment of myofibres regeneration. Studies of autophagy inhibition also indicate the importance of autophagy in muscle regeneration, while activation of autophagy can restore muscle function in some myopathies. In this review, we aim to report the mechanisms of action of autophagy on muscle regeneration to provide relevant references for the treatment of regenerating defective myopathies by regulating autophagy. Results have shown that one key mechanism of autophagy regulating the muscle regeneration is to affect the differentiation fate of muscle stem cells (MuSCs), including quiescence maintenance, activation and differentiation. The roles of autophagy (organelle/protein degradation, energy facilitation, and/or other) vary at different myogenic stages of the repair process. When the muscle is in homeostasis, basal autophagy can maintain the quiescence state and stemness of MuSCs by renewing organelle and protein. After injury, the increased autophagy flux contributes to meet biological energy demand of MuSCs during activation and proliferation. By mitochondrial remodelling, autophagy during differentiation can promote the metabolic transformation and balance mitochondrial-mediated apoptosis signals in myoblasts. Autophagy in mature myofibres is also essential for the degradation of necrotic myofibres, and may affect the dynamics of MuSCs by affecting the secretion spectrum of myofibres or the recruitment of supporting cells. Except for myogenic cells, autophagy also plays an important role in regulating the function of non-myogenic cells in the muscle microenvironment, which is also essential for successful muscle recovery. Autophagy can regulate the immune microenvironment during muscle regeneration through the recruitment and polarization of macrophages, while autophagy in endothelial cells can regulate muscle regeneration in an angiogenic or angiogenesis-independent manner. Drug or nutrition targeted autophagy has been preliminarily proved to restore muscle function in myopathies by promoting muscle regeneration, and further understanding the role and mechanism of autophagy in various cell types during muscle regeneration will enable more effective combinatorial therapeutic strategies.
Collapse
Affiliation(s)
- Wei Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Yushi Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Yuxi Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Xinxia Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| |
Collapse
|
6
|
Tone Y, Mamchaoui K, Tsoumpra MK, Hashimoto Y, Terada R, Maruyama R, Gait MJ, Arzumanov AA, McClorey G, Imamura M, Takeda S, Yokota T, Wood MJ, Mouly V, Aoki Y. Immortalized Canine Dystrophic Myoblast Cell Lines for Development of Peptide-Conjugated Splice-Switching Oligonucleotides. Nucleic Acid Ther 2021; 31:172-181. [PMID: 33567244 PMCID: PMC7997716 DOI: 10.1089/nat.2020.0907] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/24/2020] [Indexed: 12/27/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe muscle-wasting disease caused by frameshift or nonsense mutations in the DMD gene, resulting in the loss of dystrophin from muscle membranes. Exon skipping using splice-switching oligonucleotides (SSOs) restores the reading frame of DMD pre-mRNA by generating internally truncated but functional dystrophin protein. To potentiate effective tissue-specific targeting by functional SSOs, it is essential to perform accelerated and reliable in vitro screening-based assessment of novel oligonucleotides and drug delivery technologies, such as cell-penetrating peptides, before their in vivo pharmacokinetic and toxicity evaluation. We have established novel canine immortalized myoblast lines by transducing murine cyclin-dependent kinase-4 and human telomerase reverse transcriptase genes into myoblasts isolated from beagle-based wild-type or canine X-linked muscular dystrophy in Japan (CXMDJ) dogs. These myoblast lines exhibited improved myogenic differentiation and increased proliferation rates compared with passage-15 primary parental myoblasts, and their potential to differentiate into myotubes was maintained in later passages. Using these dystrophin-deficient immortalized myoblast lines, we demonstrate that a novel cell-penetrating peptide (Pip8b2)-conjugated SSO markedly improved multiexon skipping activity compared with the respective naked phosphorodiamidate morpholino oligomers. In vitro screening using immortalized canine cell lines will provide a basis for further pharmacological studies on drug delivery tools.
Collapse
Affiliation(s)
- Yuichiro Tone
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
- Discovery Research Laboratories in Tsukuba, Nippon Shinyaku Co., Ltd., Tsukuba, Japan
| | - Kamel Mamchaoui
- Center of Research in Myology, Sorbonne University, INSERM, Institute of Myology, Paris, France
| | - Maria K. Tsoumpra
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Yasumasa Hashimoto
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Reiko Terada
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Rika Maruyama
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Michael J. Gait
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, United Kingdom
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Andrey A. Arzumanov
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, United Kingdom
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Graham McClorey
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Michihiro Imamura
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Matthew J.A. Wood
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- Oxford Harrington Rare Disease Centre, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Vincent Mouly
- Center of Research in Myology, Sorbonne University, INSERM, Institute of Myology, Paris, France
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| |
Collapse
|
7
|
Liu S, Yang D, Yu L, Aluo Z, Zhang Z, Qi Y, Li Y, Song Z, Xu G, Zhou L. Effects of lycopene on skeletal muscle-fiber type and high-fat diet-induced oxidative stress. J Nutr Biochem 2021; 87:108523. [PMID: 33039582 DOI: 10.1016/j.jnutbio.2020.108523] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/26/2020] [Accepted: 10/01/2020] [Indexed: 01/05/2023]
Abstract
Increasing studies report that many natural products can participate in formation of muscle fibers. This study aimed to investigate the effect of lycopene on skeletal muscle-fiber type in vivo and in vitro. C2C12 myoblasts were used in vitro study, and the concentration of lycopene was 10 µM. In vivo, 8-week-old male C57/BL6 mice were used and divided into four groups (n=8): (1) ND: normal-fat diet; (2) ND+Lyc: normal-fat diet mixed with 0.33% w/w lycopene; (3) HFD: high-fat diet; and (4) HFD+Lyc: high-fat diet mixed with 0.33% w/w lycopene. The mice tissue samples were collected after 8 weeks feeding. We found that lycopene supplementation enhanced the protein expression of slow-twitch fiber, succinate dehydrogenase, and malic dehydrogenase enzyme activities, whereas lycopene reduced the protein expression of fast-twitch fibers, lactate dehydrogenase, pyruvate kinase enzyme activities. Moreover, lycopene can promote skeletal muscle triglyceride deposition, enhanced the mRNA expression of genes related to lipid synthesis, reduced the mRNA expression of genes related to lipolysis. And high-fat diet-induced dyslipidemia and oxidative stress were attenuated after lycopene supplementation. Additionally, lycopene supplementation reduced the glycolytic reserve but enhanced mitochondrial ATP production in C2C12 cells. These results demonstrated that lycopene affects the activities of metabolic enzymes in muscle fibers, promotes the expression of slow-twitch fibers, and enhanced mitochondrial respiratory capacity. We speculated that lycopene affects the muscle-fiber type through aerobic oxidation, suggesting that lycopene exerts potential beneficial effects on skeletal muscle metabolism.
Collapse
Affiliation(s)
- Siqi Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, PR China
| | - Dan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, PR China
| | - Lin Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, PR China
| | - Zhier Aluo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, PR China
| | - Zhiwang Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, PR China
| | - Yilin Qi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, PR China
| | - Yixing Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, PR China
| | - Ziyi Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, PR China
| | - Gaoxiao Xu
- Teaching and Research Section of Biotechnology, Nanning University, Nanning, PR China.
| | - Lei Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, PR China.
| |
Collapse
|
8
|
Tan CM, Najib NAM, Suhaimi NF, Halid NA, Cho VV, Abdullah SI, Ismail MZ, Khor SC, Jaafar F, Makpol S. Modulation of Ki67 and myogenic regulatory factor expression by tocotrienol-rich fraction ameliorates myogenic program of senescent human myoblasts. Arch Med Sci 2021; 17:752-763. [PMID: 34025846 PMCID: PMC8130490 DOI: 10.5114/aoms.2019.85449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 09/08/2018] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Replicative senescence results in dysregulation of cell proliferation and differentiation, which plays a role in the regenerative defects observed during age-related muscle atrophy. Vitamin E is a well-known antioxidant, which potentially ameliorates a wide range of age-related manifestations. The aim of this study was to determine the effects of tocotrienol-rich fraction (TRF) in modulating the expression of proliferation- and differentiation-associated proteins in senescent human myoblasts during the differentiation phase. MATERIAL AND METHODS Human skeletal muscle myoblasts were cultured until senescence. Young and senescent cells were treated with TRF for 24 h before and after differentiation induction, followed by evaluation of cellular morphology and efficiency of differentiation. Expression of cell proliferation marker Ki67 protein and myogenic regulatory factors MyoD and myogenin were determined. RESULTS Our findings showed that treatment with TRF significantly improved the morphology of senescent myoblasts. Promotion of differentiation was observed in young and senescent myoblasts with TRF treatment as shown by the increased fusion index and larger size of myotubes. Increased Ki67 and myogenin expression with TRF treatment was also observed in senescent myoblasts, suggesting amelioration of the myogenic program by TRF during replicative senescence. CONCLUSIONS TRF modulates the expression of regulatory factors related to proliferation and differentiation in senescent human myoblasts and could be beneficial for ameliorating the regenerative defects during aging.
Collapse
Affiliation(s)
- Chun Min Tan
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nadwa Aqeela Mohd Najib
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nur Farahin Suhaimi
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nur Alia Halid
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Vi Vien Cho
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Saiful Idham Abdullah
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Muhammad Zulhilmi Ismail
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Shy Cian Khor
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Faizul Jaafar
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
9
|
Ramon P, Sparks J, Omoruyi F. Effect of Combined K. pinnata and Metformin Preparation on Inflammatory Cytokines in Normal and Diabetic Skeletal Muscle Cells. J Med Food 2020; 24:732-740. [PMID: 33179996 DOI: 10.1089/jmf.2020.0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Diabetes Mellitus is associated with systemic inflammation and oxidative stress, which may play a central role in the development of diabetic complications. In this study, combined preparations of Kalanchoe pinnata and metformin were investigated to determine the effects on inflammatory activity in human skeletal muscle myoblasts (HSMMs) and human diabetic skeletal muscle myoblasts (DHSMMs). Results showed that combinatorial preparations sustained cell viability for 3 days in both HSMM and DHSMM cells. However, a significant decrease in cellular viability occurred for both cell lines on day 5. Results also indicate that combinatorial preparations of K. pinnata may modulate immune responses by significantly upregulating proinflammatory markers, interleukin (IL) 2, and tumor necrosis factor-alpha, and upregulating the anti-inflammatory marker, IL-10, in HSMM and DHSMM cells. The combined preparations significantly downregulated the anti-inflammatory glycoprotein IL-6 in both diabetic and nondiabetic human skeletal muscle cells. The findings suggest that combined preparations of K. pinnata and metformin might be a potential immune-modulating agent that may promote inflammation and adversely affect the outcome of diabetic patients.
Collapse
Affiliation(s)
- Pedro Ramon
- Department of Physical and Environmental Sciences, Texas A&M University, Corpus Christi, Texas, USA
| | - Jean Sparks
- Department of Life Sciences, Texas A&M University, Corpus Christi, Texas, USA
| | - Felix Omoruyi
- Department of Life Sciences, Texas A&M University, Corpus Christi, Texas, USA
| |
Collapse
|
10
|
Zuo Z, Jing K, Wu H, Wang S, Ye L, Li Z, Yang C, Pan Q, Liu WJ, Liu HF. Mechanisms and Functions of Mitophagy and Potential Roles in Renal Disease. Front Physiol 2020; 11:935. [PMID: 32903665 PMCID: PMC7438724 DOI: 10.3389/fphys.2020.00935] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/13/2020] [Indexed: 12/19/2022] Open
Abstract
Mitophagy is an evolutionarily conserved process to selectively remove damaged or unnecessary mitochondria via the autophagic machinery. In this review, we focus on recent advances in the molecular mechanisms of mitophagy and how mitophagy contributes to cellular homeostasis in physiological and pathological contexts. We also briefly review and discuss the crosstalk between mitophagy and renal disease, highlighting its modulation as a potentially effective therapeutic strategy to treat kidney diseases such as acute kidney injury (AKI), diabetic kidney disease (DKD), and lupus nephritis (LN).
Collapse
Affiliation(s)
- Zhenying Zuo
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Kaipeng Jing
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hongluan Wu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shujun Wang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lin Ye
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhihang Li
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Chen Yang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Qingjun Pan
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Wei Jing Liu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Key Laboratory of Chinese Internal Medicine, Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China.,Renal Research Institution of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Hua-Feng Liu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
11
|
Bhattacharya D, Scimè A. Mitochondrial Function in Muscle Stem Cell Fates. Front Cell Dev Biol 2020; 8:480. [PMID: 32612995 PMCID: PMC7308489 DOI: 10.3389/fcell.2020.00480] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/22/2020] [Indexed: 01/25/2023] Open
Abstract
Mitochondria are crucial organelles that control cellular metabolism through an integrated mechanism of energy generation via oxidative phosphorylation. Apart from this canonical role, it is also integral for ROS production, fatty acid metabolism and epigenetic remodeling. Recently, a role for the mitochondria in effecting stem cell fate decisions has gained considerable interest. This is important for skeletal muscle, which exhibits a remarkable property for regeneration following injury, owing to satellite cells (SCs), the adult myogenic stem cells. Mitochondrial function is associated with maintaining and dictating SC fates, linked to metabolic programming during quiescence, activation, self-renewal, proliferation and differentiation. Notably, mitochondrial adaptation might take place to alter SC fates and function in the presence of different environmental cues. This review dissects the contribution of mitochondria to SC operational outcomes, focusing on how their content, function, dynamics and adaptability work to influence SC fate decisions.
Collapse
Affiliation(s)
| | - Anthony Scimè
- Molecular, Cellular and Integrative Physiology, Faculty of Health, York University, Toronto, ON, Canada
| |
Collapse
|
12
|
Zingiber Officinale Roscoe Prevents Cellular Senescence of Myoblasts in Culture and Promotes Muscle Regeneration. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:1787342. [PMID: 32419792 PMCID: PMC7210549 DOI: 10.1155/2020/1787342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/06/2020] [Indexed: 11/17/2022]
Abstract
Background Ageing resulted in a progressive loss of muscle mass and strength. Increased oxidative stress in ageing affects the capacity of the myoblast to differentiate leading to impairment of muscle regeneration. Zingiber officinale Roscoe (ginger) has potential benefits in reversing muscle ageing due to its antioxidant property. This study aimed to determine the effect of ginger in the prevention of cellular senescence and promotion of muscle regeneration. Methods Myoblast cells were cultured into young and senescent state before treated with different concentrations of ginger standardised extracts containing different concentrations of 6-gingerol and 6-shogaol. Analysis on cellular morphology and myogenic purity was carried out besides determination of SA-β-galactosidase expression and cell cycle profile. Myoblast differentiation was quantitated by determining the fusion index, maturation index, and myotube size. Results Treatment with ginger extracts resulted in improvement of cellular morphology of senescent myoblasts which resembled the morphology of young myoblasts. Our results also showed that ginger treatment caused a significant reduction in SA-β-galactosidase expression on senescent myoblasts indicating prevention of cellular senescence, while cell cycle analysis showed a significant increase in the percentage of cells in the G0/G1 phase and reduction in the S-phase cells. Increased myoblast regenerative capacity was observed as shown by the increased number of nuclei per myotube, fusion index, and maturation index. Conclusions Ginger extracts exerted their potency in promoting muscle regeneration as indicated by prevention of cellular senescence and promotion of myoblast regenerative capacity.
Collapse
|
13
|
Tepp K, Puurand M, Timohhina N, Aid-Vanakova J, Reile I, Shevchuk I, Chekulayev V, Eimre M, Peet N, Kadaja L, Paju K, Käämbre T. Adaptation of striated muscles to Wolframin deficiency in mice: Alterations in cellular bioenergetics. Biochim Biophys Acta Gen Subj 2020; 1864:129523. [PMID: 31935437 DOI: 10.1016/j.bbagen.2020.129523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Wolfram syndrome (WS), caused by mutations in WFS1 gene, is a multi-targeting disease affecting multiple organ systems. Wolframin is localized in the membrane of the endoplasmic reticulum (ER), influencing Ca2+ metabolism and ER interaction with mitochondria, but the exact role of the protein remains unclear. In this study we aimed to characterize alterations in energy metabolism in the cardiac and in the oxidative and glycolytic skeletal muscles in Wfs1-deficiency. METHODS Alterations in the bioenergetic profiles in the cardiac and skeletal muscles of Wfs1-knock-out (KO) male mice and their wild type male littermates were determined using high resolution respirometry, quantitative RT-PCR, NMR spectroscopy, and immunofluorescence confocal microscopy. RESULTS Oxygen consumption without ATP synthase activation (leak) was significantly higher in the glycolytic muscles of Wfs1 KO mice compared to wild types. ADP-stimulated respiration with glutamate and malate was reduced in the Wfs1-deficient cardiac as well as oxidative and glycolytic skeletal muscles. CONCLUSIONS Wfs1-deficiency in both cardiac and skeletal muscles results in functional alterations of energy transport from mitochondria to ATP-ases. There was a substrate-dependent decrease in the maximal Complex I -linked respiratory capacity of the electron transport system in muscles of Wfs1 KO mice. Moreover, in cardiac and gastrocnemius white muscles a decrease in the function of one pathway were balanced by the increase in the activity of the parallel pathway. GENERAL SIGNIFICANCE This work provides new insights to the muscle involvement at early stages of metabolic syndrome like WS as well as developing glucose intolerance.
Collapse
Affiliation(s)
- Kersti Tepp
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia.
| | - Marju Puurand
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Natalja Timohhina
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Jekaterina Aid-Vanakova
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Indrek Reile
- Laboratory of Chemical Physics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Igor Shevchuk
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Vladimir Chekulayev
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Margus Eimre
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411 Tartu, Estonia
| | - Nadežda Peet
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411 Tartu, Estonia
| | - Lumme Kadaja
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411 Tartu, Estonia
| | - Kalju Paju
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411 Tartu, Estonia
| | - Tuuli Käämbre
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| |
Collapse
|
14
|
Hashimoto M, Saito N, Ohta H, Yamamoto K, Tashiro A, Nakazawa K, Inanami O, Kitamura H. Inhibition of ubiquitin-specific protease 2 causes accumulation of reactive oxygen species, mitochondria dysfunction, and intracellular ATP decrement in C2C12 myoblasts. Physiol Rep 2019; 7:e14193. [PMID: 31353872 PMCID: PMC6661303 DOI: 10.14814/phy2.14193] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/04/2019] [Accepted: 07/10/2019] [Indexed: 12/29/2022] Open
Abstract
Ubiquitin-specific protease 2 (USP2) is considered to participate in the differentiation of myoblasts to myotubes, however, its functions in myoblasts under growth conditions remain elusive. In this study, we analyzed the physiological roles of USP2 in myoblasts using Usp2 knockout (KO) C2C12 cells as well as a USP2 specific inhibitor. In addition to the disruption of differentiation, clustered regularly interspaced short palindromic repeats/Cas9-generated Usp2KO cells exhibited inhibition of proliferation compared to parental C2C12 cells. Usp2KO cells reduced the accumulation of intracellular adenosine triphosphate (ATP) content and oxygen consumption. Moreover, Usp2KO cells had fragmented mitochondria, suggesting that mitochondrial respiration was inactive. The deficiency of Usp2 did not affect the enzymatic activities of respiratory chain complexes I, III, IV, and V. However, mitochondrial membrane permeability-evaluated using calcein AM-cobalt staining-was increased in Usp2KO cells. The membrane potential of Usp2KO cells was clearly decreased. Usp2KO cells accumulated reactive oxygen species (ROS) in the mitochondria. The USP2-selective inhibitor ML364 also increased the levels of mitochondrial ROS, and modulated the membrane potential and morphology of the mitochondria. These effects were followed by a decrement in the intracellular content of ATP. Based on these findings, we speculate that USP2 may be involved in maintaining the integrity of the mitochondrial membrane. This process ensures the supply of ATP in myoblasts, presumably leading to proliferation and differentiation.
Collapse
Affiliation(s)
- Mayuko Hashimoto
- Laboratory of Veterinary Physiology, School of Veterinary MedicineRakuno Gakuen UniversityEbetsuJapan
| | - Natsuko Saito
- Laboratory of Veterinary Physiology, School of Veterinary MedicineRakuno Gakuen UniversityEbetsuJapan
| | - Haru Ohta
- Laboratory of Veterinary Physiology, School of Veterinary MedicineRakuno Gakuen UniversityEbetsuJapan
| | - Kumiko Yamamoto
- Laboratory of Radiation Biology, Graduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
| | - Asuka Tashiro
- Laboratory of Veterinary Physiology, School of Veterinary MedicineRakuno Gakuen UniversityEbetsuJapan
| | - Kosuke Nakazawa
- Laboratory of Veterinary Physiology, School of Veterinary MedicineRakuno Gakuen UniversityEbetsuJapan
| | - Osamu Inanami
- Laboratory of Radiation Biology, Graduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
| | - Hiroshi Kitamura
- Laboratory of Veterinary Physiology, School of Veterinary MedicineRakuno Gakuen UniversityEbetsuJapan
| |
Collapse
|
15
|
Direct Reprogramming of Human DMD Fibroblasts into Myotubes for In Vitro Evaluation of Antisense-Mediated Exon Skipping and Exons 45-55 Skipping Accompanied by Rescue of Dystrophin Expression. Methods Mol Biol 2019; 1828:141-150. [PMID: 30171539 DOI: 10.1007/978-1-4939-8651-4_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Antisense oligonucleotide-mediated exon skipping is a promising therapeutic approach for the treatment of various genetic diseases and a therapy which has gained significant traction in recent years following FDA approval of new antisense-based drugs. Exon skipping for Duchenne muscular dystrophy (DMD) works by modulating dystrophin pre-mRNA splicing, preventing incorporation of frame-disrupting exons into the final mRNA product while maintaining the open reading frame, to produce a shortened-yet-functional protein as seen in milder Becker muscular dystrophy (BMD) patients. Exons 45-55 skipping in dystrophin is potentially applicable to approximately 47% of DMD patients because many mutations occur within this "mutation hotspot." In addition, patients naturally harboring a dystrophin exons 45-55 in-frame deletion mutation have an asymptomatic or exceptionally mild phenotype compared to shorter in-frame deletion mutations in this region. As such, exons 45-55 skipping could transform the DMD phenotype into an asymptomatic or very mild BMD phenotype and rescue nearly a half of DMD patients. In addition, this strategy is potentially applicable to some BMD patients as well, who have in-frame deletion mutations in this region. As the degree of exon skipping correlates with therapeutic outcomes, reliable measurements of exon skipping efficiencies are essential to the development of novel antisense-mediated exon skipping therapeutics. In the case of DMD, researchers have often relied upon human muscle fibers obtained from muscle biopsies for testing; however, this method is highly invasive and patient myofibers can display limited proliferative ability. To overcome these challenges, researchers can generate myofibers from patient fibroblast cells by transducing the cells with a viral vector containing MyoD, a myogenic regulatory factor. Here, we describe a methodology for assessing dystrophin exons 45-55 multiple skipping efficiency using antisense oligonucleotides in human muscle cells derived from DMD patient fibroblast cells.
Collapse
|
16
|
Increased Mitochondrial Protein Levels and Bioenergetics in the Musculus Rectus Femoris of Wfs1-Deficient Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3175313. [PMID: 30584460 PMCID: PMC6280240 DOI: 10.1155/2018/3175313] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/15/2018] [Accepted: 09/25/2018] [Indexed: 12/19/2022]
Abstract
Wfs1 deficiency leads to a progressive loss of plasma insulin concentration, which should reduce the consumption of glucose in insulin-dependent tissues, causing a variety of changes in intracellular energy metabolism. Our objective here was to assess the changes in the amount and function of mitochondrial proteins in different muscles of Wfs1-deficient mice. Mitochondrial functions were assayed by high-resolution oxygraphy of permeabilized muscle fibers; the protein amount was evaluated by liquid chromatography tandem mass spectrometry (LC/MS/MS) analysis and mRNA levels of the uncoupler proteins UCP2 and UCP3 by real-time PCR; and citrate synthase (CS) activity was determined spectrophotometrically in muscle homogenates. Compared to controls, there were no changes in proton leak and citrate synthase activity in the heart and m. soleus tissues of Wfs1-deficient mice, but significantly higher levels of both of these factors were observed in the m. rectus femoris; mitochondrial proteins and mRNA of UCP2 were also higher in the m. rectus femoris. ADP-stimulated state 3 respiration was lower in the m. soleus, remained unchanged in the heart, and was higher in the m. rectus femoris. The mitochondrial protein amount and activity are higher in Wfs1-deficient mice, as are mitochondrial proton leak and oxygen consumption in m. rectus femoris. These changes in muscle metabolism may be important for identifying the mechanisms responsible for Wolfram syndrome and diabetes.
Collapse
|
17
|
Riddle ES, Bender EL, Thalacker-Mercer AE. Expansion capacity of human muscle progenitor cells differs by age, sex, and metabolic fuel preference. Am J Physiol Cell Physiol 2018; 315:C643-C652. [PMID: 30110562 DOI: 10.1152/ajpcell.00135.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Activation of satellite cells and expansion of the muscle progenitor cell (MPC) population are essential to generate a sufficient number of cells to repair damaged skeletal muscle. Proliferating MPCs have high energetic and biosynthetic material requirements, and the ability to utilize oxidative phosphorylation (OXPHOS) and/or glycolysis may affect expansion capacity of MPCs. In the present study, we investigated the effect of donor age and sex on human (h)MPC expansion capacity and metabolic fuel preference. hMPCs from young and old male and female donors were grown for 408 h (17 days). Percent confluence, live nuclei count, and dead cell count were measured every 24 h. Metabolic phenotype was assessed by glucose uptake, expression of genes related to glycolysis and OXPHOS, and the Seahorse XF24 Phenotype Test Kit during the exponential phase of growth. hMPCs from old male donors had impaired expansion capacity secondary to heightened cell death early in expansion compared with hMPCs from young male donors, an effect not observed in female hMPCs. Age-related differences in metabolism were also sex dependent; markers of OXPHOS were altered in old (vs. young) male hMPCs, whereas markers of metabolism were largely unaffected by age in female hMPCs. For the first time, we identify sex-specific differences in cell death and OXPHOS that contribute to impaired expansion capacity of hMPC cell populations with age.
Collapse
Affiliation(s)
- Emily S Riddle
- Division of Nutritional Sciences, Cornell University , Ithaca, New York
| | - Erica L Bender
- Division of Nutritional Sciences, Cornell University , Ithaca, New York
| | | |
Collapse
|
18
|
Superoxide Anion Production and Bioenergetic Profile in Young and Elderly Human Primary Myoblasts. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2615372. [PMID: 30140363 PMCID: PMC6081572 DOI: 10.1155/2018/2615372] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 05/23/2018] [Accepted: 06/25/2018] [Indexed: 12/31/2022]
Abstract
Sarcopenia is the age-related loss of skeletal muscle mass, strength, and function. It is associated with regenerative difficulties by satellite cells, adult muscle stem cells, and alteration of oxidative management, mainly the increase in superoxide anions (O2•-). We aimed to investigate the relation between regenerative deficit in elderly and increase in O2•- production along with mitochondrial alterations. Myoblasts and myotubes from skeletal muscle of young and elderly healthy subjects (27.8 ± 6 and 72.4 ± 6.5 years old) were measured: (1) superoxide dismutase activity and protein content, (2) mitochondrial O2•- production levels, (3) O2•- production variability, and (4) mitochondrial bioenergetic profile. Compared to young myoblasts, elderly myoblasts displayed decreased SOD2 protein expression, elevated mitochondrial O2•- baseline levels, and decreased oxidative phosphorylation and glycolysis. Additionally, elderly versus young myotubes showed elevated mitochondrial O2•- levels when stressed with N-acetyl cysteine or high glucose and higher glycolysis despite showing comparable oxidative phosphorylation levels. Altogether, the elderly may have less metabolic plasticity due to the impaired mitochondrial function caused by O2•-. However, the increased energy demand related to the differentiation process appears to activate compensatory mechanisms for the partial mitochondrial dysfunction.
Collapse
|
19
|
Lee J, Echigoya Y, Duddy W, Saito T, Aoki Y, Takeda S, Yokota T. Antisense PMO cocktails effectively skip dystrophin exons 45-55 in myotubes transdifferentiated from DMD patient fibroblasts. PLoS One 2018; 13:e0197084. [PMID: 29771942 PMCID: PMC5957359 DOI: 10.1371/journal.pone.0197084] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 04/25/2018] [Indexed: 01/01/2023] Open
Abstract
Antisense-mediated exon skipping has made significant progress as a therapeutic platform in recent years, especially in the case of Duchenne muscular dystrophy (DMD). Despite FDA approval of eteplirsen-the first-ever antisense drug clinically marketed for DMD-exon skipping therapy still faces the significant hurdles of limited applicability and unknown truncated protein function. In-frame exon skipping of dystrophin exons 45-55 represents a significant approach to treating DMD, as a large proportion of patients harbor mutations within this "hotspot" region. Additionally, patients harboring dystrophin exons 45-55 deletion mutations are reported to have exceptionally mild to asymptomatic phenotypes. Here, we demonstrate that a cocktail of phosphorodiamidate morpholino oligomers can effectively skip dystrophin exons 45-55 in vitro in myotubes transdifferentiated from DMD patient fibroblast cells. This is the first report of substantive exons 45-55 skipping in DMD patient cells. These findings help validate the use of transdifferentiated patient fibroblast cells as a suitable cell model for dystrophin exon skipping assays and further emphasize the feasibility of dystrophin exons 45-55 skipping in patients.
Collapse
Affiliation(s)
- Joshua Lee
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Yusuke Echigoya
- Department of Veterinary Medicine, Nihon University, Fujisawa, Kanagawa, Japan
| | - William Duddy
- Northern Ireland Centre for Stratified Medicine, Altnagelvin Hospital Campus, Ulster University, Londonderry, United Kingdom
| | - Takashi Saito
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Shin’ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- The Friends of Garrett Cumming Research & Muscular Dystrophy Canada HM Toupin Neurological Science Research Chair, Edmonton, AB, Canada
- * E-mail:
| |
Collapse
|
20
|
Dibenedetto S, Niklison-Chirou M, Cabrera CP, Ellis M, Robson LG, Knopp P, Tedesco FS, Ragazzi M, Di Foggia V, Barnes MR, Radunovic A, Marino S. Enhanced Energetic State and Protection from Oxidative Stress in Human Myoblasts Overexpressing BMI1. Stem Cell Reports 2017; 9:528-542. [PMID: 28735850 PMCID: PMC5549966 DOI: 10.1016/j.stemcr.2017.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 06/17/2017] [Accepted: 06/17/2017] [Indexed: 12/28/2022] Open
Abstract
The Polycomb group gene BMI1 is essential for efficient muscle regeneration in a mouse model of Duchenne muscular dystrophy, and its enhanced expression in adult skeletal muscle satellite cells ameliorates the muscle strength in this model. Here, we show that the impact of mild BMI1 overexpression observed in mouse models is translatable to human cells. In human myoblasts, BMI1 overexpression increases mitochondrial activity, leading to an enhanced energetic state with increased ATP production and concomitant protection against DNA damage both in vitro and upon xenografting in a severe dystrophic mouse model. These preclinical data in mouse models and human cells provide a strong rationale for the development of pharmacological approaches to target BMI1-mediated mitochondrial regulation and protection from DNA damage to sustain the regenerative potential of the skeletal muscle in conditions of chronic muscle wasting.
Collapse
Affiliation(s)
- Silvia Dibenedetto
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| | - Maria Niklison-Chirou
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| | - Claudia P Cabrera
- Centre for Translational Bioinformatics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Matthew Ellis
- Division of Neuropathology, the National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Lesley G Robson
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| | - Paul Knopp
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| | - Francesco Saverio Tedesco
- Department of Cell and Developmental Biology, University College London, 21 University Street, London WC1X 0JS, UK
| | - Martina Ragazzi
- Department of Cell and Developmental Biology, University College London, 21 University Street, London WC1X 0JS, UK
| | - Valentina Di Foggia
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| | - Michael R Barnes
- Centre for Translational Bioinformatics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Aleksandar Radunovic
- Neuroscience and Trauma Centre, Barts Health NHS Trust, Whitechapel, London E1 1BB, UK
| | - Silvia Marino
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK.
| |
Collapse
|
21
|
Fontes-Oliveira CC, Steinz M, Schneiderat P, Mulder H, Durbeej M. Bioenergetic Impairment in Congenital Muscular Dystrophy Type 1A and Leigh Syndrome Muscle Cells. Sci Rep 2017; 7:45272. [PMID: 28367954 PMCID: PMC5377256 DOI: 10.1038/srep45272] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 02/23/2017] [Indexed: 12/26/2022] Open
Abstract
Skeletal muscle has high energy requirement and alterations in metabolism are associated with pathological conditions causing muscle wasting and impaired regeneration. Congenital muscular dystrophy type 1A (MDC1A) is a severe muscle disorder caused by mutations in the LAMA2 gene. Leigh syndrome (LS) is a neurometabolic disease caused by mutations in genes related to mitochondrial function. Skeletal muscle is severely affected in both diseases and a common feature is muscle weakness that leads to hypotonia and respiratory problems. Here, we have investigated the bioenergetic profile in myogenic cells from MDC1A and LS patients. We found dysregulated expression of genes related to energy production, apoptosis and proteasome in myoblasts and myotubes. Moreover, impaired mitochondrial function and a compensatory upregulation of glycolysis were observed when monitored in real-time. Also, alterations in cell cycle populations in myoblasts and enhanced caspase-3 activity in myotubes were observed. Thus, we have for the first time demonstrated an impairment of the bioenergetic status in human MDC1A and LS muscle cells, which could contribute to cell cycle disturbance and increased apoptosis. Our findings suggest that skeletal muscle metabolism might be a promising pharmacological target in order to improve muscle function, energy efficiency and tissue maintenance of MDC1A and LS patients.
Collapse
Affiliation(s)
- Cibely C Fontes-Oliveira
- Unit of Muscle Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Maarten Steinz
- Unit of Muscle Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Peter Schneiderat
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Hindrik Mulder
- Unit of Molecular Metabolism, Department of Clinical Sciences, Lund University Diabetes Centre, Malmö University Hospital, Malmö, Sweden
| | - Madeleine Durbeej
- Unit of Muscle Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|