1
|
Xie C, Kessi M, Yin F, Peng J. Roles of KCNA2 in Neurological Diseases: from Physiology to Pathology. Mol Neurobiol 2024; 61:8491-8517. [PMID: 38517617 DOI: 10.1007/s12035-024-04120-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 03/10/2024] [Indexed: 03/24/2024]
Abstract
Potassium voltage-gated channel subfamily a member 2 (Kv1.2, encoded by KCNA2) is highly expressed in the central and peripheral nervous systems. Based on the patch clamp studies, gain-of function (GOF), loss-of-function (LOF), and a mixed type (GOF/LOF) variants can cause different conditions/disorders. KCNA2-related neurological diseases include epilepsy, intellectual disability (ID), attention deficit/hyperactive disorder (ADHD), autism spectrum disorder (ASD), pain as well as autoimmune and movement disorders. Currently, the molecular mechanisms for the reported variants in causing diverse disorders are unknown. Consequently, this review brings up to date the related information regarding the structure and function of Kv1.2 channel, expression patterns, neuronal localizations, and tetramerization as well as important cell and animal models. In addition, it provides updates on human genetic variants, genotype-phenotype correlations especially highlighting the deep insight into clinical prognosis of KCNA2-related developmental and epileptic encephalopathy, mechanisms, and the potential treatment targets for all KCNA2-related neurological disorders.
Collapse
Affiliation(s)
- Changning Xie
- Department of Pediatrics, Xiangya Hospital, Central South University, Xiangya Road 87, Hunan, Changsha, 410008, China
| | - Miriam Kessi
- Department of Pediatrics, Xiangya Hospital, Central South University, Xiangya Road 87, Hunan, Changsha, 410008, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Xiangya Road 87, Hunan, Changsha, 410008, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Xiangya Road 87, Hunan, Changsha, 410008, China.
- Hunan Intellectual and Development Disabilities Research Center, Hunan, Changsha, 410008, China.
| |
Collapse
|
2
|
Zhou YS, Tao HB, Lv SS, Liang KQ, Shi WY, Liu KY, Li YY, Chen LY, Zhou L, Yin SJ, Zhao QR. Effects of Kv1.3 knockout on pyramidal neuron excitability and synaptic plasticity in piriform cortex of mice. Acta Pharmacol Sin 2024; 45:2045-2060. [PMID: 38862816 PMCID: PMC11420205 DOI: 10.1038/s41401-024-01275-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 03/24/2024] [Indexed: 06/13/2024] Open
Abstract
Kv1.3 belongs to the voltage-gated potassium (Kv) channel family, which is widely expressed in the central nervous system and associated with a variety of neuropsychiatric disorders. Kv1.3 is highly expressed in the olfactory bulb and piriform cortex and involved in the process of odor perception and nutrient metabolism in animals. Previous studies have explored the function of Kv1.3 in olfactory bulb, while the role of Kv1.3 in piriform cortex was less known. In this study, we investigated the neuronal changes of piriform cortex and feeding behavior after smell stimulation, thus revealing a link between the olfactory sensation and body weight in Kv1.3 KO mice. Coronal slices including the anterior piriform cortex were prepared, whole-cell recording and Ca2+ imaging of pyramidal neurons were conducted. We showed that the firing frequency evoked by depolarization pulses and Ca2+ influx evoked by high K+ solution were significantly increased in pyramidal neurons of Kv1.3 knockout (KO) mice compared to WT mice. Western blotting and immunofluorescence analyses revealed that the downstream signaling molecules CaMKII and PKCα were activated in piriform cortex of Kv1.3 KO mice. Pyramidal neurons in Kv1.3 KO mice exhibited significantly reduced paired-pulse ratio and increased presynaptic Cav2.1 expression, proving that the presynaptic vesicle release might be elevated by Ca2+ influx. Using Golgi staining, we found significantly increased dendritic spine density of pyramidal neurons in Kv1.3 KO mice, supporting the stronger postsynaptic responses in these neurons. In olfactory recognition and feeding behavior tests, we showed that Kv1.3 conditional knockout or cannula injection of 5-(4-phenoxybutoxy) psoralen, a Kv1.3 channel blocker, in piriform cortex both elevated the olfactory recognition index and altered the feeding behavior in mice. In summary, Kv1.3 is a key molecule in regulating neuronal activity of the piriform cortex, which may lay a foundation for the treatment of diseases related to piriform cortex and olfactory detection.
Collapse
Affiliation(s)
- Yong-Sheng Zhou
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Hao-Bo Tao
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Si-Si Lv
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Ke-Qin Liang
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Wen-Yi Shi
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Ke-Yi Liu
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Yun-Yun Li
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Lv-Yi Chen
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Ling Zhou
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Shi-Jin Yin
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China.
| | - Qian-Ru Zhao
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China.
| |
Collapse
|
3
|
Orlov NA, Kryukova EV, Efremenko AV, Yakimov SA, Toporova VA, Kirpichnikov MP, Nekrasova OV, Feofanov AV. Interactions of the Kv1.1 Channel with Peptide Pore Blockers: A Fluorescent Analysis on Mammalian Cells. MEMBRANES 2023; 13:645. [PMID: 37505011 PMCID: PMC10383195 DOI: 10.3390/membranes13070645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023]
Abstract
The voltage-gated potassium channel Kv1.1, which is abundant in the CNS and peripheral nervous system, controls neuronal excitability and neuromuscular transmission and mediates a number of physiological functions in non-excitable cells. The development of some diseases is accompanied by changes in the expression level and/or activity of the channels in particular types of cells. To meet the requirements of studies related to the expression and localization of the Kv1.1 channels, we report on the subnanomolar affinity of hongotoxin 1 N-terminally labeled with Atto 488 fluorophore (A-HgTx) for the Kv1.1 channel and its applicability for fluorescent imaging of the channel in living cells. Taking into consideration the pharmacological potential of the Kv1.1 channel, a fluorescence-based analytical system was developed for the study of peptide ligands that block the ion conductivity of Kv1.1 and are potentially able to correct abnormal activity of the channel. The system is based on analysis of the competitive binding of the studied compounds and A-HgTx to the mKate2-tagged human Kv1.1 (S369T) channel, expressed in the plasma membrane of Neuro2a cells. The system was validated by measuring the affinities of the known Kv1.1-channel peptide blockers, such as agitoxin 2, kaliotoxin 1, hongotoxin 1, and margatoxin. Peptide pore blocker Ce1, from the venom of the scorpion Centruroides elegans, was shown to possess a nanomolar affinity for the Kv1.1 channel. It is reported that interactions of the Kv1.1 channel with the studied peptide blockers are not affected by the transition of the channel from the closed to open state. The conclusion is made that the structural rearrangements accompanying the channel transition into the open state do not change the conformation of the P-loop (including the selectivity filter) involved in the formation of the binding site of the peptide pore blockers.
Collapse
Affiliation(s)
- Nikita A Orlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Elena V Kryukova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Anastasia V Efremenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Sergey A Yakimov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Victoria A Toporova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Mikhail P Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Oksana V Nekrasova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Alexey V Feofanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
4
|
Domain and cell type-specific immunolocalisation of voltage-gated potassium channels in the mouse striatum. J Chem Neuroanat 2023; 128:102233. [PMID: 36640913 DOI: 10.1016/j.jchemneu.2023.102233] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
Diverse classes of voltage-gated potassium channels (Kv) are integral to the variety of electrical activity patterns that distinguish different classes of neurons in the brain. A feature of their heterogenous expression patterns is the highly precise manner in which specific cell types target their location within functionally specialised sub-cellular domains. Although Kv expression profiles in cortical brain regions are widely reported, their immunolocalisation in sub-cortical areas such as the striatum, and in associated diseases such as Parkinson's disease (PD), remain less well described. Therefore, the broad aims of this study were to provide a high resolution immunolocalisation analysis of various Kv subtypes within the mouse striatum and assess their potential plasticity in a model of PD. Immunohistochemistry and confocal microscopy revealed that immunoreactivity for Kv1.1, 1.2 and 1.4 overlapped to varying degrees with excitatory and inhibitory axonal marker proteins suggesting these Kv subtypes are targeted to axons innervating striatal medium spiny neurons (MSNs). Immunoreactivity for Kv1.3 strongly overlapped with signal for mitochondrial marker proteins in MSN somata and dendrites. Kv1.5 immunoreactivity was expressed in parvalbumin-immunopositive neurons whereas Kv1.6 was located in cells immunopositive for microglia. Signal for Kv2.1 was concentrated on the somatic and proximal dendritic plasma membrane of MSNs, whilst immunoreactivity for Kv4.2 was targeted to their distal dendritic regions. Finally, striatal Kv2.1 expression, at both the mRNA and protein levels, was decreased in alpha-synuclein overexpressing mice, yet increased in alpha-synuclein knockout mice, compared to wild-type counterparts. The data indicate a variety of Kv expression patterns that are distinctive to the striatum and susceptible to pathology that mirrors PD. Furthermore, these findings advance our understanding of the molecular diversity of various striatal cell types, and potentially have implications for the homeostatic changes of MSN excitability during associated medical conditions such as PD.
Collapse
|
5
|
GFP-Margatoxin, a Genetically Encoded Fluorescent Ligand to Probe Affinity of Kv1.3 Channel Blockers. Int J Mol Sci 2022; 23:ijms23031724. [PMID: 35163644 PMCID: PMC8835862 DOI: 10.3390/ijms23031724] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 02/01/2023] Open
Abstract
Peptide pore blockers and their fluorescent derivatives are useful molecular probes to study the structure and functions of the voltage-gated potassium Kv1.3 channel, which is considered as a pharmacological target in the treatment of autoimmune and neurological disorders. We present Kv1.3 fluorescent ligand, GFP-MgTx, constructed on the basis of green fluorescent protein (GFP) and margatoxin (MgTx), the peptide, which is widely used in physiological studies of Kv1.3. Expression of the fluorescent ligand in E. coli cells resulted in correctly folded and functionally active GFP-MgTx with a yield of 30 mg per 1 L of culture. Complex of GFP-MgTx with the Kv1.3 binding site is reported to have the dissociation constant of 11 ± 2 nM. GFP-MgTx as a component of an analytical system based on the hybrid KcsA-Kv1.3 channel is shown to be applicable to recognize Kv1.3 pore blockers of peptide origin and to evaluate their affinities to Kv1.3. GFP-MgTx can be used in screening and pre-selection of Kv1.3 channel blockers as potential drug candidates.
Collapse
|
6
|
K v1.1 channels mediate network excitability and feed-forward inhibition in local amygdala circuits. Sci Rep 2021; 11:15180. [PMID: 34312446 PMCID: PMC8313690 DOI: 10.1038/s41598-021-94633-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 07/14/2021] [Indexed: 01/15/2023] Open
Abstract
Kv1.1 containing potassium channels play crucial roles towards dampening neuronal excitability. Mice lacking Kv1.1 subunits (Kcna1−/−) display recurrent spontaneous seizures and often exhibit sudden unexpected death. Seizures in Kcna1−/− mice resemble those in well-characterized models of temporal lobe epilepsy known to involve limbic brain regions and spontaneous seizures result in enhanced cFos expression and neuronal death in the amygdala. Yet, the functional alterations leading to amygdala hyperexcitability have not been identified. In this study, we used Kcna1−/− mice to examine the contributions of Kv1.1 subunits to excitability in neuronal subtypes from basolateral (BLA) and central lateral (CeL) amygdala known to exhibit distinct firing patterns. We also analyzed synaptic transmission properties in an amygdala local circuit predicted to be involved in epilepsy-related comorbidities. Our data implicate Kv1.1 subunits in controlling spontaneous excitatory synaptic activity in BLA pyramidal neurons. In the CeL, Kv1.1 loss enhances intrinsic excitability and impairs inhibitory synaptic transmission, notably resulting in dysfunction of feed-forward inhibition, a critical mechanism for controlling spike timing. Overall, we find inhibitory control of CeL interneurons is reduced in Kcna1−/− mice suggesting that basal inhibitory network functioning is less able to prevent recurrent hyperexcitation related to seizures.
Collapse
|
7
|
Age-related hearing loss pertaining to potassium ion channels in the cochlea and auditory pathway. Pflugers Arch 2020; 473:823-840. [PMID: 33336302 PMCID: PMC8076138 DOI: 10.1007/s00424-020-02496-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/27/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022]
Abstract
Age-related hearing loss (ARHL) is the most prevalent sensory deficit in the elderly and constitutes the third highest risk factor for dementia. Lifetime noise exposure, genetic predispositions for degeneration, and metabolic stress are assumed to be the major causes of ARHL. Both noise-induced and hereditary progressive hearing have been linked to decreased cell surface expression and impaired conductance of the potassium ion channel KV7.4 (KCNQ4) in outer hair cells, inspiring future therapies to maintain or prevent the decline of potassium ion channel surface expression to reduce ARHL. In concert with KV7.4 in outer hair cells, KV7.1 (KCNQ1) in the stria vascularis, calcium-activated potassium channels BK (KCNMA1) and SK2 (KCNN2) in hair cells and efferent fiber synapses, and KV3.1 (KCNC1) in the spiral ganglia and ascending auditory circuits share an upregulated expression or subcellular targeting during final differentiation at hearing onset. They also share a distinctive fragility for noise exposure and age-dependent shortfalls in energy supply required for sustained surface expression. Here, we review and discuss the possible contribution of select potassium ion channels in the cochlea and auditory pathway to ARHL. We postulate genes, proteins, or modulators that contribute to sustained ion currents or proper surface expressions of potassium channels under challenging conditions as key for future therapies of ARHL.
Collapse
|
8
|
Lugarà E, Kaushik R, Leite M, Chabrol E, Dityatev A, Lignani G, Walker MC. LGI1 downregulation increases neuronal circuit excitability. Epilepsia 2020; 61:2836-2846. [DOI: 10.1111/epi.16736] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/29/2020] [Accepted: 09/29/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Eleonora Lugarà
- Department of Clinical and Experimental Epilepsy UCL Queen Square Institute of Neurology London UK
| | - Rahul Kaushik
- German Center for Neurodegenerative Diseases Magdeburg Germany
- Center for Behavioral Brain Sciences Magdeburg Germany
| | - Marco Leite
- Department of Clinical and Experimental Epilepsy UCL Queen Square Institute of Neurology London UK
| | - Elodie Chabrol
- Department of Clinical and Experimental Epilepsy UCL Queen Square Institute of Neurology London UK
| | - Alexander Dityatev
- German Center for Neurodegenerative Diseases Magdeburg Germany
- Center for Behavioral Brain Sciences Magdeburg Germany
- Medical Faculty Otto von Guericke University Magdeburg Germany
| | - Gabriele Lignani
- Department of Clinical and Experimental Epilepsy UCL Queen Square Institute of Neurology London UK
| | - Matthew C. Walker
- Department of Clinical and Experimental Epilepsy UCL Queen Square Institute of Neurology London UK
| |
Collapse
|
9
|
Histamine H3 Receptor Activation Modulates Glutamate Release in the Corticostriatal Synapse by Acting at CaV2.1 (P/Q-Type) Calcium Channels and GIRK (KIR3) Potassium Channels. Cell Mol Neurobiol 2020; 42:817-828. [DOI: 10.1007/s10571-020-00980-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/06/2020] [Indexed: 01/24/2023]
|
10
|
D'Alessandro R, Meldolesi J. News about non-secretory exocytosis: mechanisms, properties, and functions. J Mol Cell Biol 2020; 11:736-746. [PMID: 30605539 PMCID: PMC6821209 DOI: 10.1093/jmcb/mjy084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 11/14/2018] [Accepted: 01/02/2019] [Indexed: 12/22/2022] Open
Abstract
The fusion by exocytosis of many vesicles to the plasma membrane induces the discharge to the extracellular space of their abundant luminal cargoes. Other exocytic vesicles, however, do not contain cargoes, and thus, their fusion is not followed by secretion. Therefore, two distinct processes of exocytosis exist, one secretory and the other non-secretory. The present review deals with the knowledge of non-secretory exocytosis developed during recent years. Among such developments are the dual generation of the exocytic vesicles, initially released either from the trans-Golgi network or by endocytosis; their traffic with activation of receptors, channels, pumps, and transporters; the identification of their tethering and soluble N-ethylmaleimide-sensitive factor attachment protein receptor complexes that govern membrane fusions; the growth of axons and the membrane repair. Examples of potential relevance of these processes for pathology and medicine are also reported. The developments presented here offer interesting chances for future progress in the field.
Collapse
Affiliation(s)
| | - Jacopo Meldolesi
- Scientific Institute San Raffaele and Vita Salute San Raffaele University, Via Olgettina 58, Milan, Italy
| |
Collapse
|
11
|
Fernández-Fernández D, Lamas JA. Metabotropic Modulation of Potassium Channels During Synaptic Plasticity. Neuroscience 2020; 456:4-16. [PMID: 32114098 DOI: 10.1016/j.neuroscience.2020.02.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 01/06/2023]
Abstract
Besides their primary function mediating the repolarization phase of action potentials, potassium channels exquisitely and ubiquitously regulate the resting membrane potential of neurons and therefore have a key role establishing their intrinsic excitability. This group of proteins is composed of a very diverse collection of voltage-dependent and -independent ion channels, whose specific distribution is finely tuned at the level of the synapse. Both at the presynaptic and postsynaptic membranes, different types of potassium channels are subjected to modulation by second messenger signaling cascades triggered by metabotropic receptors, which in this way serve as a link between neurotransmitter actions and changes in the neuron membrane excitability. On the one hand, by regulating the resting membrane potential of the postsynaptic membrane, potassium channels appear to be critical towards setting the threshold for the induction of long-term potentiation and depression. On the other hand, these channels maintain the presynaptic membrane potential under control, therefore influencing the probability of neurotransmitter release underlying different forms of short-term plasticity. In the present review, we examine in detail the role of metabotropic receptors translating their activation by different neurotransmitters into a final effect modulating several types of potassium channels. Furthermore, we evaluate the consequences that this interplay has on the induction and maintenance of different forms of synaptic plasticity.
Collapse
Affiliation(s)
- D Fernández-Fernández
- Laboratory of Neuroscience, Biomedical Research Center (CINBIO), University of Vigo, Vigo, Galicia, Spain.
| | - J A Lamas
- Laboratory of Neuroscience, Biomedical Research Center (CINBIO), University of Vigo, Vigo, Galicia, Spain
| |
Collapse
|
12
|
Robles-Gómez AA, Vega AV, Florán B, Barral J. Differential calcium channel-mediated dopaminergic modulation in the subthalamonigral synapse. Synapse 2020; 74:e22149. [PMID: 31975491 DOI: 10.1002/syn.22149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/09/2019] [Accepted: 01/18/2020] [Indexed: 11/09/2022]
Abstract
Dopamine (DA) modulates basal ganglia (BG) activity for initiation and execution of goal-directed movements and habits. While most studies are aimed to striatal function, the cellular and molecular mechanisms underlying dopaminergic regulation in other nuclei of the BG are not well understood. Therefore, we set to analyze the dopaminergic modulation occurring in subthalamo-nigral synapse, in both pars compacta (SNc) and pars reticulata (SNr) neurons, because these synapses are important for the integration of information previously processed in striatum and globus pallidus. In this study, electrophysiological and pharmacological evidence of dopaminergic modulation on glutamate release through calcium channels is presented. Using paired pulse ratio (PPR) measurements and selective blockers of these ionic channels, together with agonists and antagonists of DA D2 -like receptors, we found that blockade of the CaV 3 family occludes the presynaptic inhibition produced by the activation of DA receptors pharmacologically profiled as D3 -type in the STh-SNc synapses. On the contrast, the blockade of CaV 2 channels, but not CaV 3, occlude with the effect of the D3 agonist, PD 128907, in the STh-SNr synapse. The functional role of this differential distribution of calcium channels that modulate the release of glutamate in the SN implies a fine adjustment of firing for both classes of neurons. Dopaminergic neurons of the SNc establish a DA tone within the SN based on the excitatory/inhibitory inputs; such tone may contribute to processing information from subthalamic nucleus and could also be involved in pathological DA depletion that drives hyperexcitation of SNr neurons.
Collapse
Affiliation(s)
| | - Ana V Vega
- Carrera de Médico Cirujano, FES Iztacala, UNAM, Mexico City, Mexico
| | - Benjamín Florán
- Department of Physiology, Biophysics and Neurosciences, CINVESTAV-IPN, Mexico City, Mexico
| | - Jaime Barral
- Neurociencias, FES Iztacala, UNAM, Tlalnepantla de Baz, Mexico
| |
Collapse
|
13
|
Robles Gómez AA, Vega AV, Gónzalez-Sandoval C, Barral J. The role of Ca 2+ -dependent K + - channels at the rat corticostriatal synapses revealed by paired pulse stimulation. Synapse 2017; 72. [PMID: 29136290 DOI: 10.1002/syn.22017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/09/2017] [Accepted: 11/09/2017] [Indexed: 01/23/2023]
Abstract
Potassium channels play an important role in modulating synaptic activity both at presynaptic and postsynaptic levels. We have shown before that presynaptically located KV and KIR channels modulate the strength of corticostriatal synapses in rat brain, but the role of other types of potassium channels at these synapses remains largely unknown. Here, we show that calcium-dependent potassium channels BK-type but not SK-type channels are located presynaptically in corticostriatal synapses. We stimulated cortical neurons in rat brain slices and recorded postsynaptic excitatory potentials (EPSP) in medium spiny neurons (MSN) in dorsal neostriatum. By using a paired pulse protocol, we induced synaptic facilitation before applying either BK- or SK-specific toxins. Thus, we found that blockage of BKCa with iberiotoxin (10 nM) reduces synaptic facilitation and increases the amplitude of the EPSP, while exposure to SK-blocker apamin (100 nM) has no effect. Additionally, we induced train action potentials on striatal MSN by current injection before and after the exposure to KCa toxins. We found that the action potential becomes broader when the MSN is exposed to iberiotoxin, although it has no impact on frequency. In contrast, exposure to apamin results in loss of afterhyperpolarization phase and an increase of spike frequency. Therefore, we concluded that postsynaptic SK channels are involved in afterhyperpolarization and modulation of spike frequency while the BK channels are involved on the late repolarization phase of the action potential. Altogether, our results show that calcium-dependent potassium channels modulate both input towards and output from the striatum.
Collapse
Affiliation(s)
| | - Ana V Vega
- Carrera de Médico Cirujano, UBIMED, FES Iztacala UNAM, México
| | | | - Jaime Barral
- Neurociencias, UIICSE, FES Iztacala, UNAM, México
| |
Collapse
|