1
|
Timsina J, Dinasarapu A, Kilic-Berkmen G, Budde J, Sung YJ, Klein AM, Cruchaga C, Jinnah HA. Blood-Based Proteomics for Adult-Onset Focal Dystonias. Ann Neurol 2024; 96:110-120. [PMID: 38578115 PMCID: PMC11186717 DOI: 10.1002/ana.26929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/27/2024] [Accepted: 03/10/2024] [Indexed: 04/06/2024]
Abstract
OBJECTIVES The adult-onset focal dystonias are characterized by over-active muscles leading to abnormal movements. For most cases, the etiology and pathogenesis remain unknown. In the current study, unbiased proteomics methods were used to identify potential changes in blood plasma proteins. METHODS A large-scale unbiased proteomics screen was used to compare proteins (N = 6,345) in blood plasma of normal healthy controls (N = 49) with adult-onset focal dystonia (N = 143) consisting of specific subpopulations of cervical dystonia (N = 45), laryngeal dystonia (N = 49), and blepharospasm (N = 49). Pathway analyses were conducted to identify relevant biological pathways. Finally, protein changes were used to build a prediction model for dystonia. RESULTS After correction for multiple comparisons, 15 proteins were associated with adult-onset focal dystonia. Subgroup analyses revealed some proteins were shared across the dystonia subgroups while others were unique to 1 subgroup. The top biological pathways involved changes in the immune system, metal ion transport, and reactive oxygen species. A 4-protein model showed high accuracy in discriminating control individuals from dystonia cases [average area under the curve (AUC) = 0.89]. INTERPRETATION These studies provide novel insights into the etiopathogenesis of dystonia, as well as novel potential biomarkers. ANN NEUROL 2024;96:110-120.
Collapse
Affiliation(s)
- Jigyasha Timsina
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Ashok Dinasarapu
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Gamze Kilic-Berkmen
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - John Budde
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Yun Ju Sung
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Adam M. Klein
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurologic Diseases, Washington University in St. Louis, St. Louis, MO, USA
| | - H. A. Jinnah
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322 USA
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322 USA
| |
Collapse
|
2
|
Monteil A, Guérineau NC, Gil-Nagel A, Parra-Diaz P, Lory P, Senatore A. New insights into the physiology and pathophysiology of the atypical sodium leak channel NALCN. Physiol Rev 2024; 104:399-472. [PMID: 37615954 DOI: 10.1152/physrev.00014.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/13/2023] [Accepted: 08/15/2023] [Indexed: 08/25/2023] Open
Abstract
Cell excitability and its modulation by hormones and neurotransmitters involve the concerted action of a large repertoire of membrane proteins, especially ion channels. Unique complements of coexpressed ion channels are exquisitely balanced against each other in different excitable cell types, establishing distinct electrical properties that are tailored for diverse physiological contributions, and dysfunction of any component may induce a disease state. A crucial parameter controlling cell excitability is the resting membrane potential (RMP) set by extra- and intracellular concentrations of ions, mainly Na+, K+, and Cl-, and their passive permeation across the cell membrane through leak ion channels. Indeed, dysregulation of RMP causes significant effects on cellular excitability. This review describes the molecular and physiological properties of the Na+ leak channel NALCN, which associates with its accessory subunits UNC-79, UNC-80, and NLF-1/FAM155 to conduct depolarizing background Na+ currents in various excitable cell types, especially neurons. Studies of animal models clearly demonstrate that NALCN contributes to fundamental physiological processes in the nervous system including the control of respiratory rhythm, circadian rhythm, sleep, and locomotor behavior. Furthermore, dysfunction of NALCN and its subunits is associated with severe pathological states in humans. The critical involvement of NALCN in physiology is now well established, but its study has been hampered by the lack of specific drugs that can block or agonize NALCN currents in vitro and in vivo. Molecular tools and animal models are now available to accelerate our understanding of how NALCN contributes to key physiological functions and the development of novel therapies for NALCN channelopathies.
Collapse
Affiliation(s)
- Arnaud Monteil
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
- LabEx "Ion Channel Science and Therapeutics," Montpellier, France
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nathalie C Guérineau
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
- LabEx "Ion Channel Science and Therapeutics," Montpellier, France
| | - Antonio Gil-Nagel
- Department of Neurology, Epilepsy Program, Hospital Ruber Internacional, Madrid, Spain
| | - Paloma Parra-Diaz
- Department of Neurology, Epilepsy Program, Hospital Ruber Internacional, Madrid, Spain
| | - Philippe Lory
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
- LabEx "Ion Channel Science and Therapeutics," Montpellier, France
| | - Adriano Senatore
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| |
Collapse
|
3
|
Yang WY, Jiang SS, Pu JL, Jin CY, Gao T, Zheng R, Tian J, Zhang BR. Association Between Dystonia-Related Genetic Loci and Parkinson's Disease in Eastern China. Front Neurol 2022; 12:711050. [PMID: 35273550 PMCID: PMC8901603 DOI: 10.3389/fneur.2021.711050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 12/22/2021] [Indexed: 12/04/2022] Open
Abstract
Background Parkinson's disease (PD) and dystonia are closely related in terms of pathophysiology and clinical manifestations, but their common genetic characteristics remain unclear. Some genome-wide association studies (GWASs) and replication studies have revealed correlations between single nucleotide polymorphisms (SNPs) of the ARSG, BDNF, NALCN, OR4X2, KIAA1715, and OR4B1 genes and dystonia. This study was conducted to assess the association between these genetic loci and PD in a population from Eastern China. Methods We genotyped the SNPs (rs11655081 of ARSG; rs6265 of BDNF; rs61973742, rs1338051, rs9518384, and rs9518385 of NALCN; rs67863238 of OR4X2; rs10930717 of KIAA1715; and rs35875350 of OR4B1) in a cohort of 474 patients with PD and 439 healthy controls from East China. To determine the genotypes of these SNPs, we used an Agena MassARRAY Typer 4.0. Odds ratios (ORs) and 95% CIs were computed to evaluate the correlations between these SNPs and the risk of PD. Results There were significant differences in the genotype distribution (OR = 0.649, 95% CI = 0.478–0.880) and minor allele frequency (MAF) (OR = 0.703, 95% CI = 0.533–0.929) of SNP rs61973742 (NALCN) between patients with PD and healthy controls. A significant difference was detected in the genotype distribution of rs11655081 (ARSG) (OR = 1.486, 95% CI = 1.080–2.045). Conclusion Single nucleotide polymorphisms rs11655081 (ARSG) and rs61973742 (NALCN) may be associated with PD. The C allele of rs11655081 may increase the risk of PD, whereas the G allele of rs61973742 may be a protective factor.
Collapse
Affiliation(s)
- Wen-Yi Yang
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Si-Si Jiang
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jia-Li Pu
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chong-Yao Jin
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ting Gao
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ran Zheng
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jun Tian
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Bao-Rong Zhang
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
García-Hernández JL, Corchete LA, Marcos-Alcalde Í, Gómez-Puertas P, Fons C, Lazo PA. Pathogenic convergence of CNVs in genes functionally associated to a severe neuromotor developmental delay syndrome. Hum Genomics 2021; 15:11. [PMID: 33557955 PMCID: PMC7871650 DOI: 10.1186/s40246-021-00309-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/26/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Complex developmental encephalopathy syndromes might be the consequence of unknown genetic alterations that are likely to contribute to the full neurological phenotype as a consequence of pathogenic gene combinations. METHODS To identify the additional genetic contribution to the neurological phenotype, we studied as a test case a boy, with a KCNQ2 exon-7 partial duplication, by single-nucleotide polymorphism (SNP) microarray to detect copy-number variations (CNVs). RESULTS The proband presented a cerebral palsy like syndrome with a severe motor and developmental encephalopathy. The SNP array analysis detected in the proband several de novo CNVs, nine partial gene losses (LRRC55, PCDH9, NALCN, RYR3, ELAVL2, CDH13, ATP1A2, SLC17A5, ANO3), and two partial gene duplications (PCDH19, EFNA5). The biological functions of these genes are associated with ion channels such as calcium, chloride, sodium, and potassium with several membrane proteins implicated in neural cell-cell interactions, synaptic transmission, and axon guidance. Pathogenically, these functions can be associated to cerebral palsy, seizures, dystonia, epileptic crisis, and motor neuron dysfunction, all present in the patient. CONCLUSIONS Severe motor and developmental encephalopathy syndromes of unknown origin can be the result of a phenotypic convergence by combination of several genetic alterations in genes whose physiological function contributes to the neurological pathogenic mechanism.
Collapse
Affiliation(s)
- Juan L García-Hernández
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Departamento de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Luis A Corchete
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Departamento de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain.,Network Center for Biomedical Research in Cancer (CIBERONC), Salamanca, Spain
| | - Íñigo Marcos-Alcalde
- Centro de Biología Molecular Severo Ochoa, CSIC-Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain.,Biosciences Research Institute, School of Experimental Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | - Paulino Gómez-Puertas
- Centro de Biología Molecular Severo Ochoa, CSIC-Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Carmen Fons
- Neurology Department, Hospital Sant Joan de Déu, Sant Joan de Déu Research Institute, Esplugues de Llobregat, Barcelona and CIBERER, Instituto de Salud Carlos III, Barcelona, Spain.
| | - Pedro A Lazo
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, Salamanca, Spain. .,Instituto de Investigación Biomédica de Salamanca (IBSAL), Departamento de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain.
| |
Collapse
|
5
|
Siokas V, Aloizou AM, Tsouris Z, Michalopoulou A, Mentis AFA, Dardiotis E. Risk Factor Genes in Patients with Dystonia: A Comprehensive Review. TREMOR AND OTHER HYPERKINETIC MOVEMENTS (NEW YORK, N.Y.) 2019; 8:559. [PMID: 30643666 PMCID: PMC6329780 DOI: 10.7916/d8h438gs] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 11/20/2018] [Indexed: 12/20/2022]
Abstract
Background Dystonia is a movement disorder with high heterogeneity regarding phenotypic appearance and etiology that occurs in both sporadic and familial forms. The etiology of the disease remains unknown. However, there is increasing evidence suggesting that a small number of gene alterations may lead to dystonia. Although pathogenic variants to the familial type of dystonia have been extensively reviewed and discussed, relatively little is known about the contribution of single-nucleotide polymorphisms (SNPs) to dystonia. This review focuses on the potential role of SNPs and other variants in dystonia susceptibility. Methods We searched the PubMed database for peer-reviewed articles published in English, from its inception through January 2018, that concerned human studies of dystonia and genetic variants. The following search terms were included: “dystonia” in combination with the following terms: 1) “polymorphisms” and 2) “SNPs” as free words. Results A total of 43 published studies regarding TOR1A, BDNF, DRD5, APOE, ARSG, NALC, OR4X2, COL4A1, TH, DDC, DBH, MAO, COMT, DAT, GCH1, PRKRA, MR-1, SGCE, ATP1A3, TAF1, THAP1, GNAL, DRD2, HLA-DRB, CBS, MTHFR, and MS genes, were included in the current review. Discussion To date, a few variants, which are possibly involved in several molecular pathways, have been related to dystonia. Large cohort studies are needed to determine robust associations between variants and dystonia with adjustment for other potential cofounders, in order to elucidate the pathogenic mechanisms of dystonia and the net effect of the genes.
Collapse
Affiliation(s)
- Vasileios Siokas
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, GR
| | - Athina-Maria Aloizou
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, GR
| | - Zisis Tsouris
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, GR
| | - Amalia Michalopoulou
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, GR
| | - Alexios-Fotios A Mentis
- Department of Microbiology, University of Thessaly, University Hospital of Larissa, Larissa, GR.,Public Health Laboratories, Hellenic Pasteur Institute, Athens, GR
| | - Efthimios Dardiotis
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, GR
| |
Collapse
|
6
|
Brockmann K, Lohmann K. [Genetic risk variants in Parkinson's disease and other movement disorders]. DER NERVENARZT 2017; 88:713-719. [PMID: 28536875 DOI: 10.1007/s00115-017-0348-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Movement disorders are often genetically complex with genetic risk factors playing a major role. For example, monogenic causes of Parkinson's disease (PD) can be found in only 2-5% of patients who often have an early onset (<40 years). In the majority of patients, common genetic variants seem to contribute to the disease risk. To date, 24 genetic risk factors have been identified. For restless legs syndrome (RLS), six different risk variants have been reported but no monogenic cause is known yet. For the genetic risk factors of essential tremor and dystonia, which are less well studied, only five and two candidate variants, respectively, have been described but their roles still require independent confirmation. In this review, we provide an overview on the involved genes, their function, and discuss possible, disease mechanism-driven therapies.
Collapse
Affiliation(s)
- K Brockmann
- Zentrum für Neurologie, Abteilung Neurodegeneration, Hertie-Institut für klinische Hirnforschung, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Universität Tübingen, Hoppe Seyler Straße 3, 72076, Tübingen, Deutschland.
| | - K Lohmann
- Institut für Neurogenetik, Universität zu Lübeck, Lübeck, Deutschland
| |
Collapse
|