1
|
Hu X, Li Y, Cao Y, Shi F, Shang L. The role of nitric oxide synthase/ nitric oxide in infection-related cancers: Beyond antimicrobial activity. Biochim Biophys Acta Rev Cancer 2024; 1879:189156. [PMID: 39032540 DOI: 10.1016/j.bbcan.2024.189156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 07/11/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
As a free radical and endogenous effector molecule, mammalian endogenous nitric oxide (NO) is mainly derived from nitric oxide synthase (NOS) via L-arginine. NO participates in normal physiological reactions and provides immune responses to prevent the invasion of foreign bacteria. However, NO also has complex and contradictory biological effects. Abnormal NO signaling is involved in the progression of many diseases, such as cancer. In the past decades, cancer research has been closely linked with NOS/ NO, and many tumors with poor prognosis are associated with high expression of NOS. In this review, we give a overview of the biological effects of NOS/ NO. Then we focus on the oncogenic role of iNOS/ NO in HPV, HBV, EBV and H. pylori related tumors. In fact, there is growing evidence that iNOS could be used as a potential therapeutic target in cancer therapy. We emphasize that the pro-tumor effect of NOS/ NO is greater than the anti-tumor effect.
Collapse
Affiliation(s)
- Xudong Hu
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; Department of Pathology, National Clinical Research Center for Geriatric Disorders/ XiangYa Hospital, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Yueshuo Li
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Feng Shi
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; Department of Pathology, National Clinical Research Center for Geriatric Disorders/ XiangYa Hospital, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Li Shang
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; Department of Pathology, National Clinical Research Center for Geriatric Disorders/ XiangYa Hospital, Central South University, Changsha 410078, China.
| |
Collapse
|
2
|
Yangyanqiu W, Shuwen H. Bacterial DNA involvement in carcinogenesis. Front Cell Infect Microbiol 2022; 12:996778. [PMID: 36310856 PMCID: PMC9600336 DOI: 10.3389/fcimb.2022.996778] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/27/2022] [Indexed: 10/29/2023] Open
Abstract
The incidence of cancer is high worldwide, and biological factors such as viruses and bacteria play an important role in the occurrence of cancer. Helicobacter pylori, human papillomavirus, hepatitis B viruses and other organisms have been identified as carcinogens. Cancer is a disease driven by the accumulation of genome changes. Viruses can directly cause cancer by changing the genetic composition of the human body, such as cervical cancer caused by human papillomavirus DNA integration and liver cancer caused by hepatitis B virus DNA integration. Recently, bacterial DNA has been found around cancers such as pancreatic cancer, breast cancer and colorectal cancer, and the idea that bacterial genes can also be integrated into the human genome has become a hot topic. In the present paper, we reviewed the latest phenomenon and specific integration mechanism of bacterial DNA into the human genome. Based on these findings, we also suggest three sources of bacterial DNA in cancers: bacterial DNA around human tissues, free bacterial DNA in bacteremia or sepsis, and endogenous bacterial DNA in the human genome. Clarifying the theory that bacterial DNA integrates into the human genome can provide a new perspective for cancer prevention and treatment.
Collapse
Affiliation(s)
- Wang Yangyanqiu
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, China
- Graduate School of Medical college of Zhejiang University, Hangzhou, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer, Huzhou, China
| | - Han Shuwen
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, China
- Graduate School of Medical college of Zhejiang University, Hangzhou, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer, Huzhou, China
| |
Collapse
|
3
|
Zhong X, Yang Y, Li B, Liang P, Huang Y, Zheng Q, Wang Y, Xiao X, Mo Y, Zhang Z, Zhou X, Huang G, Zhao W. Downregulation of SLC27A6 by DNA Hypermethylation Promotes Proliferation but Suppresses Metastasis of Nasopharyngeal Carcinoma Through Modulating Lipid Metabolism. Front Oncol 2022; 11:780410. [PMID: 35047398 PMCID: PMC8761909 DOI: 10.3389/fonc.2021.780410] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/01/2021] [Indexed: 12/14/2022] Open
Abstract
Lipid is the building block and an important source of energy, contributing to the malignant behavior of tumor cells. Recent studies suggested that lipid droplets (LDs) accumulations were associated with nasopharyngeal carcinoma (NPC) progression. Solute carrier family 27 member 6 (SLC27A6) mediates the cellular uptake of long-chain fatty acid (LCFA), a necessary lipid component. However, the functions of SLC27A6 in NPC remain unknown. Here, we found a significant reduction of SLC27A6 mRNA in NPC tissues compared with normal nasopharyngeal epithelia (NNE). The promoter methylation ratio of SLC27A6 was greater in NPC than in non-cancerous tissues. The demethylation reagent 5-aza-2'-deoxycytidine (5-aza-dC) remarkably restored the mRNA expression of SLC27A6, suggesting that this gene was downregulated in NPC owing to DNA promoter hypermethylation. Furthermore, SLC27A6 overexpression level in NPC cell lines led to significant suppression of cell proliferation, clonogenicity in vitro, and tumorigenesis in vivo. Higher SLC27A6 expression, on the other hand, promoted NPC cell migration and invasion. In particular, re-expression of SLC27A6 faciliated epithelial-mesenchymal transition (EMT) signals in xenograft tumors. Furthermore, we observed that SLC27A6 enhanced the intracellular amount of triglyceride (TG) and total cholesterol (T-CHO) in NPC cells, contributing to lipid biosynthesis and increasing metastatic potential. Notably, the mRNA level of SLC27A6 was positively correlated with cancer stem cell (CSC) markers, CD24 and CD44. In summary, DNA promoter hypermethylation downregulated the expression of SLC27A6. Furthermore, re-expression of SLC27A6 inhibited the growth capacity of NPC cells but strengthened the CSC markers. Our findings revealed the dual role of SLC27A6 in NPC and shed novel light on the link between lipid metabolism and CSC maintenance.
Collapse
Affiliation(s)
- Xuemin Zhong
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China.,Guangxi Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Nanning, China
| | - Yanping Yang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China.,Guangxi Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Nanning, China
| | - Bo Li
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Pan Liang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China.,Guangxi Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Nanning, China
| | - Yiying Huang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qian Zheng
- Life Science Institute, Guangxi Medical University, Nanning, China
| | - Yifang Wang
- Life Science Institute, Guangxi Medical University, Nanning, China
| | - Xue Xiao
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yingxi Mo
- Department of Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Zhe Zhang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaoying Zhou
- Life Science Institute, Guangxi Medical University, Nanning, China
| | - Guangwu Huang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China.,Guangxi Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Nanning, China
| | - Weilin Zhao
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
4
|
Wang G, Hiramoto K, Ma N, Yoshikawa N, Ohnishi S, Murata M, Kawanishi S. Glycyrrhizin Attenuates Carcinogenesis by Inhibiting the Inflammatory Response in a Murine Model of Colorectal Cancer. Int J Mol Sci 2021; 22:ijms22052609. [PMID: 33807620 PMCID: PMC7961658 DOI: 10.3390/ijms22052609] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/22/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
Glycyrrhizin (GL), an important active ingredient of licorice root, which weakens the proinflammatory effects of high-mobility group box 1 (HMGB1) by blocking HMGB1 signaling. In this study, we investigated whether GL could suppress inflammation and carcinogenesis in an azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced murine model of colorectal cancer. ICR mice were divided into four groups (n = 5, each)—control group, GL group, colon cancer (CC) group, and GL-treated CC (CC + GL) group, and sacrificed after 20 weeks. Plasma levels of interleukin (IL)-6 and tumor necrosis factor (TNF)-α were measured using an enzyme-linked immunosorbent assay. The colonic tissue samples were immunohistochemically stained with DNA damage markers (8-nitroguanine and 8-oxo-7,8-dihydro-2′-deoxy-guanosine), inflammatory markers (COX-2 and HMGB1), and stem cell markers (YAP1 and SOX9). The average number of colonic tumors and the levels of IL-6 and TNF-α in the CC + GL group were significantly lower than those in the CC group. The levels of all inflammatory and cancer markers were significantly reduced in the CC + GL group. These results suggest that GL inhibits the inflammatory response by binding HMGB1, thereby inhibiting DNA damage and cancer stem cell proliferation and dedifferentiation. In conclusion, GL significantly attenuates the pathogenesis of AOM/DSS-induced colorectal cancer by inhibiting HMGB1-TLR4-NF-κB signaling.
Collapse
Affiliation(s)
- Guifeng Wang
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan;
- Sakuranomori Shiroko Home, Social Service Elderly Facilities, Suzuka University of Medical Science, Suzuka, Mie 513-0816, Japan
| | - Keiichi Hiramoto
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie 513-8670, Japan; (K.H.); (S.O.)
| | - Ning Ma
- Graduate School of Health Science, Suzuka University of Medical Science, Suzuka, Mie 513-8670, Japan;
- Institute of Traditional Chinese Medicine, Suzuka University of Medical Science, Suzuka, Mie 510-0226, Japan
| | - Nobuji Yoshikawa
- Matsusaka R&D Center, Cokey Co., Ltd., Matsusaka, Mie 515-0041, Japan;
| | - Shiho Ohnishi
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie 513-8670, Japan; (K.H.); (S.O.)
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan;
- Correspondence: (M.M.); (S.K.); Tel.: +81-59-231-5011 (M.M.); +81-59-340-0550 (S.K.)
| | - Shosuke Kawanishi
- Graduate School of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie 513-8670, Japan
- Correspondence: (M.M.); (S.K.); Tel.: +81-59-231-5011 (M.M.); +81-59-340-0550 (S.K.)
| |
Collapse
|
5
|
RASSF1A inhibits PDGFB-driven malignant phenotypes of nasopharyngeal carcinoma cells in a YAP1-dependent manner. Cell Death Dis 2020; 11:855. [PMID: 33057010 PMCID: PMC7560678 DOI: 10.1038/s41419-020-03054-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a highly aggressive tumor characterized by distant metastasis. Deletion or down-regulation of the tumor suppressor protein ras-association domain family protein1 isoform A (RASSF1A) has been confirmed to be a key event in NPC progression; however, little is known about the effects or underlying mechanism of RASSF1A on the malignant phenotype. In the present study, we observed that RASSF1A expression inhibited the malignant phenotypes of NPC cells. Stable silencing of RASSF1A in NPC cell lines induced self-renewal properties and tumorigenicity in vivo/in vitro and the acquisition of an invasive phenotype in vitro. Mechanistically, RASSF1A inactivated Yes-associated Protein 1 (YAP1), a transcriptional coactivator, through actin remodeling, which further contributed to Platelet Derived Growth Factor Subunit B (PDGFB) transcription inhibition. Treatment with ectopic PDGFB partially increased the malignancy of NPC cells with transient knockdown of YAP1. Collectively, these findings suggest that RASSF1A inhibits malignant phenotypes by repressing PDGFB expression in a YAP1-dependent manner. PDGFB may serve as a potential interest of therapeutic regulators in patients with metastatic NPC.
Collapse
|
6
|
Zhan Y, Fan S. Multiple Mechanisms Involving in Radioresistance of Nasopharyngeal Carcinoma. J Cancer 2020; 11:4193-4204. [PMID: 32368302 PMCID: PMC7196263 DOI: 10.7150/jca.39354] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 02/04/2020] [Indexed: 02/07/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is the malignant tumor with ethnic and geographical distribution preference. Although intensity-modulated radiotherapy (IMRT)-based radiotherapy combined with chemotherapy and targeted therapy has dramatically improved the overall survival of NPC patients, there are still some patients suffering from recurrent tumors and the prognosis is poor. Multiple mechanisms may be responsible for radioresistance of NPC, such as cancer stem cells (CSCs) existence, gene mutation or aberrant expression of genes, epigenetic modification of genes, abnormal activation of certain signaling pathways, alteration of tumor microenvironment, stress granules (SGs) formation, etc. We conduct a comprehensive review of the published literatures focusing on the causes of radioresistance, retrospect the regulation mechanisms following radiation, and discuss future directions of overcoming the resistance to radiation.
Collapse
Affiliation(s)
- Yuting Zhan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Songqing Fan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
7
|
LPLUNC1 stabilises PHB1 by counteracting TRIM21-mediated ubiquitination to inhibit NF-κB activity in nasopharyngeal carcinoma. Oncogene 2019; 38:5062-5075. [PMID: 30886235 PMCID: PMC6756001 DOI: 10.1038/s41388-019-0778-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/21/2019] [Accepted: 01/21/2019] [Indexed: 12/22/2022]
Abstract
Long-palate, lung and nasal epithelium clone 1 (LPLUNC1) is a tumour suppressor gene in nasopharyngeal carcinoma (NPC), and low expression of LPLUNC1 is associated with poor prognosis. Our previous study showed that LPLUNC1 upregulates Prohibitin 1 (PHB1), a pleiotropic protein that functions as a tumour suppressor gene in various cancers. Low expression of PHB1 was also found to be associated with the poor prognosis of NPC patients. However, the mechanisms by which LPLUNC1 upregulates PHB1 and the potential role of PHB1 in NPC are unclear. Here, we found that LPLUNC1 stabilised PHB1 by inhibiting PHB1 ubiquitination, which is mediated by E3 ligase TRIM21. LPLUNC1 competitively impaired the binding of PHB1 to TRIM21 due to its stronger binding affinity to PHB1, suppressing the ubiquitination of PHB1. Therefore, our study indicates that PHB1 acted as a tumour suppressor gene by inhibiting NF-κB activity. Depletion of PHB1 significantly attenuated the anti-tumour effects of LPLUNC1 in NPC cells, and the inhibitory effect of LPLUNC1 on NF-κB activity was thus reversed. Together, our findings revealed a novel mechanism underlying the anticancer effect of LPLUNC1 and clarified that PHB1 may represent a novel, promising candidate tumour suppressor gene in NPC, with potential therapeutic target value.
Collapse
|
8
|
Abstract
Infection and inflammation account for approximately 25% of cancer-causing factors. Inflammation-related cancers are characterized by mutagenic DNA lesions, such as 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and 8-nitroguanine. Our previous studies demonstrated the formation of 8-oxodG and 8-nitroguanine in the tissues of cancer and precancerous lesions due to infection (e.g., Opisthorchis viverrini-related cholangiocarcinoma, Schistosoma haematobium-associated bladder cancer, Helicobacter pylori-infected gastric cancer, human papillomavirus-related cervical cancer, Epstein-Barr virus-infected nasopharyngeal carcinoma) and pro-inflammatory factors (e.g., asbestos, nanomaterials, and inflammatory diseases such as Barrett's esophagus and oral leukoplakia). Interestingly, several of our studies suggested that inflammation-associated DNA damage in cancer stem-like cells leads to cancer development with aggressive clinical features. Reactive oxygen/nitrogen species from inflammation damage not only DNA but also other biomacromolecules, such as proteins and lipids, resulting in their dysfunction. We identified oxidatively damaged proteins in cancer tissues by 2D Oxyblot followed by MALDI-TOF/TOF. As an example, oxidatively damaged transferrin released iron ion, which may mediate Fenton reactions and generate additional reactive oxygen species. Dysfunction of anti-oxidative proteins due to this damage might increase oxidative stress. Such damage in biomacromolecules may form a vicious cycle of oxidative stress, leading to cancer development. Epigenetic alterations such as DNA methylation and microRNA dysregulation play vital roles in carcinogenesis, especially in inflammation-related cancers. We examined epigenetic alterations, DNA methylation and microRNA dysregulation, in Epstein-Barr virus-related nasopharyngeal carcinoma in the endemic area of Southern China and found several differentially methylated tumor suppressor gene candidates by using a next-generation sequencer. Among these candidates, we revealed higher methylation rates of RAS-like estrogen-regulated growth inhibitor (RERG) in biopsy specimens of nasopharyngeal carcinoma more conveniently by using restriction enzyme-based real-time PCR. This result may help to improve cancer screening strategies. We profiled microRNAs of nasopharyngeal carcinoma tissues using microarrays. Quantitative RT-PCR analysis confirmed the concordant downregulation of miR-497 in cancer tissues and plasma, suggesting that plasma miR-497 could be used as a diagnostic biomarker for nasopharyngeal carcinoma. Chronic inflammation promotes genetic and epigenetic aberrations, with various pathogeneses. These changes may be useful biomarkers in liquid biopsy for early detection and prevention of cancer.
Collapse
Affiliation(s)
- Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| |
Collapse
|
9
|
Abstract
Infection and inflammation account for approximately 25% of cancer-causing factors. Inflammation-related cancers are characterized by mutagenic DNA lesions, such as 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and 8-nitroguanine. Our previous studies demonstrated the formation of 8-oxodG and 8-nitroguanine in the tissues of cancer and precancerous lesions due to infection (e.g., Opisthorchis viverrini-related cholangiocarcinoma, Schistosoma haematobium-associated bladder cancer, Helicobacter pylori-infected gastric cancer, human papillomavirus-related cervical cancer, Epstein-Barr virus-infected nasopharyngeal carcinoma) and pro-inflammatory factors (e.g., asbestos, nanomaterials, and inflammatory diseases such as Barrett's esophagus and oral leukoplakia). Interestingly, several of our studies suggested that inflammation-associated DNA damage in cancer stem-like cells leads to cancer development with aggressive clinical features. Reactive oxygen/nitrogen species from inflammation damage not only DNA but also other biomacromolecules, such as proteins and lipids, resulting in their dysfunction. We identified oxidatively damaged proteins in cancer tissues by 2D Oxyblot followed by MALDI-TOF/TOF. As an example, oxidatively damaged transferrin released iron ion, which may mediate Fenton reactions and generate additional reactive oxygen species. Dysfunction of anti-oxidative proteins due to this damage might increase oxidative stress. Such damage in biomacromolecules may form a vicious cycle of oxidative stress, leading to cancer development. Epigenetic alterations such as DNA methylation and microRNA dysregulation play vital roles in carcinogenesis, especially in inflammation-related cancers. We examined epigenetic alterations, DNA methylation and microRNA dysregulation, in Epstein-Barr virus-related nasopharyngeal carcinoma in the endemic area of Southern China and found several differentially methylated tumor suppressor gene candidates by using a next-generation sequencer. Among these candidates, we revealed higher methylation rates of RAS-like estrogen-regulated growth inhibitor (RERG) in biopsy specimens of nasopharyngeal carcinoma more conveniently by using restriction enzyme-based real-time PCR. This result may help to improve cancer screening strategies. We profiled microRNAs of nasopharyngeal carcinoma tissues using microarrays. Quantitative RT-PCR analysis confirmed the concordant downregulation of miR-497 in cancer tissues and plasma, suggesting that plasma miR-497 could be used as a diagnostic biomarker for nasopharyngeal carcinoma. Chronic inflammation promotes genetic and epigenetic aberrations, with various pathogeneses. These changes may be useful biomarkers in liquid biopsy for early detection and prevention of cancer.
Collapse
Affiliation(s)
- Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| |
Collapse
|
10
|
Yi M, Cai J, Li J, Chen S, Zeng Z, Peng Q, Ban Y, Zhou Y, Li X, Xiong W, Li G, Xiang B. Rediscovery of NF-κB signaling in nasopharyngeal carcinoma: How genetic defects of NF-κB pathway interplay with EBV in driving oncogenesis? J Cell Physiol 2018; 233:5537-5549. [PMID: 29266238 DOI: 10.1002/jcp.26410] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 12/18/2017] [Indexed: 12/13/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a unique EBV-associated subtype of head and neck cancer, which has the highest incidence in Southern China and eastern South Asia. The interaction between genetic risk factors and environmental challenge, have been considered to contribute to the development of nasopharyngeal carcinogenesis. Constitutive activation of NF-κB signaling has been seen in NPC tissues and is associated with unfavorable prognosis. Recently, several whole exome sequencing study consistently revealed that high frequency mutations of NF-κB pathway negative regulators is common in nasopharyngeal carcinoma, which reinforce the importance of NF-κB driving oncogenesis. This review focuses on the current state of research in role of NF-κB in NPC carcinogenesis. We summarized the newly identified loss of function (LOF) mutations on NF-κB negative regulators leading to it's activation bypass LMP-1 stimulation. We discussed the critical role of NF-κB activation in immortalization and transformation of nasopharygeal epithelium. We also depicted how NF-κB signaling mediated chronic inflammation contribute to persistent EBV infection, immune evasion of EBV infected cells, metabolic reprogramming, and cancer stem cells (CSCs) formation in NPC. Lastly, we discussed the clinical resonance of targeting NF-κB for NPC precise therapy.
Collapse
Affiliation(s)
- Mei Yi
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Department of Dermatology, Xiangya Hospital of Central South University, Changsha, China
| | - Jing Cai
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Junjun Li
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Shengnan Chen
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhaoyang Zeng
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Qian Peng
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Yuanyuan Ban
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Ying Zhou
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Xiaoling Li
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Wei Xiong
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Guiyuan Li
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Bo Xiang
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
11
|
Zhao W, Ma N, Wang S, Mo Y, Zhang Z, Huang G, Midorikawa K, Hiraku Y, Oikawa S, Murata M, Takeuchi K. RERG suppresses cell proliferation, migration and angiogenesis through ERK/NF-κB signaling pathway in nasopharyngeal carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:88. [PMID: 28659184 PMCID: PMC5490152 DOI: 10.1186/s13046-017-0554-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/15/2017] [Indexed: 12/15/2022]
Abstract
Background Nasopharyngeal carcinoma (NPC) is a malignancy of the head and neck that is prevalent in Southeast Asia and southern China. Recent studies in epigenetics suggest that DNA methylation plays a pivotal role in the onset and progression of cancer. Combining the methyl-DNA binding domain capture technique and cDNA microarray analysis, we identified a unique hypermethylated gene, RERG (Ras-like estrogen-regulated growth inhibitor), that was down-regulated in NPC tissues. RERG is a tumor suppressor gene that was first reported in breast cancer. However, the functions of RERG are largely unknown in other tumor types. Methods RERG expression was assessed in human subjects (NPC primary tissues and non-cancer tissues) and cell lines (NPC cell lines and an immortalized epithelial cell line NP460). Further, we investigated the methylation rate of RERG in both human subject and cell lines. 5-Aza-2’-deoxycytidine (Aza) or combined with trichostatin A (TSA) were treated to three NPC cell lines (HK1, C666-1 and HK1_EBV). In addition, the role of RERG in NPC cells and its underlying mechanisms were explored by overexpression of RERG in NPC cell lines. Results RERG was significantly down-regulated in NPC cancer nests compared to normal nasopharyngeal epithelium cells. Furthermore, the RERG promoter was frequently methylated in NPC tissues and cell lines. The RERG methylation rate yielded an area under the curve (AUC) of receiver operating characteristic (ROC) curve was 0.897 (95%CI: 0.818–0.976). The down-regulation of RERG was restored in NPC cells treated with Aza and TSA. In addition, ectopic expression of RERG in NPC cell lines resulted in a significant suppression of cell proliferation, clonogenicity, migration and invasion. RERG-overexpressing cells showed significantly slower growth and less angiogenesis in tumor xenografts in nude mice. RERG suppressed the ERK/NF-κB signaling pathway and inhibited tumor growth and angiogenesis with down-regulation of MMPs and IL8 in tumors of nude mouse xenografts. Conclusions Our results suggest that RERG is frequently silenced by promoter CpG methylation in NPC, and acts as a functional tumor suppressor by suppressing the ERK/NF-κB signaling pathway. These findings support the potential use of RERG as a novel molecular target in NPC therapy. Electronic supplementary material The online version of this article (doi:10.1186/s13046-017-0554-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Weilin Zhao
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan.,Department of Otorhinolaryngology - Head and Neck Surgery, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan.,Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Ning Ma
- Graduate School of Health Science, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Shumin Wang
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan.,Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.,Present address: Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Yingxi Mo
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan.,Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.,Present address: Department of Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhe Zhang
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Guangwu Huang
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Kaoru Midorikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Yusuke Hiraku
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Shinji Oikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan.
| | - Kazuhiko Takeuchi
- Department of Otorhinolaryngology - Head and Neck Surgery, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan.
| |
Collapse
|
12
|
Gene Electrotransfer of Plasmid-Encoding IL-12 Recruits the M1 Macrophages and Antigen-Presenting Cells Inducing the Eradication of Aggressive B16F10 Murine Melanoma. Mediators Inflamm 2017; 2017:5285890. [PMID: 28596641 PMCID: PMC5449735 DOI: 10.1155/2017/5285890] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/03/2017] [Accepted: 03/12/2017] [Indexed: 12/30/2022] Open
Abstract
Cancer immunotherapy is currently one of the leading approaches in cancer treatment. Gene electrotransfer of plasmids encoding interleukin 12 (IL-12) into the cells leads to the production of IL-12, which drives immune cell polarization to an antitumoral response. One of the cell types that shows great promise in targeting tumor cells under the influence of IL-12 cytokine milieu is that of macrophages. Therefore, the aim of this study was to evaluate gene electrotransfer of antibiotic resistance-free plasmid DNA-encoding murine IL-12 (mIL-12) in mice bearing aggressive B16F10 murine melanoma. IL-12 electrotransfer resulted in the complete long-term eradication of the tumors. Serum mIL-12 and murine interferon γ (mIFNγ) were increased after IL-12 gene electrotransfer. Further on, hematoxylin and eosin (HE) staining showed increased infiltration of immune cells that lasted from day 4 until day 14. Immunohistochemistry (IHC) staining of F4/80, MHCII, and CD11c showed higher positive staining in the IL-12 gene electrotransfer group than in the control groups. Immune cell infiltration into the tumors and the high density of MHCII- and CD11c-positive cells suggest an antitumor polarization of macrophages and the presence of antigen-presenting cells that contributes to the important antitumor effectiveness of IL-12.
Collapse
|