1
|
Ma L, Zhang M, Chen T, Wang L, Deng Q. Electroacupuncture inhibits neuronal pyroptosis in ischemic brain injury through modulating SIRT5-mediated NEK7 succinylation. Brain Res Bull 2025; 220:111173. [PMID: 39694147 DOI: 10.1016/j.brainresbull.2024.111173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/02/2024] [Accepted: 12/15/2024] [Indexed: 12/20/2024]
Abstract
Ischemic stroke is a leading cause of global death. The treatment of this disease can inevitably result in reperfusion, thereby triggering cerebral ischemia-reperfusion injury (IRI) and neuronal pyroptosis. Electroacupuncture derived from traditional acupuncture has been proven to have favorable effects on ameliorating brain IRI and pyroptosis. Hence, the goal of the current research was to elucidate the mechanism governing electroacupuncture in cerebral IRI. We employed middle cerebral artery occlusion (MCAO) model to induce brain IRI. Our results revealed that electroacupuncture attenuated IRI in MCAO mice by minishing brain damage and hindering neuronal pyroptosis. Strikingly, it was discovered that electroacupuncture provoked the decrease of succinylation level and enhanced expression of SIRT5. Then, we demonstrated that knockdown of SIRT5 reversed the role of electroacupuncture in cerebral infarct injury and pyroptosis. In terms of mechanism, SIRT5 impeded the succinylation modification of NEK7 at K81 site to downregulate its expression level. Eventually, overexpression of NEK7 abrogated the impacts of electroacupuncture on MCAO mice. In conclusion, electroacupuncture restrained neuronal pyroptosis after cerebral ischemia via desuccinylating NEK7 in a SIRT5-dependent way.
Collapse
Affiliation(s)
- Lili Ma
- Wenzhou Medical University, Chashan University Town, Ouhai District, Wenzhou, Zhejiang 325035, China; Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, No 150, Ximen Street, Linhai, Taizhou, Zhejiang 317000, China
| | - Meiling Zhang
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, No 150, Ximen Street, Linhai, Taizhou, Zhejiang 317000, China; Luqiao Hospital, Taizhou Enze Medical Center (Group), No 1, West Xialiqiao Road, Luqiao District, Taizhou, Zhejiang 318050, China
| | - Ting Chen
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, No 150, Ximen Street, Linhai, Taizhou, Zhejiang 317000, China
| | - Limin Wang
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, No 150, Ximen Street, Linhai, Taizhou, Zhejiang 317000, China; Luqiao Hospital, Taizhou Enze Medical Center (Group), No 1, West Xialiqiao Road, Luqiao District, Taizhou, Zhejiang 318050, China.
| | - Qilong Deng
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, No 150, Ximen Street, Linhai, Taizhou, Zhejiang 317000, China; Luqiao Hospital, Taizhou Enze Medical Center (Group), No 1, West Xialiqiao Road, Luqiao District, Taizhou, Zhejiang 318050, China.
| |
Collapse
|
2
|
Dai J, Huang H, Wu L, Ding M, Zhu X. Protective Role of Vitamin D Receptor in Cerebral Ischemia/Reperfusion Injury In Vitro and In Vivo Model. FRONT BIOSCI-LANDMRK 2024; 29:389. [PMID: 39614452 DOI: 10.31083/j.fbl2911389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/26/2024] [Accepted: 10/21/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND Vitamin D receptor (VDR) can prevent myocardial ischemia reperfusion injury (MIRI). Hence, we aimed to illuminate the effect of VDR on cerebral ischemia/reperfusion injury (CIRI). METHODS C57BL/6 mice and SK-N-SH cells were utilized to establish CIRI and cellular oxygen deprivation/reoxygenation (OGD/R) models. Mice were injected with 1 μg/kg Calcitriol or 1 μg/kg Paricalcitol (PC) and adenovirus-mediated VDR overexpression or knockdown plasmids. 2,3,5-triphenyl-tetrazolium chloride (TTC) and Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays were performed to measure the brain infarct volume and the apoptosis of cerebral cells. SK-N-SH cells were treated with 5 mM N-acetyl-L-cysteine (NAC) and transfected with VDR knockdown plasmid. Flow cytometry and Cell Counting Kit-8 (CCK-8) assays were employed to assess the apoptosis and cell viability. Enzyme-Linked Immunosorbent Assay (ELISA), quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR) and Western blot were exploited to quantify the levels of reactive species oxygen (ROS), other oxidative stress-related factors, VDR and apoptosis-related factors. RESULTS The level of VDR in mouse cerebral tissue was elevated by CIRI (p < 0.001). CIRI-induced cerebral infarction (p < 0.001) and the apoptosis of cerebral cells (p < 0.001) in mice were mitigated by the activation of VDR. VDR overexpression abrogated while VDR silencing enhanced CIRI-induced infarction, oxidative stress and apoptosis of cerebral cells (p < 0.05). Furthermore, VDR silencing aggravated the oxidative stress and apoptosis in OGD/R-treated SK-N-SH cells (p < 0.05). NAC, a scavenger of oxidative stress, could reverse the effects of VDR silencing on apoptosis and oxidative stress in OGD/R-treated SK-N-SH cells (p < 0.01). CONCLUSION VDR alleviates the oxidative stress to protect against CIRI.
Collapse
Affiliation(s)
- Jie Dai
- Department of Neurology, The Second Affiliated Hospital of Nantong University, 226001 Nantong, Jiangsu, China
| | - Haiyan Huang
- Department of General surgery, The Second Affiliated Hospital of Nantong University, 226001 Nantong, Jiangsu, China
| | - Liucheng Wu
- Laboratory Animal Center, Nantong University, 226019 Nantong, Jiangsu, China
| | - Mei Ding
- Department of Neurology, The Second Affiliated Hospital of Nantong University, 226001 Nantong, Jiangsu, China
| | - Xiangyang Zhu
- Department of Neurology, The Second Affiliated Hospital of Nantong University, 226001 Nantong, Jiangsu, China
| |
Collapse
|
3
|
Guan C, Feng Y, Cao L, Wang Y, Zhang Q, Liu L, Xie H, Yu K, Shen X, Wu Y, Wang N. Acupuncture for stroke: A bibliometric analysis of global research from 2000 to 2022. Heliyon 2024; 10:e33827. [PMID: 39050433 PMCID: PMC11268209 DOI: 10.1016/j.heliyon.2024.e33827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
Objective This study aimed to explore the global and future research trends in acupuncture interventions for stroke between 2000 and 2022 using bibliometric analysis. Method A bibliometric analysis of literature from 2000 to 2022 in the Web of Science Core Collection was conducted in this study. The analysis utilized CiteSpace, VOSviewer, and Scimago Graphica software to identify the major contributors to publications, including authors, countries, institutions, journals, references, and keywords. Results The bibliometric analysis yielded a total of 860 publications. There was a gradual increase in the number of publications over the study period. China published the most articles. Evidence-Based Complementary and Alternative Medicine was the journal with the greatest number of publications. The most frequently used keywords were "acupuncture," "stroke," and "electroacupuncture." Conclusion These analysis uncovers the research trends in acupuncture for stroke spanning 2000 to 2022 and points to prospective research frontiers. This study provides a deeper and more thorough understanding of the connotations of acupuncture for stroke and guidance and support for future research in this field.
Collapse
Affiliation(s)
- Chong Guan
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, 200040, China
- National Clinical Research Center for Geriatric Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yashuo Feng
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, 200040, China
- National Clinical Research Center for Geriatric Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Lu Cao
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yiyuan Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Qun Zhang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Li Liu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Hongyu Xie
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Kewei Yu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xueyan Shen
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yi Wu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, 200040, China
- National Clinical Research Center for Geriatric Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Nianhong Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, 200040, China
- National Clinical Research Center for Geriatric Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
4
|
Guo K, Lu Y. Acupuncture modulates the AMPK/PGC-1 signaling pathway to facilitate mitochondrial biogenesis and neural recovery in ischemic stroke rats. Front Mol Neurosci 2024; 17:1388759. [PMID: 38813438 PMCID: PMC11133568 DOI: 10.3389/fnmol.2024.1388759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/30/2024] [Indexed: 05/31/2024] Open
Abstract
Aims The main objective of this study was to investigate the role and mechanism of acupuncture on anti-nerve injury in the acute phase by regulating mitochondrial energy metabolism via monophosphate-activated protein kinase (AMPK)/peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) axis in rat ischemic stroke. Main methods Middle cerebral artery occlusion (MCAO) was established by middle cerebral artery occlusion/reperfusion. One-week of acupuncture was performed during the acute phase of ischemic stroke. The neurological function and brain tissue integrity were evaluated. Mitochondrial function (intracellular ATP level and the activity of mitochondrial respiratory chain complex I) and the level of NADH oxidase (NOX) were detected by enzymatic chemistry. Next, the potential molecular mechanisms were explored by western blotting, fluorescence quantitative PCR and immunohistochemistry method. Key findings (1) Acupuncture treatment for MCAO/R rats showed a significant improvement in the infarcted tissue accompanied by functional recovery in Zea-Longa score and balance beam score outcomes, motor function performances. (2) Acupuncture increased the levels of ATP and mitochondrial respiratory chain complex I, decreased the NOX levels in cerebral ischemia established by suture-occluded method. (3) Acupuncture reduced the necrosis dissolution of neuronal cells and meningeal edema, while promoting angiogenesis. (4) Quantitative immunohistochemical staining results showed acupuncture can increase the expression of AMPK, p-AMPK and the mitochondrial transcription factor PGC-1α, NRF2, TFAM and uncoupling protein 2 (UCP2). Meanwhile, acupuncture treatment up-regulated the expression of the corresponding protein. (5) Subsequently, acupuncture enhanced AMPK phosphorylation as well as the expression of PGC-1α, NRF2, TFAM and UCP2, implicated in mitochondrial synthesis and cellular apoptosis. (6) Finally, injections of AMPK antagonists and activators confirmed AMPK as a therapeutic target for the anti-nerve damage effects of acupuncture. Significance Acupuncture intervention relieved ischemic stroke progression in MCAO rats by promoting energy metabolism and mitochondrial biogenesis in the brain and alleviating neuronal apoptosis, which was mediated by eliciting AMPK/PGC-1α axis, among them AMPK is a therapeutic target.
Collapse
Affiliation(s)
| | - Yan Lu
- Department of Acupuncture, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
5
|
Meng L, Wu B, OuYang L, Peng R, Chen Y, Tang Z, Zhang M, Xu T, Wang Y, Lu S, Jing X, Fu S. Electroacupuncture regulates histone acetylation of Bcl-2 and Caspase-3 genes to improve ischemic stroke injury. Heliyon 2024; 10:e27045. [PMID: 38500994 PMCID: PMC10945129 DOI: 10.1016/j.heliyon.2024.e27045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 12/16/2023] [Accepted: 02/22/2024] [Indexed: 03/20/2024] Open
Abstract
Background Imbalances between Bcl-2 and caspase-3 are significant evidence of apoptosis, which is considered an influential factor in rapidly occurring neuronal cell death and the decline of neurological function after stroke. Studies have shown that acupuncture can reduce poststroke brain cell damage via either an increase in Bcl-2 or a reduction in caspase-3 exposure. The current study aimed to investigate whether acupuncture could modulate Bcl-2 and caspase-3 expression through histone acetylation modifications, which could potentially serve as a neuroprotective mechanism. Methods This study used TTC staining, Nissl staining, Clark neurological system score, and Evans Blue (EB) extravasation to evaluate neurological damage following stroke. The expression of Bcl-2/caspase-3 mRNA was detected by real-time fluorescence quantification of PCR (real-time PCR), whereas the protein expression levels of Bcl-2, Bax, caspase-3, and cleaved caspase-3 were assessed using western blotting. TUNEL staining of the ischemic cortical neurons determined apoptosis in the ischemic cortex. Histone acetyltransferase (HAT) and histone deacetylase (HDAC) activities, along with the protein performance of AceH3, H3K9ace, and H3K27ace, were detected to evaluate the degree of histone acetylation. The acetylation enrichment levels of H3K9 and K3K27 in the Bcl-2/caspase-3 gene were assessed using Chromatin Immunoprecipitation (ChIP) assay. Results Our data demonstrated that electroacupuncture (EA) exerts a significant neuroprotective effect in middle cerebral artery occlusion (MCAO) rats, as evidenced by a reduction in infarct volume, neuronal damage, Blood-Brain Barrier (BBB) disruption, and decreased apoptosis of ischemic cortical neurons. EA treatment can promote the mRNA and protein expression of the Bcl-2 gene in the ischemic brain while reducing the mRNA and protein expression levels of caspase-3 and effectively decreasing the protein expression levels of Bax and cleaved caspase-3. More importantly, EA treatment enhanced the level of histone acetylation, including Ace-H3, H3K9ace, and H3K27ace, significantly enhanced the occupancy of H3K9ace/H3K27ace at the Bcl-2 promoter, and reduced the enrichment of H3K9ace and H3K27ace at the caspase-3 promoter. However, the Histone Acetyltransferase inhibitor (HATi) treatment reversed these effects. Conclusions Our data demonstrated that EA mediated the expression levels of Bcl-2 and caspase-3 in MCAO rats by regulating the occupancy of acetylated H3K9/H3K27 at the promoters of these two genes, thus exerting a cerebral protective effect in ischemic reperfusion (I/R) injury.
Collapse
Affiliation(s)
| | | | - Ling OuYang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Rou Peng
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yonglin Chen
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhijuan Tang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Min Zhang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Tanqing Xu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yaling Wang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shengfeng Lu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xinyue Jing
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shuping Fu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| |
Collapse
|
6
|
Zhang H, Du D, Gao X, Tian X, Xu Y, Wang B, Yang S, Liu P, Li Z. PFT-α protects the blood-brain barrier through the Wnt/β-catenin pathway after acute ischemic stroke. Funct Integr Genomics 2023; 23:314. [PMID: 37777676 DOI: 10.1007/s10142-023-01237-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023]
Abstract
The dysfunction of blood-brain barrier (BBB) plays a pivotal role in brain injury and subsequent neurological deficits of ischemic stroke. The current study aimed to examine the potential correlation between p53 inhibition and the neuroprotective effect of on the BBB. Rat middle cerebral artery occlusion and reperfusion model (MCAO/R) and oxygen-glucose deprivation/re-oxygenation model (OGD/R) were employed to simulate cerebral ischemia-reperfusion (CI/R) injury occurrence in vivo and in vitro. mNSS and TTC staining were applied to evaluate neurological deficits and brain infarct volumes. Evans blue (EB) staining was carried out to examine the permeability of BBB. RT-qPCR and Western blot to examine the mRNA and protein levels. Cell viabilities were detected by CCK-8. Flow cytometry and ELISA assay were employed to examine apoptosis and neuroinflammation levels. TEER value and sodium fluorescein were carried out to explore the permeability of HBMEC cells. PFT-α inhibited P53 and promoted the expression of β-catenin and cyclin D1, which were reversed by DKK1. PFT-α inhibited neurological deficits, brain infarct volume, neuroinflammation, apoptosis, and BBB integrity than the MCAO/R rats; however, this inhibition was reversed by DKK1. PFT-α promoted OGD/R-induced cell viability in NSCs, and suppressed inflammation and apoptosis, but DKK1 weakened the effect of PFT-α. PFT-α increased OGD/R-induced TEER values in cerebrovascular endothelial cells, inhibited sodium fluorescein permeability, and increased the mRNA levels of tight junction protein, but they were all attenuated by DKK1. PFT-α protects the BBB after acute ischemic stroke via the Wnt/β-catenin pathway, which in turn improves neurological function.
Collapse
Affiliation(s)
- Haitao Zhang
- Department of Neurosurgery, Binzhou Medical University Hospital, No. 661, Huanghe 2nd Road, Binzhou, 256603, China
| | - Deyong Du
- Department of Neurosurgery, Binzhou Medical University Hospital, No. 661, Huanghe 2nd Road, Binzhou, 256603, China
| | - Xiaoning Gao
- Department of Neurosurgery, Binzhou Medical University Hospital, No. 661, Huanghe 2nd Road, Binzhou, 256603, China
| | - Xiaoling Tian
- Department of Neurosurgery, Binzhou Medical University Hospital, No. 661, Huanghe 2nd Road, Binzhou, 256603, China
| | - Yongqiang Xu
- Department of Neurosurgery, Binzhou Medical University Hospital, No. 661, Huanghe 2nd Road, Binzhou, 256603, China
| | - Bo Wang
- Department of Neurosurgery, Binzhou Medical University Hospital, No. 661, Huanghe 2nd Road, Binzhou, 256603, China
| | - Shoujuan Yang
- Department of Cardiology, Binzhou Medical University Hospital, No. 661, Huanghe 2nd Road, Binzhou, 256603, China.
| | - Pengfei Liu
- Department of Neurosurgery, Binzhou Medical University Hospital, No. 661, Huanghe 2nd Road, Binzhou, 256603, China.
| | - Zefu Li
- Department of Neurosurgery, Binzhou Medical University Hospital, No. 661, Huanghe 2nd Road, Binzhou, 256603, China.
| |
Collapse
|
7
|
Shen Y, Hu L, Ge J, Li L. Effect of electroacupuncture treatment combined with rehabilitation care on serum sirt3 level and motor function in elderly patients with stroke hemiparesis. Medicine (Baltimore) 2023; 102:e33403. [PMID: 37058075 PMCID: PMC10101298 DOI: 10.1097/md.0000000000033403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/09/2023] [Indexed: 04/15/2023] Open
Abstract
OBJECTIVE Acupuncture treatment helps to improve neurological and motor function in elderly patients with stroke hemiplegia. However, the exact mechanism by which electroacupuncture improves stroke hemiparesis is uncertain. The aim of this study was to determine the effect of electroacupuncture care on sirt3 levels in elderly patients with stroke hemiparesis. METHODS One hundred and ten elderly patients with hemiplegia after first stroke were divided into an experimental group and a control group (n = 55 in each group). The control group was given conventional rehabilitation care by a rehabilitation therapist. In the experimental group, on the basis of conventional rehabilitation care, electroacupuncture was performed once a day for 28 days. RESULTS Fugl-Meyer assessment (FMA) and barthel index (BI) scores were significantly higher, while neurologic deficit scale (NDS) and physiological state scores were significantly lower in both groups after 14 and 28 days of intervention compared to preintervention. The Generalized estimating equation (GEE) model also showed that the experimental group showed more favorable improvements in all outcomes at postintervention time points compared to the control group. After the intervention, serum sirt3 levels increased significantly in both groups compared to preintervention, and the increase was more pronounced in the experimental group. Consistently, the GEE model showed that serum sirt3 levels were significantly higher in the experimental group compared to the control group at postintervention time points. Correlation analysis revealed that serum sirt3 levels in the experimental group were negatively correlated with FMA and BI pre- and postintervention, while showing a significant positive correlation with NDS and physiological state scores. CONCLUSION Electroacupuncture intervention led to significant improvements in motor function, activities of daily living and neurological function in elderly patients with stroke hemiplegia, which may be associate with increased serum sirt3 levels.
Collapse
Affiliation(s)
- Ying Shen
- International Clinic, Wuhan Union Hospital of China, Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liping Hu
- Department of Geriatrics, Wuhan Union Hospital of China, Affiliated to Tongji Medical College of Huazhong University of Science and technology, Wuhan, Hubei, China
| | - Jing Ge
- Department of Geriatrics, Wuhan Union Hospital of China, Affiliated to Tongji Medical College of Huazhong University of Science and technology, Wuhan, Hubei, China
| | - Ling Li
- Department of Geriatrics, Wuhan Union Hospital of China, Affiliated to Tongji Medical College of Huazhong University of Science and technology, Wuhan, Hubei, China
| |
Collapse
|
8
|
Guo R, Zhang Y, Geng Y, Chen P, Fu T, Xia Y, Zhang R, Zhu Y, Jin J, Jin N, Xu H, Tian X. Electroacupuncture ameliorates inflammatory response induced by retinal ischemia-reperfusion injury and protects the retina through the DOR-BDNF/Trkb pathway. Front Neuroanat 2023; 16:1057929. [PMID: 36686575 PMCID: PMC9850165 DOI: 10.3389/fnana.2022.1057929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/08/2022] [Indexed: 01/07/2023] Open
Abstract
Objectives: Retinal ischemia-reperfusion injury (RIRI) is the common pathological basis of many ophthalmic diseases in the later stages, and inflammation is the primary damage mechanism of RIRI. Our study aimed to assess whether electroacupuncture (EA) has a protective effect against RIRI and to elucidate its related mechanisms. Methods: A high-intraocular pressure (HIOP) model was used to simulate RIRI in Wistar rats. EA was applied to the EA1 group [Jingming (BL1) + Shuigou (GV26)] and the EA2 group [Jingming (BL1) + Hegu (LI4)] respectively for 30 min starting immediately after the onset of reperfusion and repeated (30 min/time) at 12 h and then every 24 h until days 7 after reperfusion. The pathological changes in the retina were observed by H and E staining after HIOP. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining was utilized to observe retinal cell apoptosis. The mRNA expression of IL1-β, TNF-α, IL-4, IL-10, δ-opioid receptor (DOR), brain-derived neurotrophic factor (BDNF), and tropomyosin-related kinase B (TrkB) in the retina was measured by quantitative real-time PCR. Results: HIOP caused structural disorders of the retina, decreased RGCs, and increased retinal cell apoptosis. At 1 and 3 days of RIRI, retinal apoptotic cells in the EA group were significantly reduced, while there was no distinct difference in the EA group compared with the HIOP group at 7 days of RIRI. Compared with that in the HIOP group, the expression of anti-inflammatory factors, DOR and TrkB was increased, and the expression of pro-inflammatory factors was decreased in the EA group. In contrast, HIOP had no appreciable effect on BDNF expression. Conclusion: EA at Jingming (BL1) and Shuigou (GV26) or at Jingming (BL1) and Hegu (LI4) may inhibit RIRI induced inflammation through activating the DOR-BDNF/TrkB pathway to protect the retina, especially the pair of Jingming (BL1) and Shuigou (GV26) has better inhibitory effects on inflammation.
Collapse
Affiliation(s)
- Runjie Guo
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongjie Zhang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Geng
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Chen
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tiantian Fu
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong Xia
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ren Zhang
- Shanghai Chinese Medicine Literature Museum, Shanghai, China
| | - Yuan Zhu
- Shanghai Jinshan District Hospital of Traditional Chinese and Western Medicine, Shanghai, China
| | - Jingling Jin
- Division of Cancer Medicine, MD Anderson Cancer Center, Houston, TX, United States
| | - Nange Jin
- Department of Vision Sciences, University of Houston College of Optometry, Houston, TX, United States
| | - Hong Xu
- Department of Acupuncture-Moxibustion, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Hong Xu Xuesong Tian
| | - Xuesong Tian
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Hong Xu Xuesong Tian
| |
Collapse
|
9
|
Wang LF, Liang WD, Wang BY, Guo ML, Zhou JS, Chen L, Zhong ML, Ye JM. Transcutaneous electrical acupoint stimulation for reducing cognitive dysfunction in lumbar spine surgery: A randomized, controlled trail. Front Aging Neurosci 2022; 14:1034998. [PMID: 36545028 PMCID: PMC9760873 DOI: 10.3389/fnagi.2022.1034998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/21/2022] [Indexed: 12/07/2022] Open
Abstract
Objective This study aimed to evaluate the effect of perioperative transcutaneous electrical acupoint stimulation (TEAS) on postoperative cognitive dysfunction (POCD) in older patients with lumbar spine surgery. Methods Older patients (aged 60-80 years old) receiving lumbar spine surgery under general anesthesia were randomly divided into group A, 3-day intervention group; group B, 7-day intervention group; control group C, sham TEAS group, selected "Baihui" (GV 20) and "Dazhui" (GV 14) point was intervened once 30 min before operation with "HANS" transcutaneous electrical stimulation device, and then once a day after operation for 30 min each time. The primary outcome was the incidence of postoperative cognitive impairment assessed by the use of the Mini Mental Rating Scale (MMSE), patients developed POCD according to the Z score method. The secondary outcome was serum interleukin-6 (IL-6), tumor Necrosis factor α (TNF-α), neuron-specific enolase (NSE), and S100β protein levels. Results Three days after surgery, the incidence of POCD in groups A((22.4%)) and B ((18.3%)) were lower than those in group C ((42.9%)) (P < 0.05). There was no significant difference between groups A and B (P > 0.05). Seven days after surgery, the incidence of POCD in group B (18.3%) was lower than that in groups A (26.5%) and B (42.9%), and the comparison between groups B and C was statistically significant (P < 0.05). On the 3rd and 7th days after surgery, the levels of IL-6, TNF-α, NSE, and S100β in the two TEAS groups were lower than those in the sham TEAS group (P < 0.01), but higher than the preoperative levels in the three groups (P < 0.01). Conclusion It seems that Perioperative TEAS intervention could reduce the level of inflammatory factors IL-6, TNF-α in the blood of older patients with lumbar spine surgery, and reduce the incidence of POCD. Clinical trial registration www.chictr.org.cn, identifier ChiCTR2200063030.
Collapse
Affiliation(s)
- Li-feng Wang
- Department of Anesthesiology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China,Department of Anesthesiology, First Affiliated Hospital of Gannan Medical College, Ganzhou, Jiangxi, China
| | - Wei-dong Liang
- Department of Anesthesiology, First Affiliated Hospital of Gannan Medical College, Ganzhou, Jiangxi, China
| | - Bing-yu Wang
- Department of Anesthesiology, Gannan Medical College, Ganzhou, Jiangxi, China
| | - Ming-ling Guo
- Department of Anesthesiology, Gannan Medical College, Ganzhou, Jiangxi, China
| | - Jian-shun Zhou
- Department of Anesthesiology, Gannan Medical College, Ganzhou, Jiangxi, China
| | - Li Chen
- Department of Anesthesiology, First Affiliated Hospital of Gannan Medical College, Ganzhou, Jiangxi, China
| | - Mao-lin Zhong
- Department of Anesthesiology, First Affiliated Hospital of Gannan Medical College, Ganzhou, Jiangxi, China
| | - Jun-ming Ye
- Department of Anesthesiology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China,Department of Anesthesiology, Gannan Medical College, Ganzhou, Jiangxi, China,*Correspondence: Jun-ming Ye,
| |
Collapse
|
10
|
Ji ZJ, Shi Y, Li X, Hou R, Yang Y, Liu ZQ, Duan XC, Liu Q, Chen WD, Peng DY. Neuroprotective Effect of Taohong Siwu Decoction on Cerebral Ischemia/Reperfusion Injury via Mitophagy-NLRP3 Inflammasome Pathway. Front Pharmacol 2022; 13:910217. [PMID: 35754465 PMCID: PMC9213799 DOI: 10.3389/fphar.2022.910217] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/16/2022] [Indexed: 12/02/2022] Open
Abstract
Objective: Globally, cerebral ischemia has been shown to be the second leading cause of death. Our previous studies have shown that Taohong Siwu Decoction (THSWD) exhibits obvious neuroprotective effects on cerebral ischemia/reperfusion (I/R) injury (CIRI). In this study, we further explored the modulatory effect of THSWD on mitochondrial autophagy in CIRI and the relationship between modulatory effect and NLRP3 inflammatory vesicle activation, so as to further explain the mechanism of neuroprotective effect of THSWD. Methods: Middle cerebral artery occlusion reperfusion (MCAO/R) model in rats was built to simulate I/R. Adult male SD rats (220–270 g) were randomly divided into the following four groups: the sham group, the MCAO/R group, the MCAO/R + THSWD group, and the MCAO/R + THSWD + Mitochondrial division inhibitor 1 (Mdivi-1) group. Neurological defect scores were used to evaluate neurological function. 2,3,5-Triphenyltetrazolium chloride (TTC) staining was conducted to measure cerebral infarct volume. Nissl staining, H&E staining and TUNEL staining were executed to detect ischemic cortical neuronal cell viability and apoptosis. Electron microscopy was used to observe the ultrastructural changes of mitochondria. Total Reactive Oxygen Species (ROS) in tissue were measured by fluorescence spectrophotometry, and the activation status of microglia was evaluated by Iba-1/CD16 immunofluorescence staining. The levels of mitophagy-related proteins (LC3, Parkin, PINK1), NLRP3 inflammasome-related proteins (NLRP3, ASC, Pro-caspase-1, Cleaved-caspase-1), and inflammatory cytokines (Pro-IL-18, Pro-IL-1β, IL-18, IL-1β) were evaluated by western blotting. Results: The studies showed that THSWD treatment alleviated cerebral infarction and neurological deficiencies. THSWD upregulated the expressions of autophagy markers (LC3-II/LC3-I and Beclin1) mitochondrial autophagy markers (Parkin and PINK1) after CIRI. Furthermore, THSWD treatment attenuated microglia activation and damage to mitochondrial structures, thereby reducing ROS production and NLRP3 inflammasome activation. In contrast, the mitochondrial autophagy inhibitor Mdivi-1 inhibited the above beneficial effects of THSWD. Conclusions: THSWD exhibits neuroprotective effects against MCAO/R in rats by enhancing mitochondrial autophagy and reducing NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Zhao-Jie Ji
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China
| | - Yun Shi
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xing Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Rui Hou
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yu Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Zhu-Qing Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China
| | - Xian-Chun Duan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China
| | - Qing Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Wei-Dong Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China
| | - Dai-Yin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
11
|
Visualization and Analysis of the Mapping Knowledge Domain of Acupuncture and Central Nervous System Cell Apoptosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1751702. [PMID: 35463084 PMCID: PMC9023158 DOI: 10.1155/2022/1751702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 04/02/2022] [Indexed: 11/17/2022]
Abstract
Chinese acupuncture therapy has demonstrated good clinical effects on neurological diseases and is widely used internationally. In the past 20 years, an increasing number of researchers around the world have devoted themselves to the study of the effect and mechanism of acupuncture for the treatment of central nervous system cell apoptosis. To discover the current research status of acupuncture-induced antiapoptosis in the central nervous system, we used the method of scientometric research and data visualization software to visually analyse 155 articles. The findings are as follows. First, the antiapoptosis effects of acupuncture in the central nervous system have received increasing attention overseas and domestically. China and the United States have leading positions in this research field. Second, 5 stable and high-yielding research teams have been formed in the field of acupuncture-induced antiapoptosis. The main research directions of these teams are electroacupuncture (EA) pretreatment for the central nervous system cell apoptosis, acupuncture for antineuronal apoptosis in vascular dementia, EA regulation of related signalling pathways, EA regulation of nerve cell apoptosis and autophagy after stroke, and EA regulation of the MAPK signalling pathway. Researchers on teams with more extensive cooperation have more research results and better research continuity. Third, there are diversified research hotspots. The original research hotspots are still receiving attention, and new hotspots have emerged in recent years.
Collapse
|
12
|
Wang M, Li D. Ginsenoside-Mc1 reduces cerebral ischemia-reperfusion injury in hyperlipidemia through mitochondrial improvement and attenuation of oxidative/endoplasmic reticulum stress. ARCH BIOL SCI 2022. [DOI: 10.2298/abs220212015w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022] Open
Abstract
The neuroprotective effect of ginsenoside-Mc1 (GMc1) in hyperlipidemic rats in the setting of cerebral ischemiareperfusion injury (I/RI), as well as the role of mitochondrial ATP-sensitive potassium (mitoKATP) channels and oxidative/ endoplasmic reticulum (ER) stress, was investigated. Hyperlipidemia (8 weeks) was induced by a high-fat diet in Sprague Dawley rats. GMc1 (10 mg/kg, i.p.) was given to hyperlipidemic rats daily for one month before I/RI. Rat brains were subjected to 2 h of local ischemia followed by 24 h reperfusion. The cerebral infarcted injury was measured by triphenyltetrazolium chloride staining and the levels of oxidative stress indicators were detected by ELISA and spectrophotometry. A fluorometric technique was employed to evaluate mitochondrial function. Western blotting was used to detect changes in the expression of ER stress proteins. GMc1 reduced cerebral infarct volume in hyperlipidemic rats in comparison to untreated ones (P<0.01). GMc1 reduced cerebral infarct volume in hyperlipidemic rats as compared to untreated rats (P<0.01). GMc1 significantly decreased mitochondrial membrane depolarization, mitochondrial reactive oxygen species (mitoROS) and malondialdehyde levels (P<0.01), while increasing the activity of superoxide dismutase (SOD), catalase (CAT) and glutathione-peroxidase (GPx) (P<0.001). GMc1 administration reduced the expression of ER stress markers, including phosphorylated (p)-endoplasmic reticulum kinase (PERK), p-eukaryotic translation initiation factor 2 subunit 1 (elF2?), and C/EBP homologous protein (CHOP). Inhibition of mitoKATP channels with hydroxydecanoate significantly eliminated the protective impacts of GMc1 in hyperlipidemic rats subjected to cerebral I/RI. The neuroprotective effect of GMc1 preconditioning was remarkably improved by increasing mitoKATP channel activity and decreasing oxidative and ER stress levels in hyperlipidemic rats, implying that this compound could be an appropriate candidate for reducing cerebral I/RI in comorbidities.
Collapse
Affiliation(s)
- Min Wang
- Department of Neurology, Central Hospital Affiliated to Shandong First Medical University, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Danni Li
- Department of Neurology, Central Hospital Affiliated to Shandong First Medical University, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, China
| |
Collapse
|
13
|
Long M, Wang Z, Shao L, Bi J, Chen Z, Yin N. Electroacupuncture Pretreatment Attenuates Cerebral Ischemia-Reperfusion Injury in Rats Through Transient Receptor Potential Vanilloid 1-Mediated Anti-apoptosis via Inhibiting NF-κB Signaling Pathway. Neuroscience 2021; 482:100-115. [PMID: 34929338 DOI: 10.1016/j.neuroscience.2021.12.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 12/12/2022]
Abstract
Our previous study showed that electroacupuncture (EA) pretreatment elicited protective effect on cerebral ischemia-reperfusion injury (CIRI) in rats, at least partly, which was associated with transient receptor potential vanilloid 1 (TRPV1)-regulated anti-oxidant stress and anti-inflammation. In this study, we further investigated the possible contribution of TRPV1-mediated anti-apoptosis in EA pretreatment-evoked neuroprotection in CIRI. After EA pretreatment at Baihui (GV20), bilateral Shenshu (BL23) and Sanyinjiao (SP6) acupoints, transient focal cerebral ischemia was induced by middle cerebral artery occlusion (MCAO) for 2 h followed by reperfusion for 6 h in rats. Then, infarct volume, nerve cell injury, neuronal apoptosis, NF-κB signaling activation, and expression of TRPV1 were evaluated by TTC staining, Hematoxylin-Eosin staining, transmission electron microscopy, immunochemistry, immunofluorescence, and Western blot, respectively. The presented data showed that EA pretreatment significantly reduced infarct volume, relieved nerve cell injury, decreased the expression of pro-apoptotic proteins Bax and cleaved caspase-3, increased the level of anti-apoptotic protein Bcl-2, inhibited NF-κB (p65) transcriptional activity, and curbed TRPV1 expression in MCAO rats. By contrast, enhancement of TRPV1 expression accompanying capsaicin application, the specific TRPV1 agonists, markedly accelerated nerve cell damage, aggravated neuronal apoptosis, prompted nuclear translocation of NF-κB (p65), resulting in the reversion of EA pretreatment-evoked neuroprotective effect in MCAO rats. Thus, we conclude that EA pretreatment-induced downregulation of neuronal TRPV1 expression plays an anti-apoptosis role through inhibiting NF-κB signaling pathway, thereby protecting MCAO rats from cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Man Long
- College of Acupuncture and Moxibustion, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhigang Wang
- Department of Pathogen Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| | - Luyao Shao
- Department of Pathogen Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| | - Jing Bi
- Department of Pathogen Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| | - Zebin Chen
- College of Acupuncture and Moxibustion, Hubei University of Chinese Medicine, Wuhan, China; Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Hubei University of Chinese Medicine, Wuhan, China
| | - Nina Yin
- Department of Anatomy, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China.
| |
Collapse
|
14
|
Tian W, Zhu M, Zhou Y, Mao C, Zou R, Cui Y, Li S, Zhu J, Hu C. Electroacupuncture Pretreatment Alleviates Cerebral Ischemia-Reperfusion Injury by Regulating Mitophagy via mTOR-ULK1/FUNDC1 Axis in Rats. J Stroke Cerebrovasc Dis 2021; 31:106202. [PMID: 34775182 DOI: 10.1016/j.jstrokecerebrovasdis.2021.106202] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/28/2021] [Accepted: 10/21/2021] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE Electroacupuncture (EA) pretreatment has been shown to alleviate cerebral ischemia-reperfusion (I/R) injury; however, the underlying mechanism remains unclear. To investigate the involvement of mTOR signaling in the protective role of EA in I/R-induced brain damage and mitochondrial injury. METHODS Sprague-Dawley male rats were pretreated with vehicle, EA (at Baihui and Shuigou acupoints), or rapamycin + EA for 30 min daily for 5 consecutive days, followed by the middle cerebral artery occlusion to induce I/R injury. The neurological functions of the rats were assessed using the Longa neurological deficit scores. The rats were sacrificed immediately after neurological function assessment. The brains were obtained for the measurements of cerebral infarct area. The mitochondrial structural alterations were observed under transmission electron microscopy. The mitochondrial membrane potential changes were detected by JC-1 staining. The alterations in autophagy-related protein expression were examined using Western blot analysis. RESULTS Compared with untreated I/R rats, EA-pretreated rats exhibited significantly decreased neurological deficit scores and cerebral infarct volumes. EA pretreatment also reversed I/R-induced mitochondrial structural abnormalities and loss of mitochondrial membrane potential. Furthermore, EA pretreatment downregulated the protein expression of LC3-II, p-ULK1, and FUNDC1 while upregulating the protein expression of p-mTORC1 and LC3-I. Rapamycin effectively blocked the above-mentioned effects of EA. CONCLUSION EA pretreatment at Baihui and Shuigou alleviates cerebral I/R injury and mitochondrial impairment in rats through activating the mTORC1 signaling. The suppression of autophagy-related p-ULK1/FUNDC1 pathway is involved in the neuroprotective effects of EA.
Collapse
Affiliation(s)
- Weiqian Tian
- Department of Anesthesiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Minmin Zhu
- Department of Anesthesiology, The Second Wuxi People's Hospital, Wuxi, Jiangsu, China
| | - Yudi Zhou
- Department of Anesthesiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Chenlu Mao
- Department of Anesthesiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Rong Zou
- Department of Anesthesiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yaomei Cui
- Department of Anesthesiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Sha Li
- Department of Anesthesiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Juan Zhu
- Department of Anesthesiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Cheng Hu
- Department of Anesthesiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
15
|
Electroacupuncture Promotes the Survival of the Grafted Human MGE Neural Progenitors in Rats with Cerebral Ischemia by Promoting Angiogenesis and Inhibiting Inflammation. Neural Plast 2021; 2021:4894881. [PMID: 34659396 PMCID: PMC8516583 DOI: 10.1155/2021/4894881] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/11/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
Stem cells have the potential as a regenerative therapy for cerebral ischemia by improving functional outcomes. However, cell transplantation has some limitations, including a low rate of the grafted cell survival. There is still a major challenge of promoting the harmonious symbiosis between grafted cells and the host. Acupuncture can effectively improve the functional outcome after cerebral ischemia. The present study evaluated the therapeutic effects and explored the mechanism of combined medial ganglionic eminence (MGE) neural progenitors differentiated from human embryonic stem cells (hESCs) with electroacupuncture (EA) in a bilateral common carotid artery occlusion (2VO) rat model. The results showed that EA could promote the survival of the grafted MGE neural progenitors differentiated from hESCs and alleviate learning and memory impairment in rats with cerebral ischemia. This may have partially resulted from inhibited expression of TNF-α and IL-1β and increased vascular endothelial growth factor (VEGF) expression and blood vessel density in the hippocampus. Our findings indicated that EA could promote the survival of the grafted MGE neural progenitors and enhance transplantation therapy's efficacy by promoting angiogenesis and inhibiting inflammation.
Collapse
|
16
|
Zhang MW, Wang XH, Shi J, Yu JG. Sinomenine in Cardio-Cerebrovascular Diseases: Potential Therapeutic Effects and Pharmacological Evidences. Front Cardiovasc Med 2021; 8:749113. [PMID: 34660748 PMCID: PMC8517137 DOI: 10.3389/fcvm.2021.749113] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/08/2021] [Indexed: 12/12/2022] Open
Abstract
Cardio-cerebrovascular diseases, as a major cause of health loss all over the world, contribute to an important part of the global burden of disease. A large number of traditional Chinese medicines have been proved effective both clinically and in pharmacological investigations, with the acceleration of the modernization of Chinese medicine. Sinomenine is the main active constituent of sinomenium acutum and has been generally used in therapies of rheumatoid arthritis and neuralgia. Varieties of pharmacological effects of sinomenine in cardio-cerebrovascular system have been discovered recently, suggesting an inspiring application prospect of sinomenine in cardio-cerebrovascular diseases. Sinomenine may retard the progression of atherosclerosis by attenuating endothelial inflammation, regulating immune cells function, and inhibiting the proliferation of vascular smooth muscle cells. Sinomenine also alleviates chronic cardiac allograft rejection relying on its anti-inflammatory and anti-hyperplastic activities and suppresses autoimmune myocarditis by immunosuppression. Prevention of myocardial or cerebral ischemia-reperfusion injury by sinomenine is associated with its modulation of cardiomyocyte death, inflammation, calcium overload, and oxidative stress. The regulatory effects on vasodilation and electrophysiology make sinomenine a promising drug to treat hypertension and arrhythmia. Here, in this review, we will illustrate the pharmacological activities of sinomenine in cardio-cerebrovascular system and elaborate the underlying mechanisms, as well as give an overview of the potential therapeutic roles of sinomenine in cardio-cerebrovascular diseases, trying to provide clues and bases for its clinical usage.
Collapse
Affiliation(s)
- Meng-Wan Zhang
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Hui Wang
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Shi
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jian-Guang Yu
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
17
|
Shi Y, Dai Q, Ji B, Huang L, Zhuang X, Mo Y, Wang J. Electroacupuncture Pretreatment Prevents Cognitive Impairment Induced by Cerebral Ischemia-Reperfusion via Adenosine A1 Receptors in Rats. Front Aging Neurosci 2021; 13:680706. [PMID: 34413765 PMCID: PMC8369428 DOI: 10.3389/fnagi.2021.680706] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/07/2021] [Indexed: 12/20/2022] Open
Abstract
A previous study has demonstrated that pretreatment with electroacupuncture (EA) induces rapid tolerance to focal cerebral ischemia. In the present study, we investigated whether adenosine receptor 1 (A1 R) is involved in EA pretreatment-induced cognitive impairment after focal cerebral ischemia in rats. Two hours after EA pretreatment, focal cerebral ischemia was induced by middle cerebral artery occlusion for 120 min in male Sprague-Dawley rats. The neurobehavioral score, cognitive function [as determined by the Morris water maze (MWM) test], neuronal number, and the Bax/Bcl-2 ratio was evaluated at 24 h after reperfusion in the presence or absence of CCPA (a selective A1 receptor agonist), DPCPX (a selective A1 receptor antagonist) into left lateral ventricle, or A1 short interfering RNA into the hippocampus area. The expression of the A1 receptor in the hippocampus was also investigated. The result showed that EA pretreatment upregulated the neuronal expression of the A1 receptor in the rat hippocampus at 90 min. And EA pretreatment reversed cognitive impairment, improved neurological outcome, and inhibited apoptosis at 24 h after reperfusion. Pretreatment with CCPA could imitate the beneficial effects of EA pretreatment. But the EA pretreatment effects were abolished by DPCPX. Furthermore, A1 receptor protein was reduced by A1 short interfering RNA which attenuated EA pretreatment-induced cognitive impairment.
Collapse
Affiliation(s)
- Yiyi Shi
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qinxue Dai
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Binbin Ji
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Luping Huang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiuxiu Zhuang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yunchang Mo
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Junlu Wang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
18
|
Luo YN, Tian H, Mei ZG, Feng ZT, Yang SB, Fu XY, Huang YG. Acupuncture for experimental cerebral ischemia/reperfusion injury: a systematic review of methodology and reporting quality. Acupunct Med 2021; 39:646-655. [PMID: 34049448 DOI: 10.1177/09645284211009533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
OBJECTIVES Preclinical research is essential to the advancement of science but susceptible to insufficient reporting and methodological shortcomings, which compromise internal validity. We aimed to systematically assess the methodological and reporting quality of studies conducted on acupuncture for experimental cerebral ischemia/reperfusion injury (CIRI). METHODS A comprehensive search in six databases was performed for animal research concerning acupuncture for CIRI. Two authors independently selected articles, extracted data, and assessed the methodological and reporting quality of identified articles using the Systematic Review Center for Laboratory Animal Experimentation (SYRCLE) tool, and Animal Research: Reporting In Vivo Experiments (ARRIVE) guideline, respectively. RESULTS A total of 24 studies were identified. Only 1 article (4%) achieved a decent overall rating in using SYRCLE (percentage of items with "low risk" ⩾50%). Of the 22 items on the SYRCLE tool, only 8 items (37%) were rated as "low risk" of bias in more than 50% of the included studies. Of the 39 items of ARRIVE, 20 (51%) items were rated as "low risk" in more than 50% of the included studies. CONCLUSIONS The methodological and reporting quality of included studies was generally low, which demands further improvement. These findings should inform the development of evidence-based guidelines for future preclinical research assessing the effect of acupuncture on CIRI.
Collapse
Affiliation(s)
- Ya-Nan Luo
- The Department of Traditional Chinese Medicine, Medical College, China Three Gorges University, Yichang, China
| | - Huan Tian
- The Department of Traditional Chinese Medicine, Medical College, China Three Gorges University, Yichang, China
| | - Zhi-Gang Mei
- The Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Zhi-Tao Feng
- The Department of Traditional Chinese Medicine, Medical College, China Three Gorges University, Yichang, China
| | - Song-Bai Yang
- Yichang Hospital of Traditional Chinese Medicine, Clinical Medical College of Traditional Chinese Medicine, China Three Gorges University, Yichang, China
| | - Xian-Yun Fu
- The Department of Traditional Chinese Medicine, Medical College, China Three Gorges University, Yichang, China
| | - Ya-Guang Huang
- The Department of Traditional Chinese Medicine, Medical College, China Three Gorges University, Yichang, China
| |
Collapse
|
19
|
Yu Q, Dai H, Jiang Y, Zha Y, Zhang J. Sevoflurane alleviates oxygen-glucose deprivation/reoxygenation-induced injury in HT22 cells through regulation of the PI3K/AKT/GSK3β signaling pathway. Exp Ther Med 2021; 21:376. [PMID: 33732349 PMCID: PMC7903476 DOI: 10.3892/etm.2021.9807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 07/07/2020] [Indexed: 12/30/2022] Open
Abstract
Sevoflurane (Sev), a volatile anesthetic, has been reported to exhibit beneficial effects on different ischemia/reperfusion (I/R)-injured organs. However, the neuroprotective effect of Sev on cerebral I/R injury is poorly understood. In the present study, the effects of Sev on HT22 cells exposed to oxygen-glucose deprivation/reperfusion (OGD/R) injury are investigated. The present study demonstrated that OGD/R suppressed the cell viability and increased lactate dehydrogenase (LDH) release from the cells, and these effects were attenuated by Sev treatment. The results also demonstrated that Sev alleviated OGD/R-induced cell apoptosis via flow cytometry and caspase-3 activity determination. Biochemical analysis results revealed that Sev significantly protected against OGD/R-induced oxidative stress by reducing ROS generation and improving antioxidant defense markers. Western blot analysis demonstrated that Sev reactivated the PI3K/AKT/glycogen synthase kinase-3β (GSK3β) signaling pathway, which was inhibited by OGD/R. In addition, wortmannin, a selective PI3K inhibitor was used to investigate the underlying pathways. Notably, the neuroprotective effect of Sev on apoptosis and reactive oxygen species production was found to be suppressed by wortmannin. Collectively, these results demonstrated that Sev may protect neuronal cells against OGD/R-induced injury through the activation of the PI3K/AKT/GSK3β signaling pathway. The findings from the present study provide a novel insight into understanding the neuroprotective effect of Sev on cerebral I/R injury.
Collapse
Affiliation(s)
- Qiong Yu
- Department of Anesthesia, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Haofei Dai
- Department of Nursing, Huashan Hospital-North, Fudan University, Shanghai 201907, P.R. China
| | - Yinan Jiang
- Department of Anesthesia, Huashan Hospital-North, Fudan University, Shanghai 201907, P.R. China
| | - Yifeng Zha
- Department of Anesthesia, Huashan Hospital-North, Fudan University, Shanghai 201907, P.R. China
| | - Jie Zhang
- Department of Anesthesia, Huashan Hospital-North, Fudan University, Shanghai 201907, P.R. China
| |
Collapse
|
20
|
Liu L, Zhang Q, Li M, Wang N, Li C, Song D, Shen X, Luo L, Fan Y, Xie H, Wu Y. Early Post-Stroke Electroacupuncture Promotes Motor Function Recovery in Post-Ischemic Rats by Increasing the Blood and Brain Irisin. Neuropsychiatr Dis Treat 2021; 17:695-702. [PMID: 33688192 PMCID: PMC7935344 DOI: 10.2147/ndt.s290148] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/25/2021] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Recent studies have shown that irisin, a novel peptide hormone derived from muscles, could be used as a potential therapeutic drug against ischemic stroke. Moreover, electroacupuncture (EA) is widely used in the treatment of ischemic stroke. Yet, whether irisin is involved in the EA neuroprotection remains unclear. The following study investigated the association between serum and peri-lesional cortex irisin and EA-induced post-stroke motor recovery in rats. METHODS The middle cerebral artery occlusion (MCAO) method was used to induce ischemic stroke in rats. Rats were randomly divided into two groups: a middle cerebral artery occlusion (MCAO) group (MCAO rats without treatment) and an electroacupuncture (EA) group (MCAO rats treated with EA). On the 3rd day post-stroke, infarct volume, behavioral deficits, surviving neurons, irisin protein expression in peri-infarction cortex, muscle tissue, and serum were evaluated to identify the neuroprotective of EA in acute ischemic stroke. RESULTS Compared with the MCAO group, the EA group showed better behavioral performance, a smaller cerebral infarct volume, more surviving neurons, and a significant increase in irisin expression in the peri-infarction cortex and serum (p<0.05). However, no difference in irisin expression in the muscle tissue was found between the MCAO group and the EA group (p>0.05). CONCLUSION EA promotes motor function recovery, reduces the volume of cerebral infarction, and alleviates neuronal death following ischemic stroke by enhancing the expression of irisin in both the blood and peri-lesional cortex.
Collapse
Affiliation(s)
- Li Liu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Qun Zhang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Mingyue Li
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Nianhong Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Ce Li
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Di Song
- Department of Rehabilitation Medicine, The Affiliated Sixth People's Hospital of Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Xueyan Shen
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Lu Luo
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yunhui Fan
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Hongyu Xie
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yi Wu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
21
|
Su XT, Wang L, Ma SM, Cao Y, Yang NN, Lin LL, Fisher M, Yang JW, Liu CZ. Mechanisms of Acupuncture in the Regulation of Oxidative Stress in Treating Ischemic Stroke. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7875396. [PMID: 33178387 PMCID: PMC7644298 DOI: 10.1155/2020/7875396] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/04/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023]
Abstract
Ischemic stroke is the major type of cerebrovascular disease usually resulting in death or disability among the aging population globally. Oxidative stress has been closely linked with ischemic stroke. Disequilibrium between excessive production of reactive oxygen species (ROS) and inherent antioxidant capacity leads to subsequent oxidative damage in the pathological progression of ischemic brain injury. Acupuncture has been applied widely in treating cerebrovascular diseases from time immemorial in China. This review mainly lays stress on the evidence to illuminate the possible mechanisms of acupuncture therapy in treating ischemic stroke through regulating oxidative stress. We found that by regulating a battery of molecular signaling pathways involved in redox modulation, acupuncture not only activates the inherent antioxidant enzyme system but also inhibits the excessive generation of ROS. Acupuncture therapy possesses the potential in alleviating oxidative stress caused by cerebral ischemia, which may be linked with the neuroprotective effect of acupuncture.
Collapse
Affiliation(s)
- Xin-Tong Su
- Acupuncture Research Center, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Lu Wang
- Acupuncture Research Center, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Si-Ming Ma
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing, China
| | - Yan Cao
- Acupuncture Research Center, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Na-Na Yang
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing, China
| | - Lu-Lu Lin
- Acupuncture Research Center, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Marc Fisher
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jing-Wen Yang
- Acupuncture Research Center, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Cun-Zhi Liu
- Acupuncture Research Center, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
22
|
A20-Binding Inhibitor of NF- κB 1 Ameliorates Neuroinflammation and Mediates Antineuroinflammatory Effect of Electroacupuncture in Cerebral Ischemia/Reperfusion Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:6980398. [PMID: 33110436 PMCID: PMC7582058 DOI: 10.1155/2020/6980398] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 12/20/2022]
Abstract
A20-binding inhibitor of NF-κB 1 (ABIN1) is an inhibitor of NF-κB and exerts anti-inflammatory effect. Electroacupuncture (EA) is considered as a neuroprotective strategy by inhibiting neuroinflammatory damage after cerebral ischemia. This study was performed to explore the role of ABIN1 and investigate whether the ABIN1 is involved in the mechanism of EA in cerebral ischemia/reperfusion (I/R) rats. Male Sprague-Dawley (SD) rats were subjected to middle cerebral artery occlusion/reperfusion (MCAO/R) and received EA after reperfusion once a day. Lentivirus-mediated ABIN1 gene knockdown was used to detect the role of ABIN1 in neuroinflammation after I/R. ABIN1 expression, proinflammatory cytokine levels, microglial activation, neurological function, infarct volumes, and NF-κB activation were assessed. ABIN1 expression was elevated in the peri-infarct cortex and was further upregulated by EA. ABIN1 knockdown increased the levels of proinflammatory cytokines and activation of microglia, worsened neurological deficits, and enlarged the infarct volume. Moreover, ABIN1 was blocked to partially reverse the neuroprotective effect of EA, and this treatment weakened the ability of EA to suppress NF-κB activity. Based on these findings, ABIN1 is a potential suppressor of neuroinflammation and ABIN1 mediates the antineuroinflammatory effect of EA in cerebral I/R rats.
Collapse
|
23
|
Electroacupuncture Pretreatment Elicits Tolerance to Cerebral Ischemia/Reperfusion through Inhibition of the GluN2B/m-Calpain/p38 MAPK Proapoptotic Pathway. Neural Plast 2020; 2020:8840675. [PMID: 33061951 PMCID: PMC7542475 DOI: 10.1155/2020/8840675] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/29/2020] [Accepted: 09/07/2020] [Indexed: 01/01/2023] Open
Abstract
Background As one of the first steps in the pathology of cerebral ischemia, glutamate-induced excitotoxicity progresses too fast to be the target of postischemic intervention. However, ischemic preconditioning including electroacupuncture (EA) might elicit cerebral ischemic tolerance through ameliorating excitotoxicity. Objective To investigate whether EA pretreatment based on TCM theory could elicit cerebral tolerance against ischemia/reperfusion (I/R) injury, and explore its potential excitotoxicity inhibition mechanism from regulating proapoptotic pathway of the NMDA subtype of glutamate receptor (GluN2B). Methods The experimental procedure included 5 consecutive days of pretreatment stage and the subsequent modeling stage for one day. All rats were evenly randomized into three groups: sham MCAO/R, MCAO/R, and EA+MCAO/R. During pretreatment procedure, only rats in the EA+MCAO/R group received EA intervention on GV20, SP6, and PC6 once a day for 5 days. Model preparation for MCAO/R or sham MCAO/R started 2 hours after the last pretreatment. 24 hours after model preparation, the Garcia neurobehavioral scoring criteria was used for the evaluation of neurological deficits, TTC for the measurement of infarct volume, TUNEL staining for determination of neural cell apoptosis at hippocampal CA1 area, and WB and double immunofluorescence staining for expression and the cellular localization of GluN2B and m-calpain and p38 MAPK. Results This EA pretreatment regime could improve neurofunction, decrease cerebral infarction volume, and reduce neuronal apoptosis 24 hours after cerebral I/R injury. And EA pretreatment might inhibit the excessive activation of GluN2B receptor, the GluN2B downstream proapoptotic mediator m-calpain, and the phosphorylation of its transcription factor p38 MAPK in the hippocampal neurons after cerebral I/R injury. Conclusion The EA regime might induce tolerance against I/R injury partially through the regulation of the proapoptotic GluN2B/m-calpain/p38 MAPK pathway of glutamate.
Collapse
|
24
|
Mei ZG, Huang YG, Feng ZT, Luo YN, Yang SB, Du LP, Jiang K, Liu XL, Fu XY, Deng YH, Zhou HJ. Electroacupuncture ameliorates cerebral ischemia/reperfusion injury by suppressing autophagy via the SIRT1-FOXO1 signaling pathway. Aging (Albany NY) 2020; 12:13187-13205. [PMID: 32620714 PMCID: PMC7377856 DOI: 10.18632/aging.103420] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022]
Abstract
Cerebral ischemia/reperfusion (CIR) injury occurs when blood flow is restored in the brain, causing secondary damage to the ischemic tissues. Previous studies have shown that electroacupuncture (EA) treatment contributes to brain protection against CIR injury through modulating autophagy. Studies indicated that SIRT1-FOXO1 plays a crucial role in regulating autophagy. Here we investigated the mechanisms underlying the neuroprotective effect of EA and its role in modulating autophagy via the SIRT1-FOXO1 signaling pathway in rats with CIR injury. EA pretreatment at "Baihui", "Quchi" and "Zusanli" acupoints (2/15Hz, 1mA, 30 min/day) was performed for 5 days before the rats were subjected to middle cerebral artery occlusion, and the results indicated that EA pretreatment substantially reduced the Longa score and infarct volume, increased the dendritic spine density and lessened autophagosomes in the peri-ischemic cortex of rats. Additionally, EA pretreatment also reduced the ratio of LC3-II/LC3-I, the levels of Ac-FOXO1 and Atg7, and the interaction of Ac-FOXO1 and Atg7, but increased the levels of p62, SIRT1, and FOXO1. The above effects were abrogated by the SIRT1 inhibitor EX527. Thus, we presume that EA pretreatment elicits a neuroprotective effect against CIR injury, potentially by suppressing autophagy via activating the SIRT1-FOXO1 signaling pathway.
Collapse
Affiliation(s)
- Zhi-Gang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
| | - Ya-Guang Huang
- Affiliated Renhe Hospital of China Three Gorges University, Yichang, Hubei, China
| | - Zhi-Tao Feng
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
| | - Ya-Nan Luo
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
| | - Song-Bai Yang
- Yichang Hospital of Traditional Chinese Medicine, Clinical Medical College of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei, China
| | - Li-Peng Du
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
| | - Kang Jiang
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
| | - Xiao-Lu Liu
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
| | - Xian-Yun Fu
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
| | - Yi-Hui Deng
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Hua-Jun Zhou
- The Institute of Neurology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| |
Collapse
|
25
|
Effect of Acupuncture on Oxidative Stress Induced by Cerebral Ischemia-Reperfusion Injury. Antioxidants (Basel) 2020; 9:antiox9030248. [PMID: 32204376 PMCID: PMC7139408 DOI: 10.3390/antiox9030248] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/13/2022] Open
Abstract
In this article, we review how acupuncture regulates oxidative stress to prevent ischemia–reperfusion injury. We electronically searched databases, including PubMed, Clinical Key and the Cochrane Library, from their inception to November 2019 by using the following medical subject headings and keywords: acupuncture, ischemia-reperfusion injury, oxidative stress, reactive oxygen species, and antioxidants. We concluded that acupuncture is effective in treating oxidation after ischemia-reperfusion injury. In addition to increasing the activity of antioxidant enzymes and downregulating the generation of reactive oxygen species (ROS), acupuncture also repairs the DNA, lipids, and proteins attacked by ROS and mediates downstream of the ROS pathway to apoptosis.
Collapse
|
26
|
Electroacupuncture Ameliorates Cerebral I/R-Induced Inflammation through DOR-BDNF/TrkB Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3495836. [PMID: 32256638 PMCID: PMC7102411 DOI: 10.1155/2020/3495836] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 02/17/2020] [Indexed: 12/01/2022]
Abstract
The beneficial effects of electroacupuncture (EA) at Shuigou (GV26) and Neiguan (PC6) on poststroke rehabilitation are critically related to the activation of the delta-opioid receptor (DOR). The underlying anti-inflammatory mechanisms in DOR activation and EA-mediated neuroprotection in cerebral ischemia/reperfusion (I/R) injury were investigated in the current study. Cell proliferation and apoptosis were detected by morphological changes, cell counting kit-8 (CCK-8) assay, lactate dehydrogenase (LDH) release, and TUNEL staining. The mRNA levels were evaluated by using real-time quantitative polymerase chain reaction (RT-qPCR), and the protein expression was measured by western blot or enzyme-linked immunosorbent assay (ELISA) in vitro. Infarct volume was examined by cresyl violet (CV) staining, neurologic recovery was assessed by neurological deficit scores, and pro- and anti-inflammatory cytokines were determined by immunofluorescence in vivo. DOR activation greatly ameliorated morphological injury, reduced LDH leakage and apoptosis, and increased cell viability. It reversed the oxygen-glucose deprivation/reoxygenation- (OGD/R-) induced downregulation of DOR mRNA and protein, as well as BDNF protein. DOR activation also reduced proinflammatory cytokine gene expression, including TNF-α, IL-1β, and IL-6, and at the same time, increased anti-inflammatory cytokines IL-4 and IL-10 in OGD/R challenged PC12 cells. EA significantly reduced middle cerebral artery occlusion/reperfusion- (MCAO/R-) induced infarct volume and attenuated neurologic deficit scores. It markedly increased the expression of IL-10 and decreased IL-1β, while sham EA did not have any protective effect in MCAO/R-injured rats. DOR activation plays an important role in neuroprotection against OGD/R injury by inhibiting inflammation via the brain-derived neurotrophic factor/tropomyosin-related kinase B (BDNF/TrkB) pathway. The neuroprotective efficacy of EA at Shuigou (GV26) and Neiguan (PC6) on cerebral I/R injury may be also related to the inhibition of inflammatory response through the DOR-BDNF/TrkB pathway.
Collapse
|
27
|
Electroacupuncture Pretreatment Elicits Neuroprotection Against Cerebral Ischemia-Reperfusion Injury in Rats Associated with Transient Receptor Potential Vanilloid 1-Mediated Anti-Oxidant Stress and Anti-Inflammation. Inflammation 2020; 42:1777-1787. [PMID: 31190106 DOI: 10.1007/s10753-019-01040-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Electroacupuncture (EA) pretreatment, electrical stimulation using metal needle at specific acupoints in advance, possesses the potential to prevent cerebral ischemia-reperfusion injury (CIRI). Transient receptor potential vanilloid 1 (TRPV-1) has been indicated to take part in cerebral protection of EA; however, the detailed mechanisms remain unclear. The aim of this study was to investigate whether neuroprotection of EA pretreatment against CIRI is associated with TRPV-1 and explore the underlying mechanisms. Middle cerebral artery occlusion (MCAO) was performed to induce CIRI after EA pretreatment at Baihui (GV20), bilateral Shenshu (BL23), and Sanyinjiao (SP6) acupoints in rats. Neurological deficit scores, infarct volumes, oxidative stress damage, inflammatory cytokine production, MAPK signaling activation, and the expression of TRPV-1 were assessed. EA pretreatment lowered neurological deficit scores, reduced infarct volumes, impeded oxidative stress injury, inhibited inflammatory cytokine production, curbed P38 phosphorylation, and suppressed TRPV-1 expression in MCAO rats. Attributing to inhibition of TRPV-1 expression, AMG-517 (TRPV-1 antagonist) showed the synergistic effect with EA pretreatment on the neuroprotection against ischemia-reperfusion injury. However, TRPV-1 agonists capsaicin significantly abrogated the neuroprotective effects of EA pretreatment in MCAO rats accompanying enhancement of TRPV-1 expression. These findings indicated EA pretreatment exerted neuroprotection in rats with cerebral ischemia-reperfusion injury, which at least partially were associated with TRPV1-mediated anti-oxidant stress and anti-inflammation via inhibiting P38 MAPK activation.
Collapse
|
28
|
Wang L, Li J, Ning F, Yang S, Yan X. MicroRNA-181a inhibition relieves cerebral ischemia/reperfusion injury via regulation of TGFBR1. J Neurosurg Sci 2020; 64:588-589. [PMID: 32030964 DOI: 10.23736/s0390-5616.19.04877-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lin Wang
- Department of Interventional Radiology, Taian City Central Hospital, Taian, China
| | - Juan Li
- Department of Neurology, Central Hospital of Taian, Taian, China
| | - Fangbo Ning
- Department of Neurology, Central Hospital of Taian, Taian, China
| | - Shen Yang
- Department of Neurology, Central Hospital of Taian, Taian, China
| | - Xiumei Yan
- Department of Neurology, Central Hospital of Taian, Taian, China -
| |
Collapse
|
29
|
Ezetimibe Attenuates Oxidative Stress and Neuroinflammation via the AMPK/Nrf2/TXNIP Pathway after MCAO in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4717258. [PMID: 31998437 PMCID: PMC6964721 DOI: 10.1155/2020/4717258] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 10/18/2019] [Accepted: 10/31/2019] [Indexed: 12/05/2022]
Abstract
Oxidative stress and neuroinflammation play essential roles in ischemic stroke-induced brain injury. Previous studies have reported that Ezetimibe (Eze) exerts antioxidative stress and anti-inflammatory properties in hepatocytes. In the present study, we investigated the effects of Eze on oxidative stress and neuroinflammation in a rat middle cerebral artery occlusion (MCAO) model. One hundred and ninety-eight male Sprague-Dawley rats were used. Animals assigned to MCAO were given either Eze or its control. To explore the downstream signaling of Eze, the following interventions were given: AMPK inhibitor dorsomorphin and nuclear factor erythroid 2-related factor 2 (Nrf2) siRNA. Intranasal administration of Eze, 1 h post-MCAO, further increased the endogenous p-AMPK expression, reducing brain infarction, neurologic deficits, neutrophil infiltration, microglia/macrophage activation, number of dihydroethidium- (DHE-) positive cells, and malonaldehyde (MDA) levels. Specifically, treatment with Eze increased the expression of p-AMPK, Nrf2, and HO-1; Romo-1, thioredoxin-interacting protein (TXNIP), NOD-like receptor protein 3 (NLRP3), Cleaved Caspase-1, and IL-1β were reduced. Dorsomorphin and Nrf2 siRNA reversed the protective effects of Eze. In summary, Eze decreases oxidative stress and subsequent neuroinflammation via activation of the AMPK/Nrf2/TXNIP pathway after MCAO in rats. Therefore, Eze may be a potential therapeutic approach for ischemic stroke patients.
Collapse
|
30
|
Wei W, Bai W, Yang Y, Li Y, Teng X, Wan Y, Zhu J. Pulmonary protection of transcutaneous electrical acupoint stimulation in gynecological laparoscopic surgery: A randomized controlled trial. Exp Ther Med 2019; 19:511-518. [PMID: 31885697 PMCID: PMC6913376 DOI: 10.3892/etm.2019.8245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 10/22/2019] [Indexed: 11/15/2022] Open
Abstract
Laparoscopy is performed worldwide due to its limited side effects and optimal treatment efficacy. However, it also has adverse effects, including atelectasis and ischemia-reperfusion injury, due to CO2 accumulation during ventilation in a head-down position, which may result in severe disorders and adversely affecting postoperative recovery, prolonging hospitalization. The present study was performed to assess whether transcutaneous electrical acupoint stimulation (TEAS) protects against lung injury occurring during gynecological laparoscopic surgery. Patients were randomly allocated to two groups: Control group (received no stimulation) and TEAS group (patients treated with TEAS on BL13, LI4 and LU5). The mean arterial pressure, heart rate and oxygen saturation were recorded at the time-points of arriving in the operating room (T0), immediately prior to induction of the pneumoperitoneum (T1), immediately after the end of pneumoperitoneum (T2) and on leaving the operating room (T3). Arterial blood gas analysis was performed to record the pH, determine the partial pressure of carbon dioxide and calculate the oxygenation index (OI) at T0–3. Blood samples were taken from the peripheral vein for determination of the serum concentrations of tumor necrosis factor (TNF)-α and interleukin (IL)-1β at T0 and T3. Post-operative pulmonary complications occurring during the first five days after surgery were also recorded. A total of 100 patients were initially enrolled and 80 patients were analysed. The results indicated that the OI in the control group was significantly lower than that in the TEAS group at the T2 and T3 time-points. The serum concentrations of TNF-α and IL-1β were significantly increased following surgery, while the extent of these increases was lower in the TEAS group compared with that in the control group. The incidence of post-operative pulmonary complications was significantly lower in the TEAS group. It was therefore indicated that TEAS protect against lung injury as a complication of gynecological laparoscopic surgery. The present study was registered at http://www.clinicaltrials.gov prior to enrollment of the patients (no. NCT02850471).
Collapse
Affiliation(s)
- Wei Wei
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China.,Department of Anesthesiology, Northeast International Hospital, Shenyang, Liaoning 110004, P.R. China
| | - Wenya Bai
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China.,Department of Anesthesiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650000, P.R. China
| | - Yanchao Yang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yang Li
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xiufei Teng
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yuxiao Wan
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Junchao Zhu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
31
|
Liu PR, Cao F, Zhang Y, Peng S. Electroacupuncture reduces astrocyte number and oxidative stress in aged rats with surgery-induced cognitive dysfunction. J Int Med Res 2019; 47:3860-3873. [PMID: 31311378 PMCID: PMC6726816 DOI: 10.1177/0300060519860026] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Objectives To investigate the effects of electroacupuncture in regulating astrocytes and oxidative stress in a rat model of postoperative cognitive dysfunction (POCD). Methods Male aged Sprague-Dawley rats were randomized to undergo left hepatic lobe resection to induce POCD, followed by either electroacupuncture or no treatment; or similar surgery without left lobe resection or electroacupuncture (sham). Postsurgical cognitive function, hippocampal astrocyte number and oxidative stress indicators were measured. Results At days 1, 3 and 7 following surgery, escape latency was significantly shorter and platform crossing frequency was increased with electroacupuncture versus other groups. At postoperative day 1, the electroacupuncture group showed significantly fewer glial fibrillary acidic protein (GFAP)-positive hippocampal astrocytes versus the POCD model group. In POCD rats, electroacupuncture significantly decreased serum S100 calcium binding protein B and neuron-specific enolase levels, and increased brain-derived neurotrophic factor and glial cell-derived neurotrophic factor levels, at days 1, 3 and 7. Electroacupuncture significantly attenuated the hippocampal POCD-induced increase in malondialdehyde and decreased superoxide dismutase levels at day 1 following surgery. Conclusion Electroacupuncture may improve cognitive function in rats with POCD by reducing hippocampal GFAP-positive astrocyte number and suppressing oxidative stress.
Collapse
Affiliation(s)
- Pei-Rong Liu
- 1 Department of Anaesthesiology, Seventh People's Hospital of Shanghai University of TCM, Shanghai, China
| | - Feng Cao
- 2 Department of Neurology and Neurological Rehabilitation, Seventh People's Hospital of Shanghai University of TCM, Shanghai, China
| | - Yu Zhang
- 1 Department of Anaesthesiology, Seventh People's Hospital of Shanghai University of TCM, Shanghai, China
| | - Sheng Peng
- 1 Department of Anaesthesiology, Seventh People's Hospital of Shanghai University of TCM, Shanghai, China
| |
Collapse
|
32
|
Xing Y, Wang MM, Feng YS, Dong F, Zhang F. Possible Involvement of PTEN Signaling Pathway in the Anti-apoptotic Effect of Electroacupuncture Following Ischemic Stroke in Rats. Cell Mol Neurobiol 2018; 38:1453-1463. [PMID: 30136167 DOI: 10.1007/s10571-018-0615-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/20/2018] [Indexed: 12/16/2022]
Abstract
As a traditional therapeutic method, electroacupuncture (EA) has been adopted as an alternative therapy for stroke recovery. Here, we aimed to evaluate whether EA therapy at points of Quchi (LI11) and Zusanli (ST36) alleviated neuronal apoptosis by PTEN signaling pathway after ischemic stroke. A total of 72 male Sprague-Dawley rats were randomized into three groups, including sham group, MCAO group, and EA group. EA was initiated after 24 h of reperfusion for 3 consecutive days. At 72 h following ischemia/reperfusion, neurological deficits, infarct volumes, and TUNEL staining were evaluated and the PTEN pathway-related proteins together with apoptosis-related proteins were detected. The results indicated that EA treatment significantly decreased cerebral infarct volume, neurological deficits and alleviated proportion of apoptotic cells in cerebral ischemic rats. Furthermore, EA significantly up-regulated the phosphorylation levels of PDK1, Akt(Thr308), GSK-3β, and down-regulated the phosphorylation levels of PTEN, Akt(Ser473) in the peri-infarct cortex. EA treatment significantly reduced the up-regulation of caspase-3, cleaved-caspase-3, Bim, and reversed the reduction of Bcl-2 induced by the ischemic stroke. These findings suggest that EA treatment at points of Quchi (LI11)- and Zusanli (ST36)-induced neuroprotection might involve inhibition of apoptosis via PTEN pathway.
Collapse
Affiliation(s)
- Ying Xing
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
- Department of Clinical Laboratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, People's Republic of China
| | - Man-Man Wang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
- Department of Clinical Laboratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, People's Republic of China
| | - Ya-Shuo Feng
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
- Department of Clinical Laboratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, People's Republic of China
| | - Fang Dong
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
- Department of Clinical Laboratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, People's Republic of China
| | - Feng Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China.
- Department of Clinical Laboratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, People's Republic of China.
| |
Collapse
|
33
|
Tan F, Wang J, Liu JX, Wang C, Li M, Gu Y. Electroacupuncture stimulates the proliferation and differentiation of endogenous neural stem cells in a rat model of ischemic stroke. Exp Ther Med 2018; 16:4943-4950. [PMID: 30542450 PMCID: PMC6257304 DOI: 10.3892/etm.2018.6848] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/03/2018] [Indexed: 12/11/2022] Open
Abstract
Electroacupuncture (EA) may stimulate neurogenesis in animal models of ischemic stroke; however, the associated mechanisms are not clear. The present study aimed to evaluate the neurogenesis efficacy of EA on ischemic stroke and the underlying associated mechanisms. A model of middle cerebral artery occlusion (MCAO) was employed as the rat model of brain ischemia and reperfusion. EA treatment at the GV20 (Baihui) and GV14 (Dazhui) acupoints was conducted for 30 min daily following MCAO. Immunofluorescence was performed to measure the number of bromodeoxyuridine (BrdU)/nestin- or BrdU/doublecortin (DCX)-positive cells in the sham, MCAO and MCAO + EA groups. Results indicated that EA stimulation significantly decreased the neurological score and neuronal loss in rats in the MCAO group (both P<0.05). Furthermore, immunostaining assays indicated that BrdU/nestin- and BrdU/DCX-positive cells in EA-treated rats were significantly increased (P<0.05) when compared with the rats in the MCAO group, indicating EA may induce the proliferation and differentiation of endogenous neural stem cells (eNSCs) during cerebral ischemia-reperfusion. In addition, EA treatment significantly enhanced the protein expression levels of plasticity-related gene 5 (PRG5), a critical neurogenesis factor, and significantly decreased the protein expression levels of three neurogenesis inhibiting molecules, NogoA, lysophosphatidic acid and RhoA (all P<0.05). These results suggested that EA promotes the proliferation and differentiation of eNSCs, likely through modulating PRG5/RhoA signaling.
Collapse
Affiliation(s)
- Feng Tan
- Department of Neurology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong 528000, P.R. China
| | - Jian Wang
- Department of Neurology, Yunnan Provincial Hospital of Traditional Chinese Medical, Kunming, Yunnan 650000, P.R. China
| | - Jing Xian Liu
- Department of Neurology, Nan Fang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Chen Wang
- Department of Neurology, Nan Fang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Miaodan Li
- Department of Neurology, Nan Fang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yong Gu
- Department of Neurology, Nan Fang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
34
|
Park JY, Namgung U. Electroacupuncture therapy in inflammation regulation: current perspectives. J Inflamm Res 2018; 11:227-237. [PMID: 29844696 PMCID: PMC5963483 DOI: 10.2147/jir.s141198] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Although acupuncture therapy is increasingly used to treat diverse symptoms and disorders in humans, its underlying mechanism is not known well. Only recently have experimental studies begun to provide insights into how acupuncture stimulation generates and relates to pathophysiological responsiveness. Acupuncture intervention is frequently used to control pathologic symptoms in several visceral organs, and a growing number of studies using experimental animal models suggest that acupuncture stimulation may be involved in inducing anti-inflammatory responses. The vagus nerve, a principal parasympathetic nerve connecting neurons in the central nervous system to cardiovascular systems and a majority of visceral organs, is known to modulate neuroimmune communication and anti-inflammatory responses in target organs. Here, we review a broad range of experimental studies demonstrating anti-inflammatory effects of electroacupuncture in pathologic animal models of cardiovascular and visceral organs and also ischemic brains. Then, we provide recent progress on the role of autonomic nerve activity in anti-inflammation mediated by electroacupuncture. We also discuss a perspective on the role of sensory signals generated by acupuncture stimulation, which may induce a neural code unique to acupuncture in the central nervous system.
Collapse
Affiliation(s)
- Ji-Yeun Park
- Department of Oriental Medicine, Daejeon University, Daejeon, South Korea
| | - Uk Namgung
- Department of Oriental Medicine, Daejeon University, Daejeon, South Korea
| |
Collapse
|
35
|
Lu H, Wang B, Cui N, Zhang Y. Artesunate suppresses oxidative and inflammatory processes by activating Nrf2 and ROS‑dependent p38 MAPK and protects against cerebral ischemia‑reperfusion injury. Mol Med Rep 2018; 17:6639-6646. [PMID: 29512760 DOI: 10.3892/mmr.2018.8666] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 04/25/2017] [Indexed: 11/06/2022] Open
Abstract
Artesunate is a semi-synthetic derivative of artemisinin that is used in the treatment of patients with malaria. Artesunate has also been reported to exert immune‑regulatory, antitumor, hepatoprotective, anti‑inflammatory and smooth muscle relaxing functions. The present study aimed to investigate the putative protective effects of artesunate against cerebral ischemia/reperfusion injury (CIRI), and to elucidate the molecular mechanisms underlying its effects. A CIRI mouse model was created via middle cerebral artery occlusion for 2 h, followed by 22 h of reperfusion. Mice were treated with 10‑40 mg/kg artesunate. The present results demonstrated that treatment with artesunate significantly reduced the cerebral infarct volume and potentiated the recovery of neurological function in CIRI mice. Oxidative stress and inflammation markers were revealed to be significantly downregulated following treatment with artesunate in CIRI mice. Furthermore, artesunate was demonstrated to activate nuclear factor erythroid 2‑related factor 2 (Nrf2), inhibit caspase‑3 activity, reduce the apoptosis regulator BAX/apoptosis regulator Bcl‑2 expression ratio and suppress the phosphorylation of the mitogen‑activated protein kinase (MAPK) p38 in CIRI mice. In conclusion, the present findings suggested that artesunate may exert protective effects against CIRI through the suppression of oxidative and inflammatory processes, via activating Nrf2 and downregulating ROS‑dependent p38 MAPK in mice.
Collapse
Affiliation(s)
- Hui Lu
- Department of Neurology, Cangzhou Central Hospital, Cangzhou, Hebei 060000, P.R. China
| | - Bincheng Wang
- Department of Neurology, Xuan Wu Hospital, Beijing 100053, P.R. China
| | - Ningning Cui
- Department of Neurology, Cangzhou Central Hospital, Cangzhou, Hebei 060000, P.R. China
| | - Yanchun Zhang
- Department of Neurology, Cangzhou Central Hospital, Cangzhou, Hebei 060000, P.R. China
| |
Collapse
|
36
|
Abstract
Acupuncture is potentially beneficial for post-stroke rehabilitation and is considered a promising preventive strategy for stroke. Electroacupuncture pretreatment or treatment after ischemic stroke by using appropriate electroacupuncture parameters generates neuroprotective and neuroregenerative effects that increase cerebral blood flow, regulate oxidative stress, attenuate glutamate excitotoxicity, maintain blood-brain barrier integrity, inhibit apoptosis, increase growth factor production, and induce cerebral ischemic tolerance.
Collapse
Affiliation(s)
- Qwang-Yuen Chang
- Department of Family Medicine, Lin Shin Hospital, Taichung, Taiwan, China
| | - Yi-Wen Lin
- Research Center for Chinese Medicine and Acupuncture; Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung, Taiwan, China
| | - Ching-Liang Hsieh
- Research Center for Chinese Medicine and Acupuncture; Graduate Institute of Acupuncture Science, College of Chinese Medicine; Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University; Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan, China
| |
Collapse
|
37
|
Electroacupuncture at GV20 and ST36 Exerts Neuroprotective Effects via the EPO-Mediated JAK2/STAT3 Pathway in Cerebral Ischemic Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:6027421. [PMID: 28848617 PMCID: PMC5564076 DOI: 10.1155/2017/6027421] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 06/02/2017] [Accepted: 07/03/2017] [Indexed: 11/17/2022]
Abstract
Background While electroacupuncture (EA) in cerebral ischemia has been used to promote functional recovery, the underlying mechanism of its protective effect remains poorly understood. Objective We investigated the effects of EA stimulation at GV20 and ST36 to observe the changes in erythropoietin- (EPO-) mediated Janus family tyrosine kinases 2 (JAK2) signal transducers and activators of the transcription 3 (STAT3) cell pathway. Methods Thirty-six specific pathogen-free Sprague-Dawley (SD) male rats were randomly assigned to three groups: the sham-operated group (S group), the middle cerebral artery occlusion (MCAO) group (M group), and the EA group. Neurological deficits were assessed through the Ludmila Belayev 12-score test and 2,3,5-triphenyltetrazolium chloride (TTC) staining was shown. The protein and mRNA expression levels of EPO, the EPO receptor (EpoR), p-JAK2, JAK2, p-STAT3, and STAT3 were examined to explore the EA effect on rats with cerebral ischemic reperfusion injury (CIRI). Results EA significantly decreased infarct size and improved neurological function. Furthermore, target EPO, EpoR, JAK2, and STAT3 mRNA and protein levels significantly increased in the EA group. Conclusions EA exerts a neuroprotective effect, possibly via the regulation of the EPO-mediated JAK2/STAT3 cell pathway and downstream apoptotic pathways in a rat CIRI model.
Collapse
|
38
|
Electroacupuncture Improved Hippocampal Neurogenesis following Traumatic Brain Injury in Mice through Inhibition of TLR4 Signaling Pathway. Stem Cells Int 2017; 2017:5841814. [PMID: 28848607 PMCID: PMC5564094 DOI: 10.1155/2017/5841814] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 07/02/2017] [Accepted: 07/09/2017] [Indexed: 11/18/2022] Open
Abstract
The protective role of electroacupuncture (EA) treatment in diverse neurological diseases such as ischemic stroke is well acknowledged. However, whether and how EA act on hippocampal neurogenesis following traumatic brain injury (TBI) remains poorly understood. This study aims to investigate the effect of EA on hippocampal neurogenesis and neurological functions, as well as its underlying association with toll-like receptor 4 (TLR4) signaling in TBI mice. BrdU/NeuN immunofluorescence was performed to label newborn neurons in the hippocampus after EA treatment. Water maze test and neurological severity score were used to evaluate neurological function posttrauma. The hippocampal level of TLR4 and downstream molecules and inflammatory cytokines were, respectively, detected by Western blot and enzyme-linked immunosorbent assay. EA enhanced hippocampal neurogenesis and inhibited TLR4 expression at 21, 28, and 35 days after TBI, but the beneficial effects of EA on posttraumatic neurogenesis and neurological functions were attenuated by lipopolysaccharide-induced TLR4 activation. In addition, EA exerted an inhibitory effect on both TLR4/Myd88/NF-κB and TLR4/TRIF/NF-κB pathways, as well as the inflammatory cytokine expression in the hippocampus following TBI. In conclusion, EA promoted hippocampal neurogenesis and neurological recovery through inhibition of TLR4 signaling pathway posttrauma, which may be a potential approach to improve the outcome of TBI.
Collapse
|
39
|
The neuroprotection of Sinomenine against ischemic stroke in mice by suppressing NLRP3 inflammasome via AMPK signaling. Int Immunopharmacol 2016; 40:492-500. [PMID: 27769021 DOI: 10.1016/j.intimp.2016.09.024] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/22/2016] [Accepted: 09/24/2016] [Indexed: 12/21/2022]
Abstract
Neuroinflammation remains the primary cause of morbidity and mortality in stroke-induced secondary brain injury. The NOD-like receptor pyrin 3 (NLRP3) inflammasome is involved in diverse inflammatory diseases, including cerebral ischemia, and is thus considered an effective therapeutic target. In the present study, we investigated the neuroprotection of Sinomenine (SINO), a potent natural anti-apoptotic and anti-inflammatory molecule, against cerebral ischemia in a mouse model of middle cerebral artery occlusion (MCAO) in vivo and in an oxygen glucose deprivation (OGD)-treated astrocytes/microglia model in vitro. SINO administration intraperitoneally alleviated the cerebral infarction, brain edema, neuronal apoptosis, and neurological deficiency after MCAO induction. SINO also attenuated astrocytic and microglial activation in the ischemic hemisphere. NLRP3 inflammasome activation after MCAO and OGD induction, with the up-regulation of NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), cleaved caspase-1 and pro-inflammatory cytokines, was significantly inhibited by SINO treatment both in vivo and in vitro. In addition, SINO reversed the OGD-induced inhibition of AMPK phosphorylation in vitro. Further, the suppressive effect of SINO on NLRP3 inflammasomes was blocked by an AMPK inhibitor, Compound C. Our findings demonstrate that SINO exerts a neuroprotective effect in ischemic stroke by inhibiting NLRP3 inflammasomes via the AMPK pathway, which also provides evidence of a novel treatment for clinical stroke therapy.
Collapse
|