1
|
Kuang W, Xu J, Xu F, Huang W, Majid M, Shi H, Yuan X, Ruan Y, Hu X. Current study of pathogenetic mechanisms and therapeutics of chronic atrophic gastritis: a comprehensive review. Front Cell Dev Biol 2024; 12:1513426. [PMID: 39720008 PMCID: PMC11666564 DOI: 10.3389/fcell.2024.1513426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 11/25/2024] [Indexed: 12/26/2024] Open
Abstract
Chronic atrophic gastritis (CAG) is a prevalent digestive system disease characterized by atrophy of the gastric mucosa and the disappearance of inherent gastric glands. According to the theory of Correa's cascade, CAG is an important pathological stage in the transformation from normal condition to gastric carcinoma. In recent years, the global incidence of CAG has been increasing due to pathogenic factors, including Helicobacter pylori infection, bile reflux, and the consumption of processed meats. In this review, we comprehensively described the etiology and clinical diagnosis of CAG. We focused on elucidating the regulatory mechanisms and promising therapeutic targets in CAG, with the expectation of providing insights and theoretical support for future research on CAG.
Collapse
Affiliation(s)
- Weihong Kuang
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Traditional Chinese Medicines for Prevention and Treatment of Digestive Diseases, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Chronic Inflammatory Diseases, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Jialin Xu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Traditional Chinese Medicines for Prevention and Treatment of Digestive Diseases, Guangdong Medical University, Dongguan, China
| | - Fenting Xu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Traditional Chinese Medicines for Prevention and Treatment of Digestive Diseases, Guangdong Medical University, Dongguan, China
| | - Weizhen Huang
- Cancer Center, The First Huizhou Affiliated Hospital, Guangdong Medical University, Huizhou, China
| | - Muhammad Majid
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Traditional Chinese Medicines for Prevention and Treatment of Digestive Diseases, Guangdong Medical University, Dongguan, China
| | - Hui Shi
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Traditional Chinese Medicines for Prevention and Treatment of Digestive Diseases, Guangdong Medical University, Dongguan, China
| | - Xia Yuan
- Cancer Center, The First Huizhou Affiliated Hospital, Guangdong Medical University, Huizhou, China
| | - Yongdui Ruan
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Traditional Chinese Medicines for Prevention and Treatment of Digestive Diseases, Guangdong Medical University, Dongguan, China
- Cancer Center, The First Huizhou Affiliated Hospital, Guangdong Medical University, Huizhou, China
| | - Xianjing Hu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Traditional Chinese Medicines for Prevention and Treatment of Digestive Diseases, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Chronic Inflammatory Diseases, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Department of Acupuncture, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| |
Collapse
|
2
|
Zhou Z, Hu C, Cui B, You L, An R, Liang K, Wang X. Ginsenoside Rg1 Suppresses Pyroptosis via the NF-κB/NLRP3/GSDMD Pathway to Alleviate Chronic Atrophic Gastritis In Vitro and In Vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38855973 DOI: 10.1021/acs.jafc.4c01271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Chronic atrophic gastritis (CAG) is characterized by the loss of gastric glandular cells, which are replaced by the intestinal-type epithelium and fibrous tissue. Ginsenoside Rg1 (Rg1) is the prevalent ginsenoside in ginseng, with a variety of biological activities, and is usually added to functional foods. As a novel form of programmed cell death (PCD), pyroptosis has received substantial attention in recent years. Despite the numerous beneficial effects, the curative impact of Rg1 on CAG and whether its putative mechanism is partially via inhibiting pyroptosis still remain unknown. To address this gap, we conducted a study to explore the mechanisms underlying the potential anti-CAG effect of Rg1. We constructed a CAG rat model using a multifactor comprehensive method. A cellular model was developed by using 1-methyl-3-nitro-1-nitrosoguanidine (MNNG) combined with Nigericin as a stimulus applied to GES-1 cells. After Rg1 intervention, the levels of inflammatory indicators in the gastric tissue/cell supernatant were reduced. Rg1 relieved oxidative stress via reducing the myeloperoxidase (MPO) and malonaldehyde (MDA) levels in the gastric tissue and increasing the level of superoxide dismutase (SOD). Additionally, Rg1 improved MNNG+Nigericin-induced pyroptosis in the morphology and plasma membrane of the cells. Further research supported novel evidence for Rg1 in the regulation of the NF-κB/NLRP3/GSDMD pathway and the resulting pyroptosis underlying its therapeutic effect. Moreover, by overexpression and knockout of GSDMD in GES-1 cells, our findings suggested that GSDMD might serve as the key target in the effect of Rg1 on suppressing pyroptosis. All of these offer a potential theoretical foundation for applying Rg1 in ameliorating CAG.
Collapse
Affiliation(s)
- Zehua Zhou
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Cheng Hu
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Bo Cui
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lisha You
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Rui An
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Kun Liang
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xinhong Wang
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
3
|
Li H, Liu C, Huang S, Wang X, Cao M, Gu T, Ou X, Pan S, Lin Z, Wang X, Zhu Y, Jing J. Multi-omics analyses demonstrate the modulating role of gut microbiota on the associations of unbalanced dietary intake with gastrointestinal symptoms in children with autism spectrum disorder. Gut Microbes 2023; 15:2281350. [PMID: 38010793 PMCID: PMC10730204 DOI: 10.1080/19490976.2023.2281350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023] Open
Abstract
Our previous work revealed that unbalanced dietary intake was an important independent factor associated with constipation and gastrointestinal (GI) symptoms in children with autism spectrum disorder (ASD). Growing evidence has shown the alterations in the gut microbiota and gut microbiota-derived metabolites in ASD. However, how the altered microbiota might affect the associations between unbalanced diets and GI symptoms in ASD remains unknown. We analyzed microbiome and metabolomics data in 90 ASD and 90 typically developing (TD) children based on 16S rRNA and untargeted metabolomics, together with dietary intake and GI symptoms assessment. We found that there existed 11 altered gut microbiota (FDR-corrected P-value <0.05) and 397 altered metabolites (P-value <0.05) in children with ASD compared with TD children. Among the 11 altered microbiota, the Turicibacter, Coprococcus 1, and Lachnospiraceae FCS020 group were positively correlated with constipation (FDR-corrected P-value <0.25). The Eggerthellaceae was positively correlated with total GI symptoms (FDR-corrected P-value <0.25). More importantly, three increased microbiota including Turicibacter, Coprococcus 1, and Eggerthellaceae positively modulated the associations of unbalanced dietary intake with constipation and total GI symptoms, and the decreased Clostridium sp. BR31 negatively modulated their associations in ASD children (P-value <0.05). Together, the altered microbiota strengthens the relationship between unbalanced dietary intake and GI symptoms. Among the altered metabolites, ten metabolites derived from microbiota (Turicibacter, Coprococcus 1, Eggerthellaceae, and Clostridium sp. BR31) were screened out, enriched in eight metabolic pathways, and were identified to correlate with constipation and total GI symptoms in ASD children (FDR-corrected P-value <0.25). These metabolomics findings further support the modulating role of gut microbiota on the associations of unbalanced dietary intake with GI symptoms. Collectively, our research provides insights into the relationship between diet, the gut microbiota, and GI symptoms in children with ASD.
Collapse
Affiliation(s)
- Hailin Li
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Churui Liu
- School of Biological Engineering, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Saijun Huang
- Department of Child Healthcare, Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong, China
| | - Xin Wang
- Key Laboratory of Brain, Cognition and Education Science, Ministry of Education, Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, Guangdong, China
| | - Muqing Cao
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tingfeng Gu
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaoxuan Ou
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuolin Pan
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zongyu Lin
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaotong Wang
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yanna Zhu
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jin Jing
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Zhang H, Huang X, Wang G, Liu Y. Huangqi Jianzhong Tang treats chronic atrophic gastritis rats by regulating intestinal flora and conjugated bile acid metabolism. Biomed Chromatogr 2023; 37:e5721. [PMID: 37591498 DOI: 10.1002/bmc.5721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/19/2023]
Abstract
Huangqi Jianzhong Tang (HQJZ) is effective for treating chronic atrophic gastritis (CAG). The present study was carried out to reveal the mechanism of HQJZ in CAG rats. The metabolism and microbial composition of the cecal contents in CAG rats were analyzed through the integration of an untargeted metabolomic approach using ultra-high-performance liquid chromatography coupled with the quadrupole-time of flight mass spectrometry (UHPLC-QTOF-MS) and 16S rRNA gene sequencing, respectively. Finally, MetOrigin analyses were performed to explore the relationship between differential metabolites and intestinal flora. The results showed that HQJZ could significantly regulate metabolic disorders, especially conjugated acid metabolites. 16S rRNA gene sequencing analysis illustrated that HQJZ decreased the abundance of Acetobacter, Desulfovibrio, Escherichia, and Shigella. MetOrigin metabolite traceability analysis showed that the six bile acids associated with HQJZ efficacy included three bacteria-host cometabolites, which were involved in the primary bile acid biosynthesis pathway. Research presented here confirmed that conjugated bile acid metabolism was key to the treatment of CAG by HQJZ and correlates strongly with Bacteroides acidifaciens and Prevotella copri. These findings provide new insights into the mechanisms to explain the efficacy of HQJZ.
Collapse
Affiliation(s)
- Hui Zhang
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, Shanxi, China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, Shanxi, China
| | - Xingyue Huang
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, Shanxi, China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, Shanxi, China
| | - Guohong Wang
- Department of Pharmacy, Shanxi Traditional Chinese Medicine Hospital, Taiyuan, China
| | - Yuetao Liu
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, Shanxi, China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, Shanxi, China
| |
Collapse
|
5
|
Ueda H, Jeong HJ. Generation of a Recombinant scFv against Deoxycholic Acid and Its Conversion to a Quenchbody for One-Step Immunoassay. Methods Protoc 2023; 6:90. [PMID: 37888022 PMCID: PMC10608803 DOI: 10.3390/mps6050090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023] Open
Abstract
Development of a rapid detection method for deoxycholic acid (DCA) is crucial for its diagnosis in the early stages of inflammation and cancer. In this study, we expressed a soluble recombinant anti-DCA single-chain variable fragment (scFv) in Escherichia coli. To convert scFv into a Quenchbody (Q-body), we labeled scFv using commercially available maleimide-linked fluorophores. The TAMRA-C5-maleimide-conjugated Q-body showed the highest response within a few minutes of DCA addition, indicating its applicability as a wash-free immunoassay probe for onsite DCA detection.
Collapse
Affiliation(s)
- Hiroshi Ueda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan;
| | - Hee-Jin Jeong
- Department of Biological and Chemical Engineering, Hongik University, Sejong 30016, Republic of Korea
| |
Collapse
|
6
|
Bile Reflux Gastritis: Insights into Pathogenesis, Relevant Factors, Carcinomatous Risk, Diagnosis, and Management. Gastroenterol Res Pract 2022; 2022:2642551. [PMID: 36134174 PMCID: PMC9484982 DOI: 10.1155/2022/2642551] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 08/22/2022] [Indexed: 12/03/2022] Open
Abstract
Bile reflux gastritis (BRG), a kind of gastrointestinal disorder in clinical practice, is characterized by regurgitation and inflammation. However, lack of guidelines leads to simple cognition and even ignorance of this disease for clinicians. Primarily, making the pathogenesis of BRG clear contributes to a correct and general understanding of this disease for physicians. Next, although recently there has been an increasing awareness among researchers in terms of the relevant factors for BRG, further studies involving large samples are still required to certify the relationship between them explicitly. Besides, researches have established that BRG is closely associated with the development of precancerous lesions and gastric cancer. Till now, there is still no golden standard for diagnosis of BRG. Nevertheless, advances in techniques, especially extensive applications of endoscopy and chemical analysis of reflux contents, have improved our ability to identify the occurrence of this disease as well as distinguishing physiological reflux from pathological reflux. Finally, it is fortunate for patients that more and more importance has been attached to the treatment of BRG. From lifestyle modification to drug therapy to surgery, all of them with the view of realizing symptomatic relief are employed for patients with BRG. In this review, we briefly evaluate this disorder based on the best available evidence, offering an overview of its complicated pathogenesis, diverse relevant factors, potential carcinomatous risk, modern diagnostic investigations, and effective therapeutic plans.
Collapse
|
7
|
Wang S, Kuang J, Zhang H, Chen W, Zheng X, Wang J, Huang F, Ge K, Li M, Zhao M, Rajani C, Zhu J, Zhao A, Jia W. Bile Acid-Microbiome Interaction Promotes Gastric Carcinogenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200263. [PMID: 35285172 PMCID: PMC9165488 DOI: 10.1002/advs.202200263] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/21/2022] [Indexed: 05/11/2023]
Abstract
Bile reflux gastritis (BRG) is associated with the development of gastric cancer (GC), but the specific mechanism remains elusive. Here, a comprehensive study is conducted to explore the roles of refluxed bile acids (BAs) and microbiome in gastric carcinogenesis. The results show that conjugated BAs, interleukin 6 (IL-6), lipopolysaccharide (LPS), and the relative abundance of LPS-producing bacteria are increased significantly in the gastric juice of both BRG and GC patients. A secondary BA, taurodeoxycholic acid (TDCA), is significantly and positively correlated with the LPS-producing bacteria in the gastric juice of these patients. TDCA promotes the proliferation of normal gastric epithelial cells (GES-1) through activation of the IL-6/JAK1/STAT3 pathway. These results are further verified in two mouse models, one by gavage of TDCA, LPS, and LPS-producing bacteria (Prevotella melaninogenica), respectively, and the other by bile reflux (BR) surgery, mimicking clinical bile refluxing. Moreover, the bile reflux induced gastric precancerous lesions observed in the post BR surgery mice can be prevented by treatment with cryptotanshinone, a plant-derived STAT3 inhibitor. These results reveal an important underlying mechanism by which bile reflux promotes gastric carcinogenesis and provide an alternative strategy for the prevention of GC associated with BRG.
Collapse
Affiliation(s)
- Shouli Wang
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes MellitusShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Junliang Kuang
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes MellitusShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Hongwei Zhang
- Department of Metabolic and Bariatric SurgeryShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Wenlian Chen
- Cancer Institute, Longhua HospitalShanghai University of Traditional Chinese MedicineShanghai200233China
| | - Xiaojiao Zheng
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes MellitusShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Jieyi Wang
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes MellitusShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Fengjie Huang
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes MellitusShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Kun Ge
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes MellitusShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Mengci Li
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes MellitusShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Mingliang Zhao
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes MellitusShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Cynthia Rajani
- Cancer Biology ProgramUniversity of Hawaii Cancer CenterHonoluluHI96813USA
| | - Jinshui Zhu
- Department of GastroenterologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Aihua Zhao
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes MellitusShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Wei Jia
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes MellitusShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
- Cancer Biology ProgramUniversity of Hawaii Cancer CenterHonoluluHI96813USA
- School of Chinese MedicineHong Kong Baptist UniversityKowloon TongHong Kong999077China
| |
Collapse
|
8
|
Ni Z, Min Y, Han C, Yuan T, Lu W, Ashktorab H, Smoot DT, Wu Q, Wu J, Zeng W, Shi Y. TGR5-HNF4α axis contributes to bile acid-induced gastric intestinal metaplasia markers expression. Cell Death Discov 2020; 6:56. [PMID: 32655894 PMCID: PMC7338499 DOI: 10.1038/s41420-020-0290-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/18/2020] [Accepted: 06/03/2020] [Indexed: 12/24/2022] Open
Abstract
Intestinal metaplasia (IM) increases the risk of gastric cancer. Our previous results indicated that bile acids (BAs) reflux promotes gastric IM development through kruppel-like factor 4 (KLF4) and caudal-type homeobox 2 (CDX2) activation. However, the underlying mechanisms remain largely elusive. Herein, we verified that secondary BAs responsive G-protein-coupled bile acid receptor 1 (GPBAR1, also known as TGR5) was increased significantly in IM specimens. Moreover, TGR5 contributed to deoxycholic acid (DCA)-induced metaplastic phenotype through positively regulating KLF4 and CDX2 at transcriptional level. Then we employed PCR array and identified hepatocyte nuclear factor 4α (HNF4α) as a candidate mediator. Mechanically, DCA treatment could induce HNF4α expression through TGR5 and following ERK1/2 pathway activation. Furthermore, HNF4α mediated the effects of DCA treatment through directly regulating KLF4 and CDX2. Finally, high TGR5 levels were correlated with high HNF4α, KLF4, and CDX2 levels in IM tissues. These findings highlight the TGR5-ERK1/2-HNF4α axis during IM development in patients with BAs reflux, which may help to understand the mechanism underlying IM development and provide prospective strategies for IM treatment.
Collapse
Affiliation(s)
- Zhen Ni
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710032 China
- Department of Gastroenterology, General Hospital of Western Theater Command, Chengdu, Sichuan 610083 China
| | - Yali Min
- Department of Gastroenterology, Second Affiliated Hospital of Xi’an Medical College, Xi’an, Shaanxi 710038 China
| | - Chuan Han
- Department of Endocrinology, General Hospital of Western Theater Command, Chengdu, Sichuan 610083 China
| | - Ting Yuan
- Department of Gastroenterology, 989 Hospital of the People’s Liberation Army, Luoyang, Henan 471003 China
| | - Wenquan Lu
- Department of Gastroenterology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052 China
| | - Hassan Ashktorab
- Department of Medicine and Cancer Center, Howard University, Washington, DC 20060 USA
| | - Duane T. Smoot
- Department of Internal Medicine, Meharry Medical College, Nashville, TN 37208 USA
| | - Qiong Wu
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710032 China
| | - Jian Wu
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710032 China
| | - Weizheng Zeng
- Department of Gastroenterology, General Hospital of Western Theater Command, Chengdu, Sichuan 610083 China
| | - Yongquan Shi
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710032 China
| |
Collapse
|
9
|
DKK1 is epigenetically downregulated by promoter methylation and inhibits bile acid-induced gastric intestinal metaplasia. Biochem Biophys Res Commun 2020; 523:780-786. [PMID: 31952791 DOI: 10.1016/j.bbrc.2019.12.109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 12/31/2019] [Indexed: 02/07/2023]
Abstract
Dickkopf-related protein 1 (DKK1) is essential to gastric cancer as an inhibitor of Wnt signaling. Gastric intestinal metaplasia (GIM) is an important precancerous lesion of gastric cancer that can be activated by bile acid reflux and chronic inflammation. However, the exact mechanism of DKK1 in bile acid-induced GIM has not been completely elucidated. We aimed to explore the epigenetic alterations and biological functions of DKK1 in the development of GIM. In the present study, bile acid was found to induce the expression of intestinal markers in gastric epithelial cells, whereas DKK1 was downregulated in response to bile acid stimulation. The mRNA and protein expression levels of DKK1 were decreased in GIM tissues as evidenced by qRT-PCR and immunohistochemical staining. Surprisingly, the methylation of the DKK1 promoter increased in GIM tissues, and we discovered 28 differential methylation sites of the DKK1 promoter in GIM tissues. Bile acid was able to induce the partial methylation of the DKK1 promoter, while 5-aza could increase DKK1 expression as well as decrease intestinal markers expression in gastric epithelial cells. In conclusion, the promoter methylation and downregulation of DKK1 might play important roles in the development of GIM, especially bile acid-induced GIM.
Collapse
|
10
|
Kompella P, Vasquez KM. Obesity and cancer: A mechanistic overview of metabolic changes in obesity that impact genetic instability. Mol Carcinog 2019; 58:1531-1550. [PMID: 31168912 PMCID: PMC6692207 DOI: 10.1002/mc.23048] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/08/2019] [Accepted: 05/10/2019] [Indexed: 12/16/2022]
Abstract
Obesity, defined as a state of positive energy balance with a body mass index exceeding 30 kg/m2 in adults and 95th percentile in children, is an increasing global concern. Approximately one-third of the world's population is overweight or obese, and in the United States alone, obesity affects one in six children. Meta-analysis studies suggest that obesity increases the likelihood of developing several types of cancer, and with poorer outcomes, especially in children. The contribution of obesity to cancer risk requires a better understanding of the association between obesity-induced metabolic changes and its impact on genomic instability, which is a major driving force of tumorigenesis. In this review, we discuss how molecular changes during adipose tissue dysregulation can result in oxidative stress and subsequent DNA damage. This represents one of the many critical steps connecting obesity and cancer since oxidative DNA lesions can result in cancer-associated genetic instability. In addition, the by-products of the oxidative degradation of lipids (e.g., malondialdehyde, 4-hydroxynonenal, and acrolein), and gut microbiota-mediated secondary bile acid metabolites (e.g., deoxycholic acid and lithocholic acid), can function as genotoxic agents and tumor promoters. We also discuss how obesity can impact DNA repair efficiency, potentially contributing to cancer initiation and progression. Finally, we outline obesity-related epigenetic changes and identify the gaps in knowledge to be addressed for the development of better therapeutic strategies for the prevention and treatment of obesity-related cancers.
Collapse
Affiliation(s)
- Pallavi Kompella
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Boulevard, Austin, TX 78723, USA
| | - Karen M. Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Boulevard, Austin, TX 78723, USA
| |
Collapse
|
11
|
Esophagogastric junction function and gastric pressure profile after minigastric bypass compared with Billroth II. Surg Obes Relat Dis 2019; 15:567-574. [PMID: 30827811 DOI: 10.1016/j.soard.2019.01.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/03/2019] [Accepted: 01/31/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Minigastric bypass (MGB) is being performed widely with effective weight loss and improvement in co-morbidities. Because of similarity to Billroth II (BII), there are concerns about bile reflux. OBJECTIVES To assess the esophagogastric junction (EGJ) function, esophageal peristalsis, and reflux exposure after MGB and BII. SETTING University Hospital, Italy; Public Hospital, Italy. METHODS Obese patients underwent symptom questioning, endoscopy, high-resolution impedance manometry, and impedance-pH monitoring, before and 1 year after MGB. Esophageal motor function, EGJ, EGJ-contractile integral, intragastric pressure (IGP), and gastroesophageal pressure gradient were determined. Acid exposure time, number of refluxes, and symptom-association probability were assessed. A group of patients who underwent BII were studied with the same protocol and served as controls. RESULTS Twenty-two MGB and 20 BII patients were studied. After surgery, none of the patients reported de novo heartburn or regurgitation. At endoscopic follow-up, esophagitis and bile findings were absent in all. High-resolution impedance manometry features did not vary significantly after MGB, whereas IGP and gastroesophageal pressure gradient statistically diminished (P < .01). BII patients had significantly lower values in IGP, sphincter pressure, and EGJ-contractile integral. In MGB patients, a marked decrease in number of refluxes (from median 41 to 7, P < .01) was observed, whereas BII patients had statistically significant higher acid exposure and number of refluxes (57, P < .001). CONCLUSIONS In contrast to BII, MGB does not increase any kind of reflux. Also, the differences in IGP and gastroesophageal pressure gradient suggest that bile reflux occurs more readily after BII than after MGB, and that these 2 operations share more differences than similarities.
Collapse
|
12
|
Liu Y, Rong Z, Xiang D, Zhang C, Liu D. Detection technologies and metabolic profiling of bile acids: a comprehensive review. Lipids Health Dis 2018; 17:121. [PMID: 29792192 PMCID: PMC5966875 DOI: 10.1186/s12944-018-0774-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 05/10/2018] [Indexed: 12/15/2022] Open
Abstract
Bile acids (BAs) are important regulatory factors of life activities, which are involved in the regulation of glucose, lipid and energy metabolisms, and closely associated with intestinal hormones, microbiotas and energy balance. BAs abnormalities easily lead to inflammation and metabolic diseases, in turn, the progress of diseases could influence characteristics of BAs. Therefore, accurate detection of BAs contents is of great significance to disease prevention, diagnosis and treatment. At present, the most widely used enzymatic method in clinical practice is applicable to the detection of total bile acid (TBA). In laboratory research, different types of BAs can be accurately separated and quantified by liquid chromatography-mass spectrometry (LC-MS). The metabolic profiling of BAs based on detection technologies can completely and accurately monitor their types and contents, playing a crucial role in disease prevention, diagnosis and treatment. We herein reviewed the main detection technologies of BAs and the application of metabolic profiling in related diseases in recent years.
Collapse
Affiliation(s)
- Yanan Liu
- Department of Pharmacy of Tongji Hospital, Tongji Medical School, Huazhong Science and Technology University, Wuhan, 430030, China
| | - Zhihui Rong
- Department of Paediatrics of Tongji Hospital, Tongji Medical School, Huazhong Science and Technology University, Wuhan, 430030, China
| | - Dong Xiang
- Department of Pharmacy of Tongji Hospital, Tongji Medical School, Huazhong Science and Technology University, Wuhan, 430030, China
| | - Chengliang Zhang
- Department of Pharmacy of Tongji Hospital, Tongji Medical School, Huazhong Science and Technology University, Wuhan, 430030, China.
| | - Dong Liu
- Department of Pharmacy of Tongji Hospital, Tongji Medical School, Huazhong Science and Technology University, Wuhan, 430030, China.
| |
Collapse
|
13
|
Di Ciaula A, Wang DQH, Molina-Molina E, Lunardi Baccetto R, Calamita G, Palmieri VO, Portincasa P. Bile Acids and Cancer: Direct and Environmental-Dependent Effects. Ann Hepatol 2017; 16:s87-s105. [PMID: 29080344 DOI: 10.5604/01.3001.0010.5501] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 09/06/2017] [Indexed: 02/05/2023]
Abstract
Bile acids (BAs) regulate the absorption of fat-soluble vitamins, cholesterol and lipids but have also a key role as singalling molecules and in the modulation of epithelial cell proliferation, gene expression and metabolism. These homeostatic pathways, when disrupted, are able to promote local inflammation, systemic metabolic disorders and, ultimately, cancer. The effect of hydrophobic BAs, in particular, can be linked with cancer in several digestive (mainly oesophagus, stomach, liver, pancreas, biliary tract, colon) and extra-digestive organs (i.e. prostate, breast) through a complex series of mechanisms including direct oxidative stress with DNA damage, apoptosis, epigenetic factors regulating gene expression, reduced/increased expression of nuclear receptors (mainly farnesoid X receptor, FXR) and altered composition of gut microbiota, also acting as a common interface between environmental factors (including diet, lifestyle, exposure to toxics) and the molecular events promoting cancerogenesis. Primary prevention strategies (i.e. changes in dietary habits and lifestyle, reduced exposure to environmental toxics) mainly able to modulate gut microbiota and the epigenome, and the therapeutic use of hydrophilic BAs to counterbalance the negative effects of the more hydrophobic BAs might be, in the near future, part of useful tools for cancer prevention and management.
Collapse
Affiliation(s)
| | - David Q-H Wang
- Department of Medicine, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Emilio Molina-Molina
- Clinica Medica "A. Murri", Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Bari, Italy
| | - Raquel Lunardi Baccetto
- Clinica Medica "A. Murri", Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Bari, Italy
| | - Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari. Italy
| | - Vincenzo O Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari. Italy
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Bari, Italy
| |
Collapse
|