1
|
Bera S, Mondal D. Antibacterial Efficacies of Nanostructured Aminoglycosides. ACS OMEGA 2022; 7:4724-4734. [PMID: 35187293 PMCID: PMC8851436 DOI: 10.1021/acsomega.1c04399] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
The widespread use of broad-spectrum aminoglycoside antibiotics is restricted from various clinical applications due to the emergence of bacterial resistance and the adverse effects such as ototoxicity and nephrotoxicity. The intensive applicability of nanoparticles in modern medicinal chemistry has gained the interest of researchers for modification of aminoglycosides as nanoconjugates either via covalent conjugation or physical interactions to alleviate their undesirable effects and bacterial resistance. In this context, various carbohydrates, polymers, lipids, silver, gold, and silica-attached aminoglycoside nanoparticles have been reported with improvements in physicochemical properties, bioavailability, and biocompatibility in physiological medium. Overall, this review encompassed the synthesis of nanostructured aminoglycosides and their applications in the development of new antibacterial therapeutics.
Collapse
|
2
|
Cao Z, Tang X, Zhang Y, Yin T, Gou J, Wang Y, He H. Novel injectable progesterone-loaded nanoparticles embedded in SAIB-PLGA in situ depot system for sustained drug release. Int J Pharm 2021; 607:121021. [PMID: 34416333 DOI: 10.1016/j.ijpharm.2021.121021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/11/2021] [Accepted: 08/15/2021] [Indexed: 12/18/2022]
Abstract
Poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) have attracted considerable interest in the medical community as a sustained-release drug delivery system for localized treatment. However, it is currently a grand challenge to simultaneously achieve low-dose drugs, stable and prolonged drug release, and long-term retention circumventing uptake by macrophages. Here, we construct a solvent-exchange in-situ depot system by incorporating progesterone (PRG) loaded PLGA NPs into a sucrose acetate isobutyrate (SAIB) and PLGA matrix for the long term treatment of Assisted Reproductive Technology (ART). The results showed that different solvent and PLGA contents could affect the drug release rate of PRG NPs-SAIB-PLGA in-situ depot system (PSPIDS). When DMSO was used as solvent with the addition of 8% PLGA to the depot, PSPIDS could achieve a constant drug release with no burst for 2 weeks in vitro. After a single intramuscular injection, such PSPIDS showed higher drug concentration and AUC (6773.0 ± 348.8 μg/L·h) over the entire 7-day testing period compared with the commercial multiple-day-dosing intramuscular PRG-oil solution (1914.5 ± 180.7 μg/L·h) in vivo. Importantly, PSPIDS could be administered at a dose of 3.65 mg/kg, which was one fourth of dose required for PRG-oil solution. The results demonstrate that PRG NPs could successfully achieve both reduced administered dosage and burst release, and therefore that PSPIDS is a promising long-acting composite system for hydrophobic drugs.
Collapse
Affiliation(s)
- Zhijun Cao
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xing Tang
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yu Zhang
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tian Yin
- Department of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jingxin Gou
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yanjiao Wang
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Haibing He
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
3
|
López-Cano JJ, Sigen A., Andrés-Guerrero V, Tai H, Bravo-Osuna I, Molina-Martínez IT, Wang W, Herrero-Vanrell R. Thermo-Responsive PLGA-PEG-PLGA Hydrogels as Novel Injectable Platforms for Neuroprotective Combined Therapies in the Treatment of Retinal Degenerative Diseases. Pharmaceutics 2021; 13:234. [PMID: 33562265 PMCID: PMC7915560 DOI: 10.3390/pharmaceutics13020234] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 12/16/2022] Open
Abstract
The present study aims to develop a thermo-responsive-injectable hydrogel (HyG) based on PLGA-PEG-PLGA (PLGA = poly-(DL-lactic acid co-glycolic acid); PEG = polyethylene glycol) to deliver neuroprotective agents to the retina over time. Two PLGA-PEG PLGA copolymers with different PEG:LA:GA ratios (1:1.54:23.1 and 1:2.25:22.5) for HyG-1 and HyG-2 development respectively were synthetized and characterized by different techniques (gel permeation chromatography (GPC), nuclear magnetic resonance (NMR), dynamic light scattering (DLS), critical micelle concentration (CMC), gelation and rheological behaviour). According to the physicochemical characterization, HyG-1 was selected for further studies and loaded with anti-inflammatory drugs: dexamethasone (0.2%), and ketorolac (0.5%), alone or in combination with the antioxidants idebenone (1 µM) and D-α-Tocopherol polyethylene glycol 1000 succinate (TPGS) (0.002%). In vitro drug release and cytotoxicity studies were performed for the active substances and hydrogels (loaded and drug-free). A cellular model based on oxidative stress was optimized for anti-inflammatory and antioxidant screening of the formulations by using retinal-pigmented epithelial cell line hTERT (RPE-1). The copolymer 1, used to prepare thermo-responsive HyG-1, showed low polydispersity (PDI = 1.22) and a strong gel behaviour at 25% (w/v) in an isotonic buffer solution close to the vitreous temperature (31-34 °C). Sustained release of dexamethasone and ketorolac was achieved between 47 and 62 days, depending on the composition. HyG-1 was well tolerated (84.5 ± 3.2%) in retinal cells, with values near 100% when the anti-inflammatory and antioxidant agents were included. The combination of idebenone and dexamethasone promoted high oxidative protection in the cells exposed to H2O2, with viability values of 86.2 ± 14.7%. Ketorolac and dexamethasone-based formulations ameliorated the production of TNF-α, showing significant results (p ≤ 0.0001). The hydrogels developed in the present study entail a novel biodegradable tool to treat neurodegenerative processes of the retina overtime.
Collapse
Affiliation(s)
- José Javier López-Cano
- Research Group (UCM 920415), Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal), Complutense University, 28040 Madrid, Spain; (J.J.L.-C.); (V.A.-G.); (I.B.-O.); (I.T.M.-M.)
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), IdISSC, 28040 Madrid, Spain
| | - Sigen A.
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin 4, Ireland; (S.A.); (W.W.)
- Blafar Ltd., Belfield Innovation Park, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland;
| | - Vanessa Andrés-Guerrero
- Research Group (UCM 920415), Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal), Complutense University, 28040 Madrid, Spain; (J.J.L.-C.); (V.A.-G.); (I.B.-O.); (I.T.M.-M.)
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), IdISSC, 28040 Madrid, Spain
- Thematic Research Network in Ophthalmology (Oftared), Carlos III National Institute of Health, 28029 Madrid, Spain
| | - Hongyun Tai
- Blafar Ltd., Belfield Innovation Park, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland;
| | - Irene Bravo-Osuna
- Research Group (UCM 920415), Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal), Complutense University, 28040 Madrid, Spain; (J.J.L.-C.); (V.A.-G.); (I.B.-O.); (I.T.M.-M.)
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), IdISSC, 28040 Madrid, Spain
- Thematic Research Network in Ophthalmology (Oftared), Carlos III National Institute of Health, 28029 Madrid, Spain
| | - Irene Teresa Molina-Martínez
- Research Group (UCM 920415), Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal), Complutense University, 28040 Madrid, Spain; (J.J.L.-C.); (V.A.-G.); (I.B.-O.); (I.T.M.-M.)
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), IdISSC, 28040 Madrid, Spain
- Thematic Research Network in Ophthalmology (Oftared), Carlos III National Institute of Health, 28029 Madrid, Spain
| | - Wenxin Wang
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin 4, Ireland; (S.A.); (W.W.)
- Blafar Ltd., Belfield Innovation Park, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland;
| | - Rocío Herrero-Vanrell
- Research Group (UCM 920415), Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal), Complutense University, 28040 Madrid, Spain; (J.J.L.-C.); (V.A.-G.); (I.B.-O.); (I.T.M.-M.)
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), IdISSC, 28040 Madrid, Spain
- Thematic Research Network in Ophthalmology (Oftared), Carlos III National Institute of Health, 28029 Madrid, Spain
| |
Collapse
|
4
|
Arafa MG, Mousa HA, Afifi NN. Preparation of PLGA-chitosan based nanocarriers for enhancing antibacterial effect of ciprofloxacin in root canal infection. Drug Deliv 2020; 27:26-39. [PMID: 31833443 PMCID: PMC6968620 DOI: 10.1080/10717544.2019.1701140] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/28/2019] [Accepted: 12/02/2019] [Indexed: 01/21/2023] Open
Abstract
The aim of this study is to prepare and evaluate the antibacterial and antibiofilm activity of ciprofloxacin (CIP) loaded PLGA nanoparticles (F2) and CIP-PLGA nanoparticles coated with chitosan (F3) versus ciprofloxacin solution (Fl) as a control on Enterococcus faecalis. F2 was prepared using double emulsion evaporation technique then coated with chitosan (F3). The prepared F2 and F3 were evaluated for size, surface charge, encapsulation efficiency, morphology and in vitro release. F1, F2, F3, and Chitosan (CS) were assessed in vitro using agar diffusion technique and biofilm inhibition assay. Finally, biofilm inhibition on teeth using Colony Forming Unit (CFU) was implemented with different concentrations of the three formulae. The results revealed that F2 is 202.9 nm with a negative charge -0.0254 mv, while F3 is 339.6 nm with a positive charge +28.5 mv. The encapsulation efficiency of F2, and F3 was 64% and 78% respectively. The amount released was 92.62% and 78.3% for F2 and F3, respectively, after 72 h, while F1 showed 100% released in the first hour. CS, F1, F2, and F3, showed antibacterial effect with inhibition zone of 12 mm, 22 mm, 20 mm, and 32 mm respectively. Biofilm inhibition of F1, F2, and F3 were 60%, 74%, and 91.8%, respectively. F3 colony count was less than F2, and F1 in all concentrations. It can be concluded that F3 had proven to exhibit potential antibacterial and antibiofilm activity in a controlled release pattern consequently, they can be used as an intra-canal medication.
Collapse
Affiliation(s)
- Mona G. Arafa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt (BUE), El Sherouk City, Egypt
- Chemotherapeutic Unit, Mansoura University Hospitals, Mansoura, Egypt
| | - Hadeel A. Mousa
- Department of Medical Science, Faculty of Dentistry, The British University in Egypt (BUE), El Sherouk City, Egypt
| | - Nagia N. Afifi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6th University, Cairo, Egypt
| |
Collapse
|
5
|
Pawde DM, Viswanadh MK, Mehata AK, Sonkar R, Narendra, Poddar S, Burande AS, Jha A, Vajanthri KY, Mahto SK, Azger Dustakeer VN, Muthu MS. Mannose receptor targeted bioadhesive chitosan nanoparticles of clofazimine for effective therapy of tuberculosis. Saudi Pharm J 2020; 28:1616-1625. [PMID: 33424254 PMCID: PMC7783224 DOI: 10.1016/j.jsps.2020.10.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 10/04/2020] [Accepted: 10/18/2020] [Indexed: 12/11/2022] Open
Abstract
Drug-resistant tuberculosis (TB) is one of the most lethal diseases, and it is imperative to exploit an advanced drug formulation for its effective treatment. This work aims to develop a mannose receptor-targeted bioadhesive chitosan nanoparticles for effective drug-resistant tuberculosis treatment. The clofazimine loaded chitosan nanoparticles were formulated; their size, charge, polydispersity (PDI), surface morphology, entrapment efficiency (EE) and in-vitro release pattern were established. Also, cellular uptake study on C2C12 cell lines and anti-mycobacterial activity against H37Rv (a standard strain of Mycobacterium tuberculosis) were evaluated. The particle sizes of formulated chitosan nanoparticles were in the range of 132–184 nm and EE was also found to be between 73 and 95%. The functionalization of bioadhesive chitosan nanoparticles with mannose was confirmed by infrared spectroscopy (FTIR). The uptake studies on the C2C12 cell lines showed that mannosylated nanoparticles were more efficiently internalized when compared to non-targeted nanoparticles. Further, luciferase reporter phage (LRP) assay against H37Rv strain showed that clofazimine nanoparticles were found to be 49.5 times superior in terms of inhibition and anti-mycobacterial activity than free clofazimine. This excellent activity might be attributed to enhanced drug delivery with a promising bioadhesion property of chitosan-based nanoparticles.
Collapse
Affiliation(s)
- Datta Maroti Pawde
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Matte Kasi Viswanadh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Roshan Sonkar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Narendra
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Suruchi Poddar
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Ankita Sanjay Burande
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Abhishek Jha
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | | | - Sanjeev Kumar Mahto
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - V N Azger Dustakeer
- Department of Bacteriology, National Institute for Research in Tuberculosis, Chetpet, Chennai 600031, India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| |
Collapse
|
6
|
Hamdi M, Abdel-Bar HM, Elmowafy E, Al-Jamal KT, Awad GAS. An integrated vitamin E-coated polymer hybrid nanoplatform: A lucrative option for an enhanced in vitro macrophage retention for an anti-hepatitis B therapeutic prospect. PLoS One 2020; 15:e0227231. [PMID: 31923260 PMCID: PMC6953793 DOI: 10.1371/journal.pone.0227231] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/13/2019] [Indexed: 01/19/2023] Open
Abstract
A platform capable of specifically delivering an antiviral drug to the liver infected with hepatitis B is a major concern in hepatology. Vaccination has had a major effect on decreasing the emerging numbers of new cases of infection. However, the total elimination of the hepatitis B virus from the body requires prolonged therapy. In this work, we aimed to target the liver macrophages with lipid polymer hybrid nanoparticles (LPH), combining the merit of polymeric nanoparticles and lipid vesicles. The hydrophilic antiviral drug, entecavir (E), loaded LPH nanoparticles were optimized and physicochemically characterized. A modulated lipidic corona, as well as, an additional coat with vitamin E were used to extend the drug release enhance the macrophage uptake. The selected vitamin E coated LPH nanoparticles enriched with lecithin-glyceryl monostearate lipid shell exhibited high entrapment for E (80.47%), a size ≤ 200 nm for liver passive targeting, extended release over one week, proven serum stability, retained stability after refrigeration storage for 6 months. Upon macrophage uptake in vitro assessment, the presented formulation displayed promising traits, enhancing the cellular retention in J774 macrophages cells. In vivo and antiviral activity futuristic studies would help in the potential application of the ELPH in hepatitis B control.
Collapse
Affiliation(s)
- Mohamed Hamdi
- Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | - Hend Mohamed Abdel-Bar
- Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | - Enas Elmowafy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Sadat City, Egypt
| | - Khuloud T. Al-Jamal
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King’s College London, England, United Kingdom
| | - Gehanne A. S. Awad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Sadat City, Egypt
| |
Collapse
|
7
|
Chitosan hydrochloride/hyaluronic acid nanoparticles coated by mPEG as long-circulating nanocarriers for systemic delivery of mitoxantrone. Int J Biol Macromol 2018; 113:345-353. [DOI: 10.1016/j.ijbiomac.2018.02.128] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/12/2018] [Accepted: 02/20/2018] [Indexed: 12/11/2022]
|